Solutions to Peskin and Schroder — Andrzej Pokraka

Problem 9.1: Scalar QED

This problem concerns the theory of a complex scalar field ¢ interacting with the electromagnetic
field A*. The Lagrangian is

1 . .
L= _ZF,L%D + (DM¢) (D#¢) - m?ﬁ¢ ¢a (1)
where D, = 0, +ieA, is the usual gauge-covariant derivative.

(a) Use the functional method of Section 9.2 to show that the propagator of the complex scale
field is the same as that of a real field:

)
——— e —— . 2
D p2—mi+ie 2)

Also derive the Feynman rules for the interactions between photons and scalar particles; you
should find 1

14

AN = ie(p ) X = 2ic%gH 3)

(b) Compute, to lowest order, the differential cross section for eTe™ — ¢¢*. Ignore the electron
mass (but not the scalar particle’s mass), and average over the electron and positorn polariza-
tions. Find the asymptotic angular dependence and total cross section. Compare your results
to the corresponding formulae for ete™ — up™.

(¢) Compute the contribution of the charged scalar to the photon vacuum polarization, using
dimensional regularization. Note that there are two diagrams. To put the answer into the
expected form,

1" (¢*) = (9"4* — ¢"d")11(¢?),
it is useful to add the two diagrams at the beginning, putting both terms over a common
denominator before introduction a Feynman parameter. Show that, for —g > m?, the charged
boson contribution to I1(¢?) is exactly 1/4 that of a virtual electron-positron pair.

9.1 (a)
Let us start with the action for the theory

S = / dz (—iF +(Dug) (D) — mi¢*¢)

= [ate (< + 0,670 — ieA" [5°0,0) ~ (0,07)0] + FA" 4,60 - w0

4 24
= Sg + Sg + Sint- (4)

- / d'e <1F2 — §7(0° + m2)p — ie A" (6 (040) — (8,0%)9)] +e2Ai¢|2)
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The free theory generating functional is given by
Zoloms s 1 = [ DA [Do [ Dot ats dustvisissyate e sy

— 7500,0,0] e 4% S 4%y (30 (@) D (=) ()42 () D(—0) 1 (0)

(5)

Here, we assume that the Faddeev and Popov procedure has been preformed to restrict the path
integral over A to physically unique field configurations. We have also ignored the overall infinite

constant factor that this procedure generates (recall that we are usually interested in ratios).

Expanding the exponential with the interaction term we obtain the full generating functional as

a series in e

Z s Jos 7] :/DA/D¢/D¢*ZO o, Jos J7] <1+i62/d4x Ai(z)|¢(x)2+0(e4)>

x (1 s [l 41G) 5 (2)0,00) — (0u5" (002N + 0<e2>) .

We can now read off the propagator and interaction vertices. The scalar field propagator is
d'k i

1,2 _ 2 | -
2m) p? —mj + ie

eik»(acl—am)

(0T (21)¢* (22)|0) = D(zy — x3) = / :

while the photon propagator is

(0T Ay (1) Ay (22)[0) = Dy (a1 — 22) = /(;Tl)lkzz_% (gw 1-g k;;l;) |

Fourier transforming the fields in the term,

¢ / dhz AR (k) [6*(2)(0,0(2)) — (0,0%(2))(2)]

— (—ie 4, d*k d4p d4p/ i T T 1 =iz (p—p k)
( )/d /(277)4 /(27T)4 /<27r)4 Al (k)¢" (p)(p) (P + Py)

d4p d4p’ A N TH N T . ,
:/(277)4 /(%)414 (p—p")o" (p)d(p)(—ie)(pu + )

yields the vertex

P _ )
/W Y- —Ze(p _;’_p’)/
/lp
4
while the term,
ie [t 2@,
yields the vertex
K v
\\.\}{/J s
’
/7 \
/7 \
/7 \

where the 2 comes from symmetry in the two A fields.

(10)

(11)
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9.1 (b)

To lowest order ete™ — ¢¢* is given by the diagram:

(12)
(13)
The spin averaged matrix element is
EZ IM(eTe™ = ¢pp™)|* = E <62)2Tr [(}/ —me)(me — %)(}ﬁ-i- me)(me — K)]
12 INEST oo oo
64 / / /
=W<2(p'k)[p k—p K]
+20p- k)P K —p k]
+p-p)2k-K —k-k—Fk -]
+m§[k.k+k’~k'2k.k’]). (14)

In the centre of mass frame p = —p’ = p+p = (2Ep,0) and k = -k’ = k+ k' = (2Ex,0).
This means that E, = Ex = E. We also assume that |p| > me so that E =~ |p|. We need the dot
products

p-k=p -k =E,Ex — |p|lk|cosf ~ E (E — |k|cos ) (15)
p - k=p-k =E,Ex + |pl|lk|cosf ~ E (E + k| cos ) (16)
p-p = B2+ |p|* ~ 2E? (17)
k-k =E2+ k> = E* + |k|? (18)
With these relations (and taking m. = 0), the spin averaged matrix element squared becomes
! e (K2 kP m?
2 IM(eem = 607) = (E g cos”b - 55
spin
= 8n%a?p%sin 0, (19)

where = ,/1 — mi/E2 is the velocity of the particles and o = 4me? is the fine structure constant.

Since this is a two particle reaction we can use the simplified cross section formula (4.84)

do(ete™ — ¢o*) 1 |kl 1

a0 = 5 e E 1 O M(eTeT = 9
spin
2123
~ ibi sin? 0. (20)
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Integrating over the polar coordinate yields the total cross section

_ . 21?33
Comparing our results to those of the ete™ — u=put
do(ete” = p—pt) _ o?B ™ ma\ o
a0 e (\Uter) P E ) el
_ _ dra?p m?
olete” —puput) = YoP (1 + 2E#2> , (22)

we see that the angular dependence of the differential cross sections are very different. The scalar
particles have a are more likely to move perpendicular to the electron beam axis while the muons
are more likely to move along the electron beam axis.

9.1 (¢)
The scalar contribution to the photon vacuum polarization is given by the following diagrams
k—q
/o
oA~~~y YA v — W 23
a w7 g (23)
k
and k
-~
I
\ I
\ /
B AAAAANAANAANAAA V= MY (24)
q q

Now applying the Feynman rules (in d-dimensions) we obtain

o [ A% (—ie)(2k — q)* (i) (—ie) (2k — q)” (i)
M= / (2m)d (k2 — mi —ie)((k —q)% — mi +ie)’

_ 62/ d’k (2k — ¢)*(2k — q)"
(2m)® (k2 —m3 —ie)((k — q)* —mj +ie)’

M = / (ddk (2ie?g™) (i)

2m)® k2 —m3 — i€’

*62 ddk —29”’/
- (26)

2m)® k2 —m3 —ie

(25)
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Following the hint we add these diagrams together before introducing Feynman parameters
i =My +iMbY
_ / Ak [ (—ie)(2k — q)*(i)(—ie)(2k — )" (i) L (2ieg™)(i)
) @md \ (B2 —m —ie)((k —q)? —m] +ie) k2 —m? —ie

_ 2/ d’k ((%—q)“(?k—Q)V—29“”((k—q)2—mi)>

27)4d (k2 —mZ —ie)((k — q)* — m3 + ie)

) d*k [ 4kMEY — 2kPqY — 2KV qY + qtq” — 29"V (k% — 2k - q + ¢* — mi) o7
- / (2m)¢ (k% — mi —ie)((k—q)? — mi + i€) ’ (27)
Introducing the Feynman parameters z,y we have
1 1 d
d“k
iH‘“’:eQ/ dac/ dyé(x—l—y—l)/i
0 0 (2m)?
4kFEY — 2k q” — 2KV qY + qq” — 29" (K? — 2k - q + ¢* — mi)
X
2
[(I +y)k? = 2yk - q +yg® — (x +y)m3 — i€)]
1 d v v v UV LV V(1.2 2 2
d%k | 4kHEY — 2kFqY — 2KV qY + qtq” — 29"V (k° — 2k -q+q° —m
:62/dx/(2)d q q" +q"q” —29"( q+4q ) (@8)
0 iy

2
[k2—2xk~q+xq2—m§)—ie}

By letting ¢ = k — xq we complete the square in the denominator

! e 1
iH’”’:e2/ dx/ (4@-1—% B+ xq)’ — 200+ zq)!q” — 2(L 4+ zq)" ¢"
; O EATENE (0 +zg)" (€ +2q)” = 2(0 + xq)"q” — 2(+29)"q

+¢"q" — 29" (0 +2q)* —2(+zq) - g+ ¢* — mi))

1 d
ae 1
62/dx/ <4gu€l’+$g[ul’]+x2ﬂv_2€uu+xuu_2€uu+$yu
; (md[ZLA]z( q ¢"q”) = 2("q" + xq"q") — 2(0"¢" + xq”"q")

+q"q" — 29" (( +22q - L+ 22 —2(0 - g+ 2¢°) + ¢* — mi)),

1 d
d“e 1
:ez/dx/ <4€“€”+x2“”2x“”21”“+“”
; @i 2 — AP ( ¢"q") = 2(zq"q") — 2(zq"q") + ¢"q

— 29" (% + (z - 1)%¢* — m;))
/ de a0 —2g 2 + (22 — 1)%¢Mq” — 29" (x — 1)%¢% + 2¢""m]
(2m)4 [z — A
/ A —(2 = 3)g" 0 + (2 —1)’¢"q" — 29" (x — 1)°¢* + 29"'m3
(2m)d (2 — A?

Il
[}
©
O\H
o
3

I
[q]

N
ﬁ
o

8
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where we have ignored terms linear in £ and A = —2(1 — z)¢® + mi. Integrating over / yields
! 4
i = e? /0 dz [— (2 - d) 9" I(A) + (22 = 1)%q"q” — 20" (x = 1)*¢* + 29" m3) Io(A)] ,

- /01 4 [_ (2 - f}) GV I(A) + 2 M3 I (A) + (22 — 17" q — 2a — 19" ) IO(A)} |

(30)
where
[ dY 1 i T(2-4d/2)
hoid)= / (2m)4 (2 — A)? — (4m)d/2 A2=d/2T(2) oy
d% 2 —i dT(1-d/2) d
h(a)= / Erf (@ —AP ~ UmP2a-arr) | 2—d o) 2
Thus,
1
iHW:(’Q/o & K A+ 2m? ) (e -1 = 2r - 1) gqu)] P&
- 1 " » i I'(e)
feg/o dz [2z(1 — 2)¢*g" + (2x — 1)%¢"¢" — 2(x — 1)°g""¢°] (47)2—€ AT(2)’
—21d 2¢ —1)? (¢*g" — ¢"q 21*‘”2i 47TEF
= [0 —1)* (9" = ¢"¢") + 20 = 1)9"¢"] 5 (A> (e),
. j;jr da [ (22 — 1)2 (QZQ“V o qpqu) + (2 1)9‘“’(]2} |:1 +log <47T€A_7E>:| ' (33)

For the last term in the first brackets we change variables y = z — 3. Then (1 — 2z) — 2y while

A= —(y? -1 - m¢ Since A is even in y while the last term in the first brackets is linear the
integral is odd and vanishes. Thus,

. 1 —
o 1 Are= VB
I = — (¢%g"™ — ¢*q¢" de (1 —22)% | = +1
i 47r(qg qq)/o z (1-2x) L+0g< X )]
. 1 —
_ 2W_uv/d 1-9 2 [1 | dme” 7
o (9" — ¢"q") i z (1=22)% | = +log | —3 :

= (¢*g" — ¢"¢") ill(¢%), (34)

where
dre VB
d (1-2 1 . 35
The physically relevant part, if[, is
iMl(¢%) = iTl(g*) — iT1(0)
1 2
e m
dz (1 — 22)%1 ¢ . 36
471_ iC( 517) 0g <mi—x(l—x)q2> ( )
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Problem 9.2: Quantum statistical mechanics

(a)

evaluate the quantum statistical partition function

Z = Tr[e PH]
using the strategy of section 9.1 for evaluating the matrix elements of e ! in terms of
functional integrals. Show that once again one finds a functional integral, over functions

defined on a domain that is of length 8 and periodically connected in the time direction. Note
that the Euclidean form of the Lagrangian appears in the weight.

Evaluate this integral for a simple harmonic oscillator,

1 1
LE = 5(.52 + 5&)2:027

by introducing a Fourier decomposition of x(t):

z(t) = zn:x”\/lge%mt/ﬁ'

The dependence of the result on [ is a bit subtle to obtain explicitly, since the measure of the
integral over x(t) depends on § in any discretization. However, the dependence on w should be
unambiguous. Show that, up to a (possibly divergent and -dependent) constant the integral
reproduces exactly the familiar expression for the quantum partition function of an oscillator.

[You many find the identity
. - 22
sinhz = z H <1+ (717T)2>

n=1

useful.]

Generalize this construction to field theory. Show that the quantum statistical partition func-
tion for a free scalar field can be written in terms of a functional integral. The value of this
integral is given formally by

[det(—8” +m?)] 172

where the operator acts on functions of Euclidean space that are periodic in the time direction
with periodicity 8. As before, the 8 dependence of this expression is difficult to compute
directly. However, the dependence on mi is unambiguous. (More generally, one can usually
evaluate the variation of a functional determinant with respect to any explicit parameter in the
Lagrangian.) Show that the determinant indeed reproduces the partition function of relativistic
scalar particles.

Now let ¥(t), ¥(t) be two Grassmann-valued coordinates, and define a fermionic oscillator by
writing the Lagrangian o -
Lg =4+ wiy.

This Lagrangian corresponds to the Hamiltonian

H =wyyp, with {1, ¢} =1;

that is , to a simple two-level system. Evaluate the functional integral, assuming that the
fermions obey anti-periodic boundary conditions: ¥ (t+ 8) = —(t). (Why is this reasonable?)
Show that the result reproduces the partition function of a quantum-mechanical two-level
system, that is, of a quantum state with Fermi statistics.
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(e) Define the partition function for the photon field as the gauge-invariant functional integral

7 = /DAexp <—/d4xEjl(F#V)2>

over vector fields A,, that are periodic in the time direction with period 8. Apply the gauge-
fixing procedure discussed in Section 9.4 (working, for example, in Feynman gauge). Evaluate
the functional determinants using the result of part (¢) and show that the functional integral
does give the correct quantum statistical result (including the correct counting of polarization
states).

9.2 (a)

Let the system be described by the generalized coordinates {¢;} and momenta {p;} where i =
1,2,...,n. The quantum mechanical partition function is given by

Z="Tr[eFH]

- / d"go (gole" |q0) 37)

To evaluate we split the temperature interval, 3, into N equal slices of size € (we will eventually
take the ¢ — 0 or equivalently the N — oo limit). The partition function becomes

Z = /dnqo <q0| €_EH e €_€H \(Io>

N times

- / o / I'q,... / q1(gole= P lan) (@l . . lav_1)(@n—1leT]qo)
:/dnq1.../dnqN,1<q0|1_6H|q1><q0|...\qN,1><qN,1|1—EH|q0>+0(62) (38)

We insert unity in terms of a complete set of momentum states,

1- / dplp)(p], (39)

N times to get

Z:/dnqo.../dnqN_l/dnpo.../dnpN_l

x (qolpo) (pol (1 — eH)|q1){qu| . .. |[an—1){gn-1|Pn—1)(PN-1](1 — eH)|qo) + O(¢?),

n " n n ei Zggol Pn-9n
Z/d QO~--/d qu/d Po~--/d PN-1 @n) A1)
X (pol(1 — eH)|qu){qu] ... lgn—1) (PN -1|(1 — eH)|qo) + O(€*), (40)

At this point the derivation has been general. Let us specify to the standard form of the Hamiltonian,

- 1

H(p,q) = 3-p-p+V(d). (41)
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Insertion into (41) yields

n ()lpn'Qn
/dQO /dQN1/dPO /delw

x (polg1)(1 — eH (po, q1)){qu] - - - lan—1){PN—1]g0)(1 — eH (pn—1,q0)) + O(€%),

/anO /dQN1/dP0 /del

etPo-(qo—q1) ipn—1-(qo—q1)
@) - € G e~eH(po.q1) — o—eH(pPN-1,90) 4 0(62)7
:/anO“-/anNfl/dnpO---/dnprl
eipo~(qofQ1)fe(p(2,/2m+V(q1)) eipN—l'(QO*(h)*f(p?v_l/2m+v(q0)) )
X + O(e%),
(2m)" (2m)"
:/dan-~~/anN—1/dnp0~~/dnpN—l
iPo-(qo—q1)—epg/2m ipN-1-(Qo—q1)—€ePR_1/2m _
x & 0(2 ) il 0(2 1) YT eSS V@) 4 o(e), (42)
)" )"
The momentum integrals can be preformed,
dpi i(pr-(ar—arr1)+ielpkl®/2m) _ (T M2 mg—gei
@ “lare) )
T e

to yield

n(N—1)/2 N-1 7ﬂ\qk*qk+1\27ev ’
7 — (ﬂ) /d”qo.../d"qN_leZk*O (-2 (@) +O(&),

2me
m \n(N=1)/2 —ey N <%M+V(Qk)> 9
~ () / dqo... / dgy_ie " : +O(@).  (44)

This is of course the discretized form of the path integral with a Euclidean action,

Ulqo, an. i8) = ja{ Dq(if)e5¢14), (45)

where

sela= [ ar (254 via). (16)

and 39 represents the fact that the path integral is restricted to paths which start and end in the
same place. Since the initial and final paths differ by a ”time”, 3, we require that the paths in the
trace be periodic in S (i.e., g(0) = q(B)).

9.2 (b)

We want to evaluate the integral (46) for the simple harmonic oscillator. Inserting the Fourier
decomposition (know exists because from part (a) we showed that the paths in the trace are periodic)
into the Euclidean Lagrangian we obtain,

1 2min 2wim rir(ntm
%Zanxm (,3 3 +w2)62 (ntm)/B, (47)
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Lets first evaluate the action

B
Selz(r)] = drLg
0
B 1 > 2min 2mim )
= dr— TnTm | —— —|—w2> g2mim(ntm)/B
o 28 Z " L< BB

n,m=—oo

& 2min 2mim
“5 X (55 ) o)

1 — (47r2n2+ 2)
= — L — —_—
1 & 4m’n
=5 O bl (T )
w? = [ 4n?n?
:23384—2( 7 +w>xn|2, (48)

We have used that fact that the expansion of x implies: z_,, = z}, (reality condition of z). Thus,
the path integral, Z, is a Gaussian

= /D:z:(T)eXp lu;l"g - i <47r;2712 +W2) |xn|2.] (49)

n=1

Here, the path integral is understood to be over the Fourier coefficients of z,

7 / dzo / dRex, ... / dRei o, / dlmz, ... / dIma.,

X exp [_< x3+2(4”2” >(<Rexn>2+(lmxn)2)>],

( / dxoexp g (H / dRe oxp [— (4”52” +w2> (Rexny])
)(Imsz,

X
3
\

ol
—
=

=

3

@

]
ko)
l_|
/‘\

Z | P )

w2\ dmtn? 14 B )
Jﬁ(ﬁ ﬂ?)ﬁouz(ﬁ ! )

w \+Ldm? | 2 fw n:11+(€:§{¢22)2 ’

- 00 BZ 1
=273 (1_[1 47m2> 2sinh (Bw/2)’

n—=

1

= N(5) 2sinh (Bw/2)

10
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Now the overall constant N(3) is not well defined, however, neither was the integration measure.
Dividing by S in each integral will get rid of the extra powers of 5 in N(f).

Part (c)

From part (a) the field theoretic generalization follows readily:

Z = (go(@)le="H |o(a / Dye-Selo (51)

where the ¢ are periodic, ¢(z)|;0—0 = ¢(x),0—5. The Euclidean action is obtained from the
Minkowski action by Wick rotating the time component of x, z° — —iz®. For the free real scalar
field, the Euclidean action is

Sp = i/d(—ixo)/d?’x (;(81;#@2 m¢2> = /d4x (;(aEm)? + ;m§¢2> : (52)

To evaluate the statistical path integral we expand the field, ¢, in its Fourier modes, as we did
for the Harmonic oscillator of part (b),

27rznt/6
o0 =L e el
27r1nt/ﬁ
=y v O (53)

n

where we have taken the limit that space is a finite volume so that the k are discretized. The Fourier
coeflicients, ¢¢  may be complex. However, since ¢(x) is real, they must satisfy the reality condition

Pn—k = Dy k-

Inserting the mode expansion of ¢ into the action, we obtain

Se

5 [ 4t 0m,0050 + m2e?)

/d4 V Z Z ( 27rimt/[3e—ik-m¢m7k8g62ﬂint/ﬁe—ik’m¢n’k,

mn kk’
. . . _
+m%¢e2‘n’zmt/ﬂe—zk-m¢m ke27rznt/56—zk m¢n k’)

—ik-x  —ik'-@ Am*mn
— /d4 ﬂvzze%mmt/ﬁ Zﬂznt/ﬁ ik ik’ ¢m k¢nkz ( B k. k/+m¢>

mn kk’

2
%Zngm,kqafm,fk <47r6;n + k- k+m¢>
m k
1 9 2rm \ 2 9
:i; (55) +5

Sy (5] o) o

11
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Substituting the above into the statistical path integral we get

2
7= / I[ dRed, rdimg, xexp {—;|¢0,0|2 =D ml? ((%m) + Ei)}

m>0,k>0 m>0 k
1
= N(B) 1;[ sinh(BEy/2)

e BER/2

=N [ —m (55)
k

which is just the relativistic partition function for E,i =k-k+ mi

To relate the partition function to a functional determinant, recall that for some operator O the
functional determinant is defined by

445 1
/D¢efd 700% = const x 4/ . (56)
detO

Integrating the Euclidean action by parts we get that the partition function is

Z = /D¢, exp {; /d433¢) (=050 + mid)Q)} = const X ! . (57)
\/det (—8%;(;5 + miqﬁz)
Part (d)
We are given the Lagrangian for a fermionic harmonic oscillator,
Lp =)+ wi. (58)
The action is given by
Su= i (#0-+eiv) (59

where the Grassman fields, 1, are anti-periodic (7 + 8) = —(7),% (T + B) = —¢(7). We can
expand the anti-periodic Grassman field as

W(r) = Z wneQﬂ"i(’n—l/Q)T/B (60)
n=-—oo
and the complex conjugate field as
ZZ(T) — Z &ne—27ri(n—1/2)7—/5 (61)
where 1,, and 1) are Grassman numbers. It is easy to see that this expansion is indeed anti-periodic
¢(T + ﬂ) _ Z u)ne27ri(n—1/2)7'/,8627rin6—i7r _ _QZ)(T)' (62)
After substituting the expansion for the Grassman fields the Euclidean action becomes

Se= Y duwn |2 ] (63)

n=—oo

12
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The functional integral is then,

7 = /’DVJJ'Dd)e_ DS QLW”[WW]

« I / dd, / e

o e
:nf[w/dqﬁn/dwn (HW% {WJFWD
- I [P

o0

B B

[(QW(ng 1/2))2 2

This can be simplified by using the infinite product definition of cosh:

B

n=1

-[FI

n=1

oo

coshz = [ <1+772(nf21/2)2>.

n=1

With this, the partition function becomes
Z o cosh (Bw/2) = /% 4 ¢=F9/2,

The last equation is just the partition function for a two-level system.

Part (e)
We are given the Euclidean Lagrangian for the photon field,
1
Lg = _Z(F W)2

= —% (0, A, 0" A” — 9,A,0" A™)

1 1
= —5% (A, 0MAY — A, 0" A*) + §AV (g’“’a2 — M) A,

where A is periodic in 7 with a period of 5. The Euclidean action is
1 g 4 v 92 L QY
SE=§ d*zg A, (9"0° — 0"0") A,
0

and the partition function is

B
7 = /DA exp l—;/ d*zp A, (g‘“’a2 - 8“3") Al
0

13

[—m' +w} I {m’(n— 1/2) +w] f[l {2m’(—n+1/2) ﬂ)]

(68)
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We must use the FP procedure to impose gauge invariance, so that we are only integrating over
unique field configurations. Let G(A) be a function of the photon field that when set to zero encodes
the gauge condition. We then insert unity into the functional integral

Z:/DA/Daé(G(Aa))det (‘SGEAQ))e—SE[A]. (70)

(e

where Ajj = A, + %aﬂa. We change variables from A to A% to get

7= / Do / D (G(A%)) det (5@;;1&)) ¢~ 55147 (71)

Now we choose the generalized Lorenz gauge for G,
G(A) =0"A,(z) —w(x) (72)

for any scalar function w. Next note that the determinant is independent of A,

det (W) — det (‘f) (73)

Therefore the functional integral becomes

Zdet( >/DAu/D 5 (9" A% () — wz)) e Sm1A°]

= det (ae > (/ >/DA6 (0" A, (x) — w(z)) e~ SEAl (74)

Next we integrate over Z with a Gaussian wight centred at w = 0, to get

/Def“zsz N(g)det( )(/ )/DA/DdaA,L ) —w(2))

2 L L
w e~ Jd'rese 5 [J dap AL (g 020107 )AL

(g)det ( ) (/ ) /’DAei fd4 (O‘LA“ %foﬁ d4IE AV(gMV82_3u8u)Al
82 _1 f d4ze A (quua2_(1_l)a“6y)A
— N(ﬁ)det (e> (/ Da) /DAB 2 Jo E Av (! z " (75)

where N(£) is a function of that normalizes the Gaussian integral and the divergent integral over
the field « will cancel in the ratios that define correlation functions. Therefore we simply write

7 — det( )/DAe 505 Bdlzp A, ( waz_(1—%)3uau)A“,_ (76)

Choosing the Feynman gauge £ = 1 the functional integral becomes
Zdet< )/DAezfﬁd4xEA LO%2AY
= det < > /DA0€2 fo d*zp A% A° /DA162 OB dizp A'0% AL

4 202 42 4 3092 43
X/DAZGEIdeEAaA /DA3e§fodeAaA

o det (32) [detl(—y)]

1
> det (—02)
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We can now use the results of part (¢) in to evaluate the functional determinant:

1 1
- - lm -
det (—02)  m0 det (—02 + m2)

) e*ﬂEle/2
- %LHONW) H 1 — ePEk
k>0
o Blkl/2

:N(ﬁ)gm
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