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We are seeing the emergence of a model of
reionization that is consistent with almost
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Lyx forest shows spatial fluctuations
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Becker et al. 2015
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Quantity this by defining an effective optical depth over 50 cMpc/h
segments of the forest




Lyx forest shows spatial fluctuations

Becker et al. 2015
e Bosman et al. 2018
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We do expect spatial fluctuations




Cosmic density does not explain fluctuations
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e Temperature fluctuations (D’Aloisio et al. 2015): too high temperatures
e |onization rate fluctuations (Davies et al. 2016): too small mean free path
e Rare sources, such as QSOs (Chardin et al. 2015): not sure if these exist
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Carefully calibrated reionization simulation suite
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Kulkarni et al. 2019
Cosmological simulations + GPU-enabled radiative transfer

Highest dynamic-range reionization simulations in the world: 80 kpc/h—
320 Mpc/h! Box size greater than the mean free path.

e Sources are galaxies that reside in haloes down to 109 Mg halos



Another bad surprise?
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Distributions were much narrower in our initial runs.




How are these simulations calibrated?

Worseck et al. 2014

20-512 160-2048
40-1024 320-2048
80-2048

® Becker and Bolton 2013 A Wyithe & Bolton 2011
® Calverley et al. 2011 B Davies et al. 2017

Reionization simulations are traditionally calibrated to reproduce the
mean |IGM photoionization rate



o Becker et al. 2015
@ Bosman et al. 2018

Lyax fluctuations

z=25.0,5.2,5.4,5.6,5.8,6.2
I | Bosman et al. 2018
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Lya fluctuations explained

o Becker et al. 2015
@ Bosman et al. 2018

z=5.0,5.2,5.4,5.6,5.8,6.2
I 1 Bosman et al. 2018
I Kulkarni et al. 2018

Kulkarni et al. 2019

Key to success: correct calibration of simulations.

Previous simulations were calibrated to match the photoionization rate
but that is a derived gquantity. Use the mean flux instead.
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Lya fluctuations explained

o Becker et al. 2015
@ Bosman et al. 2018

2 =5.0,5.2,54,5.6,5.8,6.2
"1 Bosman et al. 2018
I Kulkarni et al. 2018

Kulkarni et al. 2019

112.5 hr on VLT to target 29 z > 5.8 quasars
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Delayed reionization

Age of the Universe [Myr]
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Reionization is halt-finished at z ~ 7.5 and ends at z ~ 5.3, with long-

lasting neutral “islands”. (Good news for 21-cm experiments.) "



Towards a concordant reionization model

Kulkarni et al. 2019

— =Choudhury15
e Daviesl8&

Qur

£=3 Planck 2018
== T'his work

i
QO
=
)

—
I&-(
S
=
\
*
QL
~—
(@)
—
o0
=

e (Good agreement with Lya emitter data (Choudhury et al. 2015), |IGM
damping wing (Greig et al. 2017 and Davies et al. 2018), statistics of
dark Lya forest pixels (McGreer et al. 2015), and CMB (Planck 2018)

® |onizing emissivity peaks at redshift z ~ 7

e \ery little freedom at least outtoz ~ 7.5
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Long Lya troughs In late reionization models
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Becker et al. 2015

Incidence of long troughs and the density structure around them are
good model discriminants.




Long Lya troughs in late reionization models
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o Keating, Kulkarni et al. 2019
Longest trough along sightline [cMpc/h]

e Derive spectra over lightcones; add instrument profile and noise

e Define trough length following Becker et al. 2015

e |ncidence rate falls above 80 cMpc/h (reionization still early”? small
volume®? 16
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LAE counts show decrement near the trough
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Keating, Kulkarni et al. 2019

e Model LAEs following Weinberger et al. 2019
e Deficit in LAEs near the trough in agreement with Becker et al. 2018
e Combination of low density and high Lya opacity of environment

18



Lyman-f3 opacity at z = 5.5-6.1
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e Measurements from 19 quasar sightlines by Eilers et al. 2019

e [ffective opacity derived over 40 cMpc.

e [ ate reionization model seems to be in better agreement with high-
opacity data points than other models
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Conclusion

e Reionization is late (ends at z < 5.5)

e | ate reionization explains a variety of high-z
data: Lya opacities, long Lya troughs, Lyf3
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