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Part 1: Fundamentals

These are notes for the first part of PHYS 352 Electromagnetic Waves. This course
follows on from PHYS 350. At the end of that course, you will have seen the full set of
Maxwell’s equations, which in vacuum are

∇ · E =
ρ

󰂃0
∇× E = −∂B

∂t

∇ · B = 0 ∇× B = µ0J + µ0󰂃0
∂E
∂t

(1.1)

with
∇ · J = −∂ρ

∂t
. (1.2)

In this course, we will investigate the implications and applications of these re-
sults. We will cover

• electromagnetic waves

• energy and momentum of electromagnetic fields

• electromagnetism and relativity

• electromagnetic waves in materials and plasmas

• waveguides and transmission lines

• electromagnetic radiation from accelerated charges

• numerical methods for solving problems in electromagnetism

By the end of the course, you will be able to calculate the properties of electromagnetic
waves in a range of materials, calculate the radiation from arrangements of accelerat-
ing charges, and have a greater appreciation of the theory of electromagnetism and its
relation to special relativity.

The spirit of the course is well-summed up by the “intermission” in Griffith’s book.
After working from statics to dynamics in the first seven chapters of the book, devel-
oping the full set of Maxwell’s equations, Griffiths comments (I paraphrase) that the
full power of electromagnetism now lies at your fingertips, and the fun is only just
beginning. It is a disappointing ending to PHYS 350, but an exciting place to start
PHYS 352!

Why study electromagnetism? One reason is that it is a fundamental part of
physics (one of the four forces), but it is also ubiquitous in everyday life, technol-
ogy, and in natural phenomena in geophysics, astrophysics or biophysics. The study
of electromagnetism also introduces some advanced physics concepts, whether it be
dealing with the abstract notions of fields or gauge invariance, or learning mathemat-
ical techniques such as the approaches for solving partial differential equations. In
this course, we will cover all of these different aspects, going from the applications of
electromagnetism to the basic structure of the theory of electromagnetism.
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1.1 Important mathematical results

I will assume that you are familiar with the following results and concepts from vector
calculus:

1. Vector and scalar fields, e.g. temperature T(r), electrostatic potential V(r), velocity
of a fluid v (r), electric field E (r). Sketching a vector field, e.g. a shearing fluid
flow

2. Derivatives of fields1

• gradient operator (note that this is a vector)

∇ =

󰀕
∂

∂x
,

∂

∂y
,

∂

∂z

󰀖

• gradient of a scalar field φ (r)

∇φ =

󰀕
∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

󰀖

• gradient of a scalar field in the direction n̂

n̂ ·∇φ

• divergence of a vector field (this is a scalar quantity)

∇ · E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

• curl of a vector field (a vector)

∇× E =

󰀏󰀏󰀏󰀏󰀏󰀏

x̂ ŷ ẑ
∂

∂x
∂

∂y
∂
∂z

Ex Ey Ez

󰀏󰀏󰀏󰀏󰀏󰀏

• 2nd derivative (Laplacian) (a scalar)

∇ · ∇φ = ∇2φ =
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2

1We’ll use Cartesian coordinates here. Depending on the symmetry of the problem, spherical or
cylindrical coordinates may be necessary. For exam purposes, I will assume you know the Cartesian
results but will give you the formulae for spherical or cylindrical coordinate systems.
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3. Integrals of fields

• volume integral, e.g. 󰁝
dVφ (r) =

󰁝
d3r φ (r)

• surface integral, e.g. 󰁝

S
v · dA

• line integral, e.g. 󰁝

path
v · dl

4. Divergence theorem 󰁝

S
v · dA =

󰁝

V
(∇ · v) dV

where volume V is bounded by surface S.

Geometrical interpretation: if a vector field has ∇ · v > 0 at some point, there
is a net flux across a closed surface ⇒ the vectors are “diverging”

5. Stoke’s theorem 󰁌

loop
v · dl =

󰁝

S
(∇× v) · dA

where S is any surface bounded by the loop, and the direction of dA is given by
the right hand rule applied to the integration path.
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Geometric interpretation: |∇× v| > 0 at some point indicates that the line
integral around a small closed loop has a non-zero value ⇒ the curl measures
the “loopiness” of the field at each point

1.2 A review of the path to Maxwell’s equations

To start with, let’s review some basic ideas from PHYS 350. This will serve as an
introduction to the notation we will use, to make sure we are all on the same page, but
also we will focus on a physical understanding of each of Maxwell’s equations. The
overarching idea underlying electromagnetism at this level, as discussed in PHYS 350,
is to move away from thinking about forces between charges and currents, and instead
think about fields:

Charges produce electric fields which then act on other charges
Currents produce magnetic fields which then act on other currents

This contrasts with the approach usually taken in introductory courses which is to
treat forces between charges and currents directly, e.g. through Coulomb’s law. In-
stead, we think about the fields as physical objects that are sourced by charges and
currents and in turn act on charges and currents through the Lorentz force. In this
course, we will take this even further by considering electromagnetic waves that are
wavelike disturbances in the fields and propagate even in vacuum when no charges
or currents are present.

1.2.1 Electrostatics

Electrostatics begins with the observation of the force between two charges, expressed
in Coulomb’s law

F =
qQ

4π󰂃0d2 ,

where 󰂃0 is the permittivity of free space.
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The electric field is defined as F = qE which gives for a point charge

E =
Q

4π󰂃0r2 r̂.

Because the force between charges is always along the line between the charges, the
electric field lines look like

We see that electric field lines “diverge” rather than “loop”. Mathematically, this is
described by

Gauss′ law ∇ · E =
ρ

󰂃0

and the constraint
∇× E = 0

where ρ is the volume charge density (in Cm−3). This can be summed up as “electro-
static fields begin and end on charges”. The curl-free nature of E allows us to define the
electrostatic potential through E = −∇φ, which is a useful route to solving for the
electrostatic field in many cases.

1.2.2 Magnetostatics

Here we begin with forces between currents, namely that parallel currents attract and
oppositely-directed currents repel.

In the picture that each wire produces a magnetic field that acts on the charge carriers
in the other wire with the Lorentz force

F = q (v × B) ,

we can use the observed forces to conclude that the magnetic field of a wire must
consist of circular loops around each wire (the right hand rule gives the directions)
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The idea that currents source magnetic field loops is expressed in Ampère’s law

∇× B = µ0J

and the constraint
∇ · B = 0

where J is the current density (current per unit area, Am−2) and the constant µ0 is the
permeability of free space.

Some useful numbers:

charge on the electron e = −1.6 × 10−19 C
1

4π󰂃0
= 10−7c2

permittivity of free space 󰂃0 = 8.85 × 10−12 C2

Nm2

permeability of free space µ0
4π = 10−7 Tm

A .

1.2.3 Magnetic induction

Now we move onto non-static fields. Time-dependent magnetic fields generate an
electromotive force (emf) and currents. For example, consider a circular wire threaded
by a time-dependent magnetic field. The emf is

E =
󰁌

E · dl = −
󰁝

∂B
∂t

· dA = −dΦm

dt
which is Faraday’s law (the emf is given by the rate of change of magnetic flux) and
Lenz’s law (the minus sign). At a local point, we can use Stoke’s theorem to write
Faraday’s law as

∇× E = −∂B
∂t

.

Electrostatic fields are curl free, sourced by charges, but Faraday’s law tells us that
time-dependent magnetic fields source electric field loops.

1.2.4 Displacement current

Time-dependent E fields act as a source for B. The standard argument here is to con-
sider charging a capacitor:
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The charge stored is changing at a rate dQ/dt = I. Between the plates, E = Q/󰂃A
grows with time, and Ampère’s law tells us B. For example, if we draw a circular loop
around the wire,

Ampere’s law gives

B2πr = µ0 I ⇒ B =
µ0 I
2πr

,

the standard result for the magnetic field of a wire. But we could have chosen a dif-
ferent area when evaluating Ampere’s law:

which is bounded by the same loop, but now passes between the capacitor plates
where there is no current! To make sure we get the same answer as before, there must
be a displacement current term. By inspection of the final Maxwell equation

∇× B = µ0J + µ0󰂃0
∂E
∂t

we see the form that the extra term takes. As well as µ0J, we include a term µ0󰂃0∂E/∂t
on the right hand side of Ampere’s law. With the displacement current term included
for the capacitor, Ampere’s law with the integration area that goes between the plates
now gives

B2πr =
󰁝

µ0󰂃0
∂E
∂t

· dA = µ0
dQ
dt

= µ0 I,

the correct answer.
There is another argument for the displacement current term based on the sym-

metry of Maxwell’s equations, and we’ll come back to that in some depth when we
discuss the relation between electromagnetism and relativity.

1.2.5 Maxwell’s equations in vacuum and charge conservation

This completes Maxwell’s equations in vacuum (we’ll think about materials later).

∇ · E =
ρ

󰂃0
∇ · B = 0

∇× E = −∂B
∂t

∇× B = µ0J + µ0󰂃0
∂E
∂t

. (1.3)
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All that remains is to add a continuity equation relating J and ρ,

∇ · J = −∂ρ

∂t
(1.4)

which says that if the current vectors diverge there must be a local decrease in the
charge density with time as the current carries charge away.

The charge conservation equation (1.4) can also be used to demonstrate that a dis-
placement current term must exist in Ampere’s law. Without the displacement current
term, ∇× B = µ0J ⇒ ∇ · J = 0 (take the divergence of both sides of Ampere’s law).
But ∇ · J = 0 holds only in the static case, and so we see that Ampere’s law without the
displacement current is not consistent with charge conservation for time-dependent
situations. Adding the displacement current term makes this consistent

∇ · (∇× B) = µ0∇ · J + µ0󰂃0
∂

∂t
∇ · E = µ0

󰀕
∇ · J +

∂ρ

∂t

󰀖
= 0

where in the second step we have used Gauss’ law.
Feynman2 has a nice physical version of this argument. Consider a source of radial

current, e.g. a sphere of radioactive material that squirts out charged particles.

At radius r, the current density is J(r). Charge conservation requires

∂Q(r, t)
∂t

= −4πr2 J(r),

where Q(r, t) is the charge within a radius r. You might think that the current would
produce a B field, but in this case if you try to apply Amperes law you will find from
the symmetry of the problem that B has to vanish. Each radial stream of current has

2Vol. II page 18-3
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a loop of field around it according to Ampere’s law, which cancels the contribution
from neighbouring current lines! So it is impossible to make this case consistent with
∇ × B = µ0J. What happens is that the displacement current exactly cancels the J
source term. At radius r, E(r) = Q/4π󰂃0r2 so that

∂E
∂t

=
1

4π󰂃0r2
∂Q
∂t

= − J
󰂃0

or
µ0󰂃0

∂E
∂t

= −µ0 J ⇒ ∇× B = 0

and the solution is B = 0.

1.2.6 Maxwell’s equations in materials

A reminder of how we treat electric and magnetic fields in materials is given in the
Appendix. Here, we discuss first what the displacement current term looks like in
materials, and then discuss how to derive the boundary conditions on the fields at
interfaces between materials (we’ll need this when we look at reflection of electro-
magnetic waves later).

Maxwell’s equations in materials without the displacement current term are

∇ · B = 0 ∇ · D = ρ f

∇× E = −∂B
∂t

∇× H = J f

(take a look at the Appendix if you need a refresher on the definitions of D and H).
The new piece in time-dependent problems is that a changing polarization with time
corresponds to a polarization current

JP =
∂P
∂t

that must be included in Ampere’s law. Notice that the bound charge satisfies a conti-
nuity equation

∇ · JP =
∂

∂t
∇ · P = −∂ρB

∂t
.

Therefore Ampere’s law has a displacement current term as we had in vacuum but
also an addition term from polarization current,

∇× B = µ0J f + µ0JB + µ0
∂P
∂t

+ µ0󰂃0
∂E
∂t

.

Rewriting this as

∇×
󰀕

B
µ0

− M
󰀖
= J f +

∂

∂t
(󰂃E + P)

we obtain
∇× H = Jf +

∂D
∂t

13



which completes Maxwell’s equations in materials.
Finally, a reminder about boundary conditions for E, B, D, and H at the inter-

face between two materials. Recall that we derive boundary conditions by integrating
Maxwell’s equations across the surface from −󰂃 to +󰂃 and then let 󰂃 → 0. For exam-
ple,

∇ · B = 0 ⇒ ∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0.

Now imagine we have a surface whose normal vector is in the x-direction (so the
surface is in the y-z plane). Integrate across:

󰁝 󰂃

−󰂃
dx

󰀕
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z

󰀖
= 0

⇒ [Bx]
󰂃
−󰂃 +

󰁝 󰂃

−󰂃
dx

󰀕
∂By

∂y
+

∂Bz

∂z

󰀖
= 0.

The second term vanishes in the limit 󰂃 → 0 and so

[Bx]
󰂃
−󰂃 = 0

showing that the perpendicular component of B is continuous across the surface.
You’ve probably seen this derived using a geometric argument, e.g. a Gaussian

cylinder shrunk onto the boundary, but I’ve written it this way because for more com-
plex differential equations, geometric arguments are not always possible. In that case,
direct integration will let you derive a boundary condition. I’ll leave the other bound-
ary conditions as an exercise. For example, first try integrating ∇× E = − ∂B

∂t across
the boundary. You should find that the parallel component of E is continuous (hint:
look for the terms that are ∂/∂x of something, as they are the terms that will give a
non-zero contribution in the limit 󰂃 → 0).

1.3 An immediate application: Electromagnetic waves

We can quickly get to electromagnetic waves in a few lines of vector algebra. This
is actually a very important procedure that we will carry out later many times for
different kinds of materials. In vacuum with no sources ρ = 0 and J = 0, Maxwell’s
equations are3

∇ · E = 0 ∇ · B = 0

∇× E = −∂B
∂t

∇× B = µ0󰂃0
∂E
∂t

. (1.5)

Now take the curl of Faraday’s law. The left hand side is

∇× (∇× E) = −∇2E +∇ (∇ · E)

3Just a note about the term “vacuum”. I will use this term to mean we are outside any materials, so
󰂃 = 󰂃0 and µ = µ0, but not in the sense of being “empty” space. So in our usage a vacuum can have
some charge or current density to source the electromagnetic fields.
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and the right hand side is

∇×
󰀕
−∂B

∂t

󰀖
= − ∂

∂t
(∇× B) = −󰂃0µ0

∂2E
∂t2

which gives an equation governing E,

∇2E = µ0󰂃0
∂2E
∂t2 . (1.6)

On the left hand side we used a vector identity to expand ∇× ∇× E. Identities like
this one are readily available, for example at the front of Griffith’s book, but they are
actually easy to derive for yourself, I’ve included an appendix to this chapter on that.
I encourage you to take a look at it, it could be the most useful thing you learn in this
course!

Returning to our result equation (2.27), you may recognize this as a 3D wave equa-
tion. In one dimension, a wave equation for quantity f (x, t) is

∂2 f
∂t2 = v2 ∂2 f

∂x2

with general solution f (x, t) = f (x ± vt), where v is the wave speed. Comparing with
equation (2.27), we see that the wave speed in the electromagnetic case is

v2 =
1

󰂃0µ0
=

1
4π10−7 4π10−7c2 = c2

the wave speed is the speed of light!
This result looks inevitable because these days we have units (SI) in which µ0 is

defined in terms of c2, and we know that light is in fact an electromagnetic wave. But
in a historical context, this is a truly remarkable result because remember that 󰂃0 is
the constant in Coulomb’s law, which describes the measured force between two elec-
tric charges, and µ0 is the constant in the Biot-Savart law that describes the measured
forces between currents. There is no obvious link to light, and yet from these two
observations and the subsequently deduced Maxwell’s equations, we predict a wave
whose speed in fact equals the measured speed of light! In this way, our understand-
ing of light as an electromagnetic wave came about.

1.4 General solutions to the wave equation

We’ll look at properties of electromagnetic waves in the next section, but first consider
the following more general example. We have an infinite plane current sheet with
surface current K:
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The time-independent solution is

B =
µ0K

2
independent of distance x and with a direction as shown in the diagram (right hand
rule). But instead of a steady current, imagine the current is instead turned on at t = 0.
What is the evolution in time?

The symmetry of this problem suggests that we try a solution B = B(x)ŷ and
E = E(x)ẑ. Maxwell’s equations are then

∂B
∂t

=
∂E
∂x

(1.7)

∂E
∂t

= c2 ∂B
∂x

, (1.8)

and we see that E and B satisfy a wave equation

∂2E
∂t2 = c2 ∂2E

∂x2 (1.9)

and similarly for B. This is, of course, not surprising given our more general deriva-
tion of the wave equation earlier, but we choose this simple example because it gives
a 1D wave equation that we can analyze.

The general solution of the 1D wave equation (1.9) is

f1(x − f t) + f2(x + ct)

where f1 is a right-travelling component and f2 is left travelling. To derive this general
solution, we can define coordinates

η = x − ct ξ = x + ct

and then equation (1.9) becomes

∂2E
∂η∂ξ

⇒ E = f1 (η) + f2 (ξ) . (1.10)

Now consider these two different pieces, the left and right travelling components. If
E is a function of x ± ct only, and independent of x ∓ ct, then it must be the case that

∂E
∂x

= ±1
c

∂E
∂t
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and therefore, using equation (1.7),

∂B
∂t

= ± ∂

∂t

󰀕
E
c

󰀖

or
B = ±E

c
.

The signs are such that the right travelling wave f (x − ct) has B = −E/c and the left
going wave f (x + ct) has B = +E/c. We can write this as the direction of propagation
of the wave is ∝ E × B.

For a given case, therefore, we can write

E(x, t) = f1(x − ct) + f2(x + ct)

cB(x, t) = − f1(x − ct) + f2(x + ct)

for some choice of the functions f1 and f2. These functions are set by the boundary
conditions, e.g. at t = 0

f1(η) =
E(x)− cB(x)

2

f2(ξ) =
E(x) + cB(x)

2
.

This is just saying that if we choose the relative signs of E and B initially, we can send
a wave either left or right:

Graphically, the solution propagates from the initial conditions along “character-
istic curves” with slope ±c
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So that the solution at a given x and t is set by the f1 component of the initial condition
at x − ct, and the f2 component of the initial condition at location x + ct as shown in
the diagram.

Let’s go back now to our problem of switching on a current sheet.

We can see that the solution consists of two parts. One region, at x > ct has B = 0
because the solution there is determined by characteristics originating at x > 0 and
t = 0, where B = 0. The second region, x < ct has characteristics that originate on
the sheet at x = 0, where (just above the sheet) B = µ0K/2, and so B = µ0K/2 in that
entire region, as in the static problem. What this is saying is that it takes a light travel
time x/c before position x “knows” that the current has been turned on. At late times
> x/c the field corresponds to the static solution.

A similar argument gives the solution for the x < 0 domain. If, at a later time T,
we turned the current off, we create an electromagnetic pulse that propagates away in
each direction from the x = 0 plane:

We see that not only do the wave solutions propagate at the speed of light, but in
general

Electromagnetic disturbances propagate at the speed of light.
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1.5 Plane electromagnetic waves in vacuum

In the last section, we saw one method of solving the wave equations for E and B, the
method of characteristics. Because these are linear equations, another approach is to
use a Fourier decomposition, in other words think of the fields as a linear sum of plane
waves

E = E0eik·re−iωt

B = B0eik·re−iωt.

Recall that when we write the solution as ∝ eikx, we really mean the real part Re
󰀃
eikx󰀄 =

cos kx. The real part always gives the physical quantities, the complex notation pro-
vides a much more convenient way to keep track of the phases.

Substituting the plane wave solution into the wave equation gives

−k2E0 =
−ω2

c2 E0

or the the dispersion relation
ω = ±ck,

the relation between the wave frequency ω and wave vector k. The sign ± gives the
propagation direction of the wave.

Maxwell’s equations give us other interesting properties of these waves. Since
∇ · E = 0 and ∇ · B = 0, we see that

k · E0 = 0 k · B0 = 0

so that the wave is transverse, meaning that the electric and magnetic fields are per-
pendicular to the propagation direction. The other two Maxwell equations involving
the curl of E and B give

∇× B =
1
c2

∂E
∂t

⇒ k × B0 = −ω

c2 E0

∇× E = −∂B
∂t

⇒ k × E0 = +ωB0

which imply
E0 · B0 = 0 |E0| = c |B0| .

The first result you have probably seen before, that the E and B directions are mutually
orthogonal in an electromagnetic wave; the second giving the ratio of E and B we have
seen before in the previous section.

Let’s go through some important results regarding EM waves:

• These plane wave solutions are important because the wave equation is linear so
any solution can be written as a linear combination (Fourier expansion) of plane
waves.
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• Because E is perpendicular to the direction of propagation, there are two linearly-
independent polarizations

Both cases propagate in the same direction (E × B points in the same direction)
but they have orthogonal E’s and orthogonal B’s.

• The dispersion relation is the familiar relation between the frequency and wave-
length of an electromagnetic wave f = c/λ. It is good to have some sense of
the order of magnitude of wavelengths and/or frequencies (I find wavelengths
easier to remember) of the different parts of the EM spectrum. I’ve included a
table taken from Pollock & Stump’s book on the next page. As we will see later,
the physical size of the wavelength is important for example for antenna design
or for the scattering efficiency of electromagnetic waves from particles, so it is
good to have a sense of the wavelengths in different regions of the EM spectrum.

20



1.6 Conservation of energy and momentum

Another interesting application of Maxwell’s equations is to help to understand en-
ergy conservation in electromagnetism.
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1.6.1 Conservation of energy and the Poynting flux

Consider a system of charges and currents. The work done per second by the fields
on charge q is

F · v = qv · (E + v × B) = qv · E

where F is the Lorentz force, and notice that only electric fields do any work because
the magnetic force is always perpendicular to the motion. The work done per second
per unit volume is

nqv · E = J · E

where n is the number density of charges. This is the work done by the fields, which
goes into the kinetic energy of the charges. By conservation of energy, the rate of
change of the energy density in the electric and magnetic fields is therefore

−J · E.

Maxwell’s equations can be used to evaluate this quantity in terms of the fields

−J · E = − 1
µ0

(∇× B) · E + 󰂃0
∂E
∂t

· E.

The last term is

󰂃0
∂E
∂t

· E =
∂

∂t

󰀕
1
2

󰂃0E2
󰀖

which looks promising because recall that (1/2)󰂃0E2 is the energy density in the elec-
tric field. To simplify the first term, we can use the identity4

∇ · (E × B) = B · (∇× E)− E · (∇× B)

which gives

−J · E = ∇ ·
󰀕

E × B
µ0

󰀖
− 1

µ0
B ·∇× E +

∂

∂t

󰀕
1
2

󰂃0E2
󰀖

.

But ∇× E = −∂B/∂t (Faraday’s law), and so

− J · E = ∇ ·
󰀕

E × B
µ0

󰀖
+

∂

∂t

󰀕
B2

2µ0
+

󰂃0E2

2

󰀖
, (1.11)

where again we recognize the energy density in the magnetic field B2/2µ0 appearing
in the ∂/∂t term.

Equation (4.131) describes the conservation of energy, and is in so-called flux con-
servative form. The quantity

B2

2µ0
+

1
2

󰂃0E2

4You could think of this as an integration by parts.
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is the energy per unit volume in the fields, and

1
µ0

E × B ≡ S (1.12)

is the energy flux carried by the fields (energy per unit area per second) which is
known as the Poynting flux S. (Recall that we already met the vector E × B when
talking about the direction of propagation of EM waves). In words, equation (4.131)
states that the local rate of change of energy density is given by the divergence of the
Poynting flux plus any exchange of energy with the charged particles.

1.6.2 Example: steady current in a wire

A simple example is a steady current in a wire J = σE where σ is the electrical con-
ductivity. Steady means that there is no time-dependence, ∂/∂t = 0.

At the surface of the wire r = a, the magnetic field is B = Œ̂µ0 I/2πa from Ampère’s
law, and the electric field points along the wire E = Eẑ. The Poynting flux is therefore
directed radially inwards, and is

S = −r̂
IE

2πa
. (1.13)

This is the energy per unit area flowing into the wire. Multiplying by the circumfer-
ence 2πa, we get the energy per unit length per second

2πaS = EI =
V
L

I = I2 R
L

(1.14)

where V is the voltage difference across length L of the wire, and R is the resistance
of length L. So we see that the Poynting flux into the wire is equal to the ohmic
dissipation inside the wire.

Not only is the total Poynting flux into the wire at its surface equal to the ohmic
dissipation inside, but the Poynting flux changes with radius inside the wire, such
that the difference between the Poynting flux at r + dr and that at r matches the ohmic
dissipation between r and r + dr. I will leave this for you to work out (see the list of
problems at the end of the chapter). Here, we just note that the ohmic dissipation per
unit volume is I2R/AL where A is the cross-section of the wire, or J2RA/L = J2/σ =
J · E.
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1.6.3 Example: Charging a cylindrical capacitor

Another typical example to look at is a cylindrical capacitor with charge Q(t) that is
charging with a current I = dQ/dt.

The electric field between the plates is E = Q/󰂃0A, and the total electrostatic energy
is

UE =
1
2

󰂃0E2 Ad =
Q2

2󰂃0A
d,

changing at a rate
dUE

dt
=

d
󰂃0A

Q
dQ
dt

=
d QI
󰂃0A

.

The point here is that this energy has to come from somewhere, and from our energy
conservation law, it must come from a net Poynting flux into the volume between the
plates.

To evaluate the Poynting flux, we need the B field, which is given between the
plates by the displacement current

2πrBφ = πr2µ0󰂃0
dE
dt

so that at r = a, the Poynting flux is

S =
a󰂃0

2
dE
dt

E

radially inwards. The total flux of energy is

2πad S = dπa2󰂃0E
dE
dt

= dπa2󰂃0E
I

󰂃0A
=

QId
󰂃0A

matching the rate of change of electrostatic energy between the plates.
This example is actually a bit subtle because we have made an assumption that the

charge is added slowly enough that the quasi-static approximation holds — at each
time t, we calculate the electric field as E = Q/󰂃0A just as we would for a capacitor in
electrostatics. We ignore the “back emf” or the inductance in this approximation, and
therefore the magnetic energy. This is a good approximation as long as the charging
timescale is long compared to the light crossing time across the capacitor.
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1.6.4 Conservation of momentum

We’ll derive this in detail later when we think about relativity, but let’s just mention
here that as well as an energy flux there is also a momentum flux

momentum flux =
S
c
=

1
µ0c

E × B.

To see why it must be S/c, recall that photons are massless particles and therefore
have E = (p2c2 + m2c4)1/2 = pc, so that the energy and momentum fluxes are simply
related by a factor of c.

A famous example of the momentum flux is Feyman’s disk paradox.
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Intially, a current flows in the small central coil, with everything stationary. Then the
current stops for some reason. In that case, the B field from the central coil goes to
zero, and so there is an emf E = −dΦ/dt that acts on the charged spheres and causes
the disk to rotate.

The “paradox” or puzzle is to ask where does the angular momentum in the disk’s
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rotation come from? Angular momentum should be conserved and yet the system
was stationary initially. The answer is that the fields themselves have an angular
momentum content in the initial state. As the fields decay, the angular momentum is
transferred into the rotational motion of the disk.

1.6.5 Conservation of energy in a material

I’ll leave this as an exercise, but if you use the Maxwell’s equations for a material to
derive an energy equation, you should find that the energy density is

1
2

E · D +
1
2

B · H

and the Poynting vector is
S = E × H.

1.6.6 Application to electromagnetic waves

• The energy flux in the wave is given by the Poynting vector

|S| = |E × B|
µ0

=
E0B0

µ0
cos2 (k · r − ωt)

The time-averaged intensity is (using the fact that 〈cos2〉 = 1/2)

〈S〉 = E0B0

2µ0
=

cE2
0

2µ0c2 =
1
2

c󰂃0E2
0 =

1
2

c
B2

0
µ0

=
c
2

󰀕
B2

2µ0
+

󰂃0E2
0

2

󰀖

this has the expected form (energy flux) = (velocity) x (energy density). Note
that the electric and magnetic energy densities contribute equally.

• As we discussed earlier, the momentum flux is 〈S〉/c which gives rise to radiation
pressure. The pressure on an absorbing surface is

〈S〉
c

=
1
2

󰂃0E2
0.

1.7 Scalar and vector potentials for time-dependent fields

In electrostatics and magnetostatics, the constraints ∇× E = 0 and ∇ · B = 0 mean
that we can write the fields in terms of potentials,

E = −∇φ B = ∇× A (1.15)

so that the fields are completely specified by a scalar potential φ in the electrostatic
case and by a vector field A in the magnetic case. It is worth thinking about the
number of degrees of freedom needed to specify these fields at each point in space.
In the electrostatic case, one number at each point in space (the scalar φ) is all that is
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needed to specify the electric field that nominally has three independent components
Ex, Ey and Ez at each point in space. The reason is that the constraint that E be curl-free
substantially reduces the allowed types of vector field and the independent degrees
of freedom at each point.

In the magnetic case, it is a little more complicated because the vector potential is
a vector field and so has three components at each point. But the constrained nature
of B (∇ · B = 0) means that only two of the three components are independent, since
the curl of A corresponds to the physical field. I am free to add any curl-free vector
field to A without changing the physical field B:

A → A′ = A +∇λ

∇× A′ = ∇× A.

I can do this by choosing ∇ · A to have a specific value which is referred to as “choos-
ing a gauge”. For static problems as you may have seen in the past, a useful gauge
choice is to set ∇ · A = 0, the Coulomb gauge. For time-dependent problems, as we
will see, a different gauge choice is usually made.

In the time-dependent case, ∇ · B = 0 still holds and so we can still define a vector
potential A such that

B = ∇× A. (1.16)

Substituting this into Ampere’s law gives

∇× E = −∂B
∂t

= − ∂

∂t
∇× A

⇒ ∇×
󰀕

E +
∂A
∂t

󰀖
= 0,

which replaces the constraint ∇× E in electrostatics. This means that we can define a
scalar potential φ such that

E +
∂A
∂t

= −∇φ

or
E = −∇φ − ∂A

∂t
. (1.17)

Equations (1.16) and (1.17) give the electric and magnetic fields in the time-dependent
case in terms of potentials A and φ which now depend on both position and time.

As before, there is a gauge choice to be made. The gauge transformation is now

A → A′ = A +∇λ

φ → φ′ = φ − ∂λ

∂t
which you can verify does not change the physical fields E and B. We could still apply
the Coulomb gauge here, but a more convenient choice for time-dependent problems
(that simplifies calculations) is to use the Lorentz gauge

∇ · A = − 1
c2

∂φ

∂t
. (1.18)
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We see immediately why this is a good choice if we rewrite Maxwell’s equations in
terms of the potentials A and φ instead of the fields E and B.

Start with Faraday’s law

∇× B = µ0J +
1
c2

∂E
∂t

.

The LHS is
∇× ∇× A = ∇ (∇ · A)−∇2A = − 1

c2∇
∂φ

∂t
−∇2A,

where we use the gauge choice to replace ∇ · A. The RHS is

µ0J +
1
c2

󰀗
− ∂

∂t
∇φ − ∂2A

∂t2

󰀘
,

which has a term that cancels one of the terms of the LHS, leaving the result

∇2A − 1
c2

∂2A
∂t2 = −µ0J. (1.19)

A similar equation can be derived for φ, this time starting from

∇ · E =
ρ

󰂃0
= −∇2φ − ∂

∂t
∇ · A = −∇2φ +

1
c2

∂2φ

∂t2

so that

∇2φ − 1
c2

∂2φ

∂t2 = − ρ

󰂃0
. (1.20)

By choosing the Lorentz gauge, we have obtained separate wave equations5 for φ and
A, in which φ is sourced by ρ and A is sourced by J. These wave equations will lead us
later into general solutions to time-dependent problems in terms of retarded potentials.

1.8 Radiation from an accelerated charge

We’ve already seen how the charge density ρ or current density J acts as a source
in the wave equations for the potentials φ and A. Similarly, we saw that changes in
the surface current in section 1.4 led to launching of a propagating electromagnetic
disturbance. As we will see, the key factor is acceleration of charges:

Accelerating charges radiate

To conclude this first part of the course, let’s go through a simple argument that shows
why this so. The same argument also gives a simple derivation of Larmor’s formula
for the power radiated by an accelerating charge. This argument is originally due to
J. J. Thompson and is presented in Longair’s book High Energy Astrophysics.

5Notice again the high degree of symmetry between these two equations for φ and A. We will come
back to this in the relativity section where we’ll write a single relativistically invariant wave equation for
a 4-potential sourced by a 4-current.
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Consider instantaneously accelerating a charge for time ∆t, changing its velocity
by an amount ∆v. In a frame moving with the charge initially, it begins to move, to a
position x = (∆v)t at time t later. For radial distances from the charge r < ct, the field
lines “know” that the charge has moved and point back to the charge at its present
location. But for r > ct, the field lines point back to the original charge position (the
origin).
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The field lines transition between these two behaviours in a small region of size c∆t
in radius and (∆v)t sin θ in horizontal extent (see the diagram above). Since ∇ · E = 0
in vacuum, the electric flux

󰁕
E.dA going vertically into this region must be the same

as the horizontal electric flux within the region,

Eθc∆t = Er(∆v)t sin θ

or
Eθ = Er

t∆v
c∆t

sin θ.

But for a point charge, Er = q/4π󰂃0r2 = q/4π󰂃0(ct)2, and ∆v/∆t is the acceleration a,
giving

Eθ =
qa sin θ

4π󰂃0c2r
.

A similar argument can be made for B = BφŒ̂. The result is that an EM wave propa-
gates radially outwards with E = cB and speed c.

The Poynting flux in the transition region where Eθ > 0 is

|S| = EB
µ0

= 󰂃0E2c =
(qa)2 sin2 θ

16π2󰂃0c3r2 . (1.21)

Note that S ∝ sin2 θ, so that the radiation pattern is a dipole, with radiation emitted
mostly perpendicular to the acceleration.
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The total power is
󰁝

2πr2 sin θdθ
(qa)2 sin2 θ

16π2󰂃0c3r2

or

Power =
(qa)2

6π󰂃0c3 . (1.22)

Here, we use the result
󰁝 π

0
sin3 θdθ =

󰁝 1

−1
(1 − µ2)dµ = 2 − 2

3
=

4
3

.

Equation (4.146) is one of our most important results, giving the power radiated by an
accelerated charge. We’ll derive it in a more rigorous way later, starting with the wave
equation for the vector potential, and use it in many different situations throughout
the course.

Note that Eθ ∝ 1/r rather than 1/r2 for the Coulomb field. This 1/r field is called
the radiation field or acceleration field and leads to S ∝ 1/r2 or a total power that
stays constant as the EM pulse propagates to infinity.

SUMMARY

Here are the main ideas and results that we covered in this part of the course:
Maxwell’s equations You should be able to write these down for vacuum and mate-
rials. The continuity equation for charges.

Electromagnetic waves. Derivation of the wave equation for electromagnetic waves
in vacuum, ∇2E − µ0󰂃0∂2E/∂t2 = 0 and the identification of the wave speed c2 =
1/µ0󰂃0.

Conservation of energy. Energy density in electric and magnetic fields

U =
B2

2µ0
+

1
2

󰂃0E2

Poynting flux

S =
1
µ0

E × B

Energy conservation

−J · E =
∂U
∂t

+∇ · S

Examples: Poynting flux into a wire, the energy flow in a charging capacitor.
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Conductors. Current in a conductor J = σE. Ohmic dissipation per unit volume J2/σ.

General solutions of the wave equation. The idea that electromagnetic disturbances
propagate at the speed of light. The general solution of the wave equation E(x ± ct)
with B = ±E/c.

Plane EM waves in vacuum.
E = E0eik·re−iωt

Dispersion relation ω = ±ck. The wave is transverse k · E0 = 0, k · B0 = 0. Time
averaged intensity is 〈S〉 = c󰂃0E2/2. Electric and magnetic energy densities contribute
equally. Momentum flux 〈S〉/c. Two linearly-independent polarizations.

Scalar and vector potentials. Gauge transformations in the time-dependent case. The
Coulomb gauge ∇ · A = 0 and Lorentz gauge ∇ · A = −(1/c2)(∂φ/∂t). Wave equa-
tions for the potentials

∇2A − 1
c2

∂2A
∂t2 = −µ0J

∇2φ − 1
c2

∂2φ

∂t2 = − ρ

󰂃0

Materials. Free and bound currents and charge densities and how they relate to the
polarization P or M. LIH dielectrics and the relations between D, P, E, 󰂃, χe etc. and
the same for magnetic fields. The energy density for a LIH dielectric

1
2

E · D +
1
2

B · H

Boundary conditions. The general technique of integrating the differential equation
across the boundary to derive boundary conditions at an interface. Boundary condi-
tions for time-dependent problems. Continuity of E󰀂 and B⊥, how the change in D⊥
and H󰀂 depend on the free surface charge density and current density respectively.

You should be able to:

• Use Maxwell’s equations to derive the wave equations for the fields E and B, or
the potentials A and φ, in vacuum. A key vector identity is ∇× ∇× A = −∇2A
for a divergence-free field. You should probably just know this.

• Know how to obtain the fields E and B from the potentials A and φ in a time-
dependent context.

• Be able to describe the concepts of gauge choice (including the differences be-
tween Lorentz and Coulomb gauge)

• Write down the energy flux and energy density of an EM wave in terms of the
electric and magnetic field strengths.

• Evaluate the Poynting flux and use it to determine the energy flux, momentum
flux, or momentum density (linear or angular momentum) in the fields and talk
about the energy flow.
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Appendix A: Index notation and proving vector identities

Proving vector identities is very straightforward. You just need four things:

1. Einstein summation convention A · B = AiBi

2. The Kronecker delta: δij = 1 if i = j, or 0 otherwise. E.g., this allows the dot
product to be written A · B = δij AiBj.

3. The Levi-Civita tensor: 󰂃ijk = 1 if ijk is an even permutation (123,231,312), 󰂃ijk =
−1 if ijk is an odd permutation (321,213,132), and 0 otherwise (if any indices are
repeated). A way to represent cross-products, e.g. (A × B)i = 󰂃ijk AjBk.

4. The identity 󰂃ijk󰂃klm = δilδjm − δimδjl .

Examples:

1. Proof of the “BAC-CAB” rule for double cross products.

[A × (B × C)]i = 󰂃ijk Aj󰂃klmBlCm

= 󰂃ijk󰂃klm AjBlCm

=
󰀃
δilδjm − δimδjl

󰀄
AjBlCm

= AjBiCj − AjBjCi

= [B (A · C)− C (A · B)]i

2. An example with a derivative

[u × (∇× u)]i = 󰂃ijkuj󰂃klm∂l(um)

= uj∂iuj − uj∂jui

=

󰀗
∇1

2
u2 − u ·∇u

󰀘

i
(1.23)

Appendix B: A reminder about magnetic and electric fields in
materials

We give a reminder here about the definitions of the fields D and H etc. in materi-
als. First, consider electric fields. In response to an applied electric field, a dielectric
becomes polarized. The polarization field P (r) is the local dipole moment density
(dipole moment per unit volume). For example, consider a dielectric inserted into a
plane-parallel capacitor
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In this case,

P =
δQδl
Aδl

=
δQ
A

,

where A is the area of the capacitor plates and δl is the small thickness of the layer
of bound charges on either side of the dielectric. The general result is that there is a
bound surface charge on a polarized dielectric given by

σB = P · n̂.

More generally still, inside a dielectric, if P has a divergence, then there will be a local
bound charge:

The bound charge density is
ρB = −∇ · P.

Gauss’ law is
∇ · E =

ρ

󰂃0
=

ρ f + ρB

󰂃0

where subscripts f and B refer to free and bound charges respectively. Writing in
terms of P,

󰂃0∇ · E = ρ f −∇ · P

⇒ ∇ · (󰂃0E + P) = ρ f

which we write as
∇ · D = ρ f

defining the electric displacement field D = 󰂃0E + P. This is very powerful because
we can solve Gauss’ law knowing only the free charge density, we don’t need to know
what is happening in the dielectric beyond a “constitutive relation” between P and E.
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The simplest case is the linear, isotropic, homogeneous (LIH) dielectric for which
P = χe󰂃0E where χe is the susceptibility that measures the polarization of the material
in response to an applied electric field. Then

D = 󰂃0E + P = 󰂃0 (1 + χe) E = 󰂃E = 󰂃r󰂃0E

where 󰂃 is the permittivity and 󰂃r the relative permittivity or dielectric constant. More
complicated materials could have a non-linear relation between P and E, or an anisotropic
response in which P points in a different direction to E, and χe is a tensor rather than
a scalar, but we won’t consider such cases here.

We follow the same approach for magnetic materials, defining M, the magnetic
dipole moment density. First consider an example where M is constant within the
material,

If we write the local magnetic dipole moment as m = Ia (I is the current and a the
area of each current loop), the dipole moment density is M = Ia/ad = I/d where d is
the thickness of the material. Inside the material the bound current loops cancel one
another, but at the surface there is a bound surface current K = I/d = M, or for the
general case Kb = M × n̂. If M is non-uniform within the material, there are bound
volume currents also,

Jb = ∇× M.

Again, we define a new field H so that we only have to worry about the free currents
rather than the bound ones. We write for magnetostatics

∇× B = µ0J = µ0(J f + JB) = µ0
󰀃

J f +∇× M
󰀄

⇒ ∇×
󰀕

B
µ0

− M
󰀖
= J f

or
∇× H = Jf

which defines H = B/µ0 − M.
For a linear magnetic material, M = χmH, where χm is the magnetic susceptibility.

Then
B = µ0(H + M) = µ0(1 + χm)H = µH,

where µ is the permeability of the material.
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Appendix C: Phase and group velocities

The phase velocity of a wave is vp = ω/k. To see why this is the case, write the wave
with frequency ω(k) as

Aei(kx−ωt) = Aeik(x−vpt)

so that in a frame moving with velocity vp the wave will be stationary.
When the phase velocity is a function of frequency, the different frequency compo-

nents of a wave-packet will move at different speeds. The group velocity vg = dω/dk
gives the speed at which a wave packet propagates. To see this, we write a general
expression for a wavepacket

A(x, t) =
󰁝

dkA(k)ei(kx−ω(k)t) =
󰁝

dkA(k)eiφ(k)

and the argument is that the maximal amplitude will come from the part of the in-
tegrand where the phase varies slowly with k, otherwise the integrand for different
values of k will cancel out. Setting ∂φ/∂k = 0 gives

x =
∂ω

∂k
t = vgt

implying that the location of maximal amplitude is moving with a velocity vg.
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Part 2: Electromagnetic Waves in Materials

These are notes for the second part of PHYS 352 Electromagnetic Waves. In Part 1, we
looked at wave solutions to Maxwell’s equations and the properties of electromag-
netic waves in vacuum. Next, we will consider wave propagation in materials. In a
material, the electric field of the wave can induce charge and current densities that
feedback on the wave through the source terms in Maxwell’s equations. For example,
this gives rise to the slower speed of light in glass as compared to air that leads to
familiar optics effects such as refraction.

We start by looking at materials where the electrons are free to move (conductors
and plasmas) (§2.1), and then consider the bound electrons in dielectrics (§2.2). We’ll
then calculate what happens at the interface between two materials and recover some
standard results from optics (§2.3). Finally, we’ll use Larmor’s formula to derive the
scattering cross-section for photons from single electrons (§2.4).

2.1 Electromagnetic waves in plasmas and conductors

We begin by considering materials where the electrons are free to move, such as a
conductor or a plasma6. We have already seen the relation J = σE for a conductor,
where σ is the electrical conductivity. This describes how a current arises in a conduc-
tor as the conduction electrons respond to an applied electric field. But the response
of a material to an applied time-dependent electric field may be more complicated,
and in particular can be out of phase with the applied electric field. An example is a
dilute (low density) plasma in which collisions between particles are not important,
in which case the current is 90 degrees out of phase with the electric field, and the
effective conductivity is imaginary.

In general, the relation between the electric field and the current can be both com-
plex (in phase and out of phase components) and frequency-dependent, so we can
write

J = σ(ω) E, (2.24)

where σ is a complex number that depends on frequency. The plan in this section is
to first derive the dispersion relation in the presence of this current, derive the form
of σ for conductors and plasmas, and then consider the resulting wave properties in
plasmas and conductors.

2.1.1 Dispersion relation in a material with free electrons

To see how the presence of a current density J changes the dispersion relation, we
derive the wave equation following the same procedure as for EM waves in a vacuum.
Start with Ampere’s law,

∇× B = µ0J +
1
c2

∂E
∂t

= µ0σE +
1
c2

∂E
∂t

. (2.25)

6A plasma is a high temperature gas in which the atoms are fully or partially ionized, giving a gas of
positive ions and free electrons.
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Taking the curl and using the identity ∇× (∇× B) = −∇2B +∇(∇ · B) = −∇2B
gives

−∇2B = µ0σ∇× E +
1
c2

∂

∂t
∇× E, (2.26)

or

−∇2B = −µ0σ
∂B
∂t

− 1
c2

∂2B
∂t2 , (2.27)

where we use Faraday’s law ∇× E = −∂B/∂t.
To obtain a dispersion relation, we consider plane waves, i.e. B = B0ei(k·r−ωt).

Then equation (2.27) gives

k2 = iωµ0σ +
ω2

c2 . (2.28)

The dispersion relation has an extra term compared to the dispersion relation in vac-
uum (ω2 = c2k2), that as we will see gives rise to some interesting effects. First, let’s
go over how to derive σ(ω).

2.1.2 The electron equation of motion and the relation between J and E

For a conductor, we have already seen the relation J = σE, where the real constant σ is
the electrical conductivity. Where does this come from? The microscopic picture is that
the electrons are moving at their terminal velocity. They are continuously accelerated
by the applied electric field, but quickly collide (for example, with the atoms in the
metal) resetting their velocity to zero. The net effect is that they develop a drift velocity
v given by

v ≈ − eE
m

τ (2.29)

where the acceleration is -eE/m and τ is the time between collisions. The current is
then J = −nev where n is the number density of electrons, or

J = −nev =
ne2τ

m
E = σE (2.30)

which gives σ in terms of the electron number density and collision time.
In the context of EM waves, the J–E relation for a conductor is the one we should

use when the electrons have many collisions during one wave period. But in a dilute
plasma, the collision time is much longer than a wave period, so that the electric field
from the wave accelerates the electrons freely, without any collisions occurring. In
that case, the equation of motion of an electron in the plasma is

dv
dt

= − eE
m

(2.31)

or, because all quantities are ∝ e−iωt so that dv/dt = −iωv,

− iωv = − eE
m

(2.32)
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giving a current density

J = −nev = i
ne2

mω
E. (2.33)

Comparing with equation (2.30), we see that the units are right (we’ve replaced τ with
1/ω), but now the conductivity is imaginary, meaning that the current is 90 degrees
out of phase with the electric field, and frequency-dependent.

These are in fact two limiting cases, and it is possible to write down a more general
expression which takes into account both the acceleration of the electrons and the drag
force from collisions. For an example, see the 2012 Midterm question 2.

2.1.3 EM waves in a plasma

Now let’s look at the properties of the EM waves. We consider the plasma case first, as
it is a bit more straightforward. Inserting the conductivity σ = ine2/mω into equation
(2.28) gives

k2 = −µ0ne2

m
+

ω2

c2 (2.34)

or
k2c2

ω2 = 1 −
ω2

p

ω2 (2.35)

where we have defined the plasma frequency ωp given by

ω2
p =

ne2

󰂃0m
.

For high frequencies ω ≫ ωp, the dispersion relation is the same as the vacuum
case ω2 = k2c2. A way to think about this is that the wave frequency is so large that
the electrons do not have time to respond to the wave, so the wave propagates as if
in vacuum. At low frequencies, we see a new effect: when ω < ωp, then k2 < 0 and
the wave no longer oscillates but evanesces. The wave does not propagate because the
electrons are able to move and short out the electric field.

Numerically, the plasma frequency is

fp =
ωp

2π
= 9 kHz

󰀓 n
cm−3

󰀔1/2
. (2.36)

In the Earth’s ionosphere, the electron number density is n ∼ 104–105 cm−3, giving
fp ∼ 1–3 MHz. Waves below this frequency cannot propagate in the ionosphere and
are reflected back to Earth. For low frequency waves with ω ≪ ωp, the decay length
in the evanescent region is 2π/ik = c/ fp ≈ 100 m for the ionosphere. Reflection of
waves by the ionosphere is crucial for radio wave propagation in the Earth’s atmo-
sphere, allowing communication over large distances.

Faraday’s law gives ωB0 = k × E0 so we see that if the wave is evanescent (k is
imaginary), then E and B are 90 degrees out of phase with each other. The Poynting
vector is then

|S| = |B0| |E0|
µ0

sin (−ωt) cos (−ωt) e−2kI x (2.37)
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which has a vanishing time-average. This implies that the evanescent wave carries no
energy into the plasma. An incident wave is reflected from a plasma when ω < ωp.

From the dispersion relation, we see that the phase and group velocities of prop-
agating waves depend on ω: the waves are dispersive. As you can confirm from the
dispersion relation, the velocities are

vp =
ω

k
=

c
n
> c vg =

∂ω

∂k
= cn < c (2.38)

where the refractive index of the plasma n is given by

n2 = 1 −
󰀓ωp

ω

󰀔2
. (2.39)

A famous example of this from astrophysics is that the radio pulses from pulsars arrive
later at lower radio frequencies, with a characteristic quadratic dependence of arrival
time on frequency (see the figure for an example). The delay is due to the fact that the
pulses travel through ionized gas in our galaxy before reaching Earth.
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2.1.4 EM waves in a conductor

In a conductor, we use a constant conductivity σ in equation (2.28), giving the disper-
sion relation for a conductor

k2c2

ω2 = 1 +
iσ

󰂃0ω
. (2.40)

This is a bit more difficult to deal with because the wavevector now has both real and
imaginary parts (in the plasma case, k was either pure real or pure imaginary). To
find the real and imaginary parts, we write explicitly k = kR + ik I and substitute that
into the dispersion relation. Equating real and imaginary parts on both sides of the
equation, we find

k2
R − k2

I =
ω2

c2 (2.41)

and
2kRk I =

σω

c2󰂃0
= µ0σω (2.42)

which can be solved to find kR and k I .
A useful limit is the “good conductor” limit σ ≫ 󰂃0ω. This limit corresponds to

the term J = σE being much greater than the displacement current term 󰂃0∂E/∂t in
Ampere’s law. In that case, the solution to equations (2.41) and (2.42) is

kR = k I =
1
c

󰀕
σω

2󰂃0

󰀖1/2

, (2.43)

(It is instructive to derive this result directly from Maxwell’s equations by dropping
the displacement current term from Ampere’s law before deriving the dispersion re-
lation for the waves). The complex k vector can be written

k =

󰀕
1 + i√

2

󰀖
(µ0σω)1/2 = eiπ/4 (µ0σω)1/2 . (2.44)

The phase velocity of the wave is vp = c(2ω󰂃0/σ)1/2 ≪ c and group velocity is vg =
2vp.

Most importantly, we see that the wave amplitude decays E ∝ e−kI x ∝ e−x/δ where

δ =
1
k I

=

󰀕
2

µ0σω

󰀖1/2

(2.45)

is the skin depth of the conductor at that frequency.
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Numerically, for a typical conductor, σ ∼ 108 in SI units, giving σ/󰂃0ω ≈ 1018 Hz/ f ≈
(λ/3 × 10−10 m). The skin depth is then δ ≈ 0.05 m( f /Hz)−1/2. For example, optical
light with λ ≈ 0.5 µm has f ≈ 6 × 1014 Hz and σ/󰂃0ω ≳ 1000, δ ≈ 2 × 10−9 m. Metal
shielding is often used to screen experimental apparatus from stray radiation fields.

An instructive exercise is to calculate the Poynting flux of the evanescent wave in
the conductor. If x is the distance along the propagation direction, you should find

〈S〉 = E2
0

2

󰀕
σ

2µ0ω

󰀖1/2

e−2kI x (2.46)

giving
d〈S〉
dx

= −E2
0σ

2
e−2kI x = −〈 J2

σ
〉, (2.47)

a beautiful result that tells you what happens to the energy in the decaying wave.

2.2 Bound electrons

We now consider materials with bound electrons, i.e. insulators. We know how to
write down Maxwell’s equations for linear, isotropic, homogeneous (LIH) dielectrics,
so we use that as a starting point.

2.2.1 EM waves in LIH Dielectrics

We know from our discussion of materials with free electrons that the response of
the material depends on the frequency of the wave. At low frequencies, the response
should be the same as the static response, i.e. we can write the polarizations as P =
χe󰂃0E or M = χmH and therefore D = 󰂃E and H = B/µ in Maxwell’s equations. The
resulting equations are the same as for the vacuum case but with 󰂃0 → 󰂃 and µ0 → µ.

Without doing any calculations we can see then that the wave speed in the LIH
case will be given by

c′2 =
1

µ󰂃
=

c2

󰂃rµr
. (2.48)

EM waves propagate more slowly in the material than in vacuum by a factor of

n =
c
c′

=
√

󰂃rµr (2.49)

which is the refractive index of the material. The dispersion relation for the waves is
ω = c′k = ck/n. In practise, µr is very close to 1, and so n ≈ √

󰂃r. For example, glass
has n ≈ 1.5.

All of this should break down at high enough wave frequencies that the response
time of the material becomes important. We consider a simple model for this next.
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2.2.2 The Lorentz dielectric

The Lorentz dielectric is simple model of a dielectric in which the electron’s motion
is treated as a forced, damped, simple harmonic oscillator. The bound nature of the
electron is included by putting the electron in a harmonic potential (hence its simple
harmonic motion). The model also includes the drag that leads to the conductivity of
a conductor, and includes the acceleration term that gives the out-of-phase response
of a plasma. This makes it very interesting to study as an “all in one” model of the
response of a material to an EM wave.

The equation of motion of the electron in this case is

− ω2x + ω2
0x − iωγx =

−eE
m

(2.50)

where x is the displacement of an electron. The oscillator is described by its charac-
teristic frequency ω0 (which tells you about the confining potential) and the damping
rate γ (for example the collision rate of the electron with atoms in the material). The
electron’s motion is forced by the applied electric field which has amplitude E0 and
frequency ω. Assuming that the electron displacement takes the form x = x0e−iωt,
equation (2.50) gives

x0 =
eE0/m

ω2 − ω2
0 + iωγ

(2.51)

for the amplitude of the electron motion.
There are two ways to incorporate this into Maxwell’s equation and derive the

dispersion relation (both give the same answer). The first is to write down the polar-
ization of the material per unit volume

P = −nex (2.52)

and insert a term ∂P/∂t = −iωP into Ampère’s law. Alternatively, we can write the
current density

J = −nev = iωnex, (2.53)

which allows us to use the dispersion relation we derived above for a current J =
σE. We’ll follow this second approach here because it allows us to check different
limits of the conductivity and see the connection to the plasma and conductor from
the previous section.

Using equation (2.51), the current density associated with the electron motion is

J =
iωne2E/m

ω2 − ω2
0 + iωγ

. (2.54)

In terms of the plasma frequency ω2
p = ne2/m󰂃0, we can write

J = σ (ω) E =
iωω2

p󰂃0

ω2 − ω2
0 + iωγ

E. (2.55)
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It is worth checking that this formula has the appropriate limits. For unbound elec-
trons ω0 = 0 and a large collision rate ω ≪ γ, we get σ = ω2

p󰂃0/γ = ne2/mγ which is
the conductivity of a conductor if γ = 1/τ. For unbound electrons (ω0 = 0) with no
damping (γ = 0), we obtain J = i(ω2

p󰂃0/ω)E = i(ne2/mω)E which is the relation for
a plasma.

Having obtained an expression for σ(ω), equation (2.28) gives us the dispersion
relation. We can write this as a permittivity 󰂃/󰂃0 = n2 = c2k2/ω2, or

󰂃 (ω) = 󰂃0

󰀥
1 −

ω2
p

ω2 − ω2
0 + iωγ

󰀦
, (2.56)

or as a susceptibility χ(t) given by 󰂃 = 󰂃0(1 + χ) as

χ(ω) =
ω2

p

ω2
0 − ω2 + iωγ

. (2.57)

A new limit that we haven’t encountered previously is to take ω → 0. Then

󰂃 → 󰂃0 +
ω2

p󰂃0

ω2
0

= 󰂃0 +
ne2

mω2
0

(2.58)

which we interpret as the static dielectric constant 󰂃(0). We now have a way to think
about the dielectric constant that we’ve used so many times in electrostatic problems
in terms of the microphysics of the material: its plasma frequency and its bound po-
tentials as reflected in ω2

0.
What is fascinating about this highly simplified model is that the resulting 󰂃(ω)

has the same qualitative properties as many observed materials. Writing 󰂃 = 󰂃′ + i󰂃′′,
the real and imaginary parts of 󰂃(ω) are

󰂃′(ω) = 󰂃0 +
󰂃0ω2

p(ω
2
0 − ω2)

(ω2 − ω2
0)

2 + γ2ω2
real part (2.59)

󰂃′′(ω) =
󰂃0ω2

pωγ

(ω2 − ω2
0)

2 + γ2ω2
imaginary part. (2.60)

Sketches of each of these as a function of frequency are shown below. In terms of
the refractive index n where n2 = 󰂃, the phase velocity of the wave is vp = c/nr(ω),
where nr is real part of n. The group velocity is

vg =
dω

dk
=

c
nr + ωdnr/dω

. (2.61)

In a region of frequency where dnr/dω < 0, the group velocity can become larger than
c (“superluminal”) or even negative. These ranges of frequency are known as “anoma-
lous dispersion”, see the label on the sketch of 󰂃′ below. The opposite behaviour is in
materials where dnr/dω is very large (an extreme case of “normal dispersion”): then
the group velocity can be vg ≪ c, known as “slow light”. These are all great project
topics! I’ve also included a figure from Jackson that shows the real and imaginary
parts of 󰂃 for water. Note the qualitative similarities to the Lorentz model: absorption
is associated with anomalous dispersion.
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2.3 Reflection and transmission at an interface

In this section, we consider what happens at the interface between two materials. To
solve this, we set up incident, reflected, and transmitted waves and use the boundary
conditions on the fields to relate them. This is similar to wave transmission problems
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that you may have seen in other courses such as mechanics (waves on a string) or
quantum mechanics (particle incident on a potential barrier).

2.3.1 A wave at normal incidence between two linear dielectrics

The simplest case to consider is a wave incident perpendicular to a plane boundary
between two linear dielectrics. We refer to this as “normal incidence” as the incoming
wave is in the direction of the normal vector to the surface.

We assume that the permeabilities are all equal, µ1 = µ2 = µ0. The incident, re-
flected, and transmitted waves have amplitudes E, E′′ and E′ respectively, as shown
in the diagram, and k-vectors k for the incident wave, −k for the reflected wave, and
k′ for the transmitted wave. (Make sure you understand why the magnitudes of the
wavevectors of the reflected and incident waves must be the same.) Note that the
time-dependence of all the waves is the same ∝ e−iωt (again, can you make an argu-
ment that this must be the case?).

The first boundary condition to consider is that E󰀂 should be continuous, so the
sum of the electric fields on each side must be equal,

E + E′′ = E′. (2.62)

As there are no free surface currents, H󰀂 must also be continuous, so that B + B′′ = B′.
An EM wave in a dielectric obeys E = ±c′B = ±cB/n with the sign depending on the
direction of the wave. Therefore,

n1E − n1E′′ = n2E′. (2.63)

Equations (2.62) and (2.63) are two simultaneous equations which we can solve for E′

and E′′ given an incident amplitude E. The result is

E′′

E
=

n1 − n2

n1 + n2

E′

E
=

2n1

n1 + n2
. (2.64)

The energy flux in the wave is (1/2)c′󰂃E2 ∝ E2/c′ ∝ nE2. The ratio of reflected to
incident intensity (the fraction of the incident power that is reflected) is therefore

R =

󰀕
E′′

E

󰀖2

=

󰀕
n1 − n2

n1 + n2

󰀖2

(2.65)
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giving a ratio of transmitted intensity to incident intensity (fraction of energy trans-
mitted) of

T =
n2

n1

󰀕
E′

E

󰀖2

=
4n1n2

(n1 + n2)2 . (2.66)

Note that R + T = 1 so that all the energy is accounted for. Also, if n1 = n2 then T = 1
and R = 0.

2.3.2 The impedance Z

If we drop the assumption that µ1 = µ2, the H󰀂 boundary condition would be written
slightly differently:

B
µ1

+
B′′

µ1
=

B′

µ2
. (2.67)

Everything follows through as before, but with the replacement n → n/µ. Dividing
by c, we can write this factor as n/cµ =

√
µ󰂃/µ =

󰁳
󰂃/µ. The resulting transmission

and reflection coefficients can be written in terms of this quantity, and in fact we define
its inverse as the impedance Z:

Z =

󰁵
µ

󰂃
, (2.68)

giving amplitude ratios

r =
E′′

E
=

Z2 − Z1

Z1 + Z2
t =

E′

E
=

2Z2

Z1 + Z2
(2.69)

and energies

R =

󰀕
Z2 − Z1

Z1 + Z2

󰀖2

T =
4Z1Z2

(Z1 + Z2)2 . (2.70)

The units of impedance are ohms, and the quantity

Z0 =

󰁵
µ0

󰂃0
= 377 ohms (2.71)

is a useful one to remember, the impedance of free space. If µ ≈ 1 as it is for most
materials, then Z ∝ c′, the speed of the wave in the material. If Z2 > Z1 (wave speeds
up) then the reflected wave is in phase (r > 0, e.g. glass to air). If Z2 < Z1 (wave slows
down), then the reflected wave is out of phase (r < 0, e.g. air to glass)7.

There is a more general definition of impedance, which is the ratio of the E and H
fields at any point

Z =
E
H

. (2.72)

7You may already have some intuition for this from waves on a string. In that problem, the wave
speed is

󰁳
T/µ, where T is the tension and µ is the mass per unit length, and the impedance is µv =

󰁳
µT

such that the same reflection and transmission coefficients apply but with Z1 and Z2 swapped over. That
technical detail aside, recall that a wave that encounters a very heavy string (slows down) will reflect
with r ≈ −1, e.g. a string tied to a wall at one end. A wave that encounters a very light string (speeds
up) will reflect with r = +1, giving t = 2, e.g. an open end of a string.
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We can work this out for a few cases. For free space, E = cB ⇒ Z0 = µ0c =
󰁳

µ0/󰂃0.
For a dielectric, Z =

󰁳
µ/󰂃. For a good conductor,

B
E
=

(µ0σω)1/2

ω
eiπ/4

(see earlier notes) giving

Zconductor = Z0

󰀕
ω

σ/󰂃0

󰀖1/2 1 − i√
2

≪ Z0 (2.73)

For a plasma, Z = µ0c/n gives

Zplasma =
Z0󰁴

1 − (ωp/ω)2
> Z0. (2.74)

2.3.3 Oblique incidence

We next consider a wave incident at some angle θi to the normal. We’ll recover some
standard results from optics.

There are two cases to consider, depending on whether the magnetic field of the
wave or the electric field of the wave is parallel to the interface:

First consider the TE (“transverse electric”) case where the electric field is parallel
to the interface. The first step is to argue that there is nothing special about the location
in the (y, z) plane where we’ve drawn the vectors above - the boundary conditions
have to match at all points. This implies that

ky = k′y = k′′y kz = k′z = k′′z (2.75)

otherwise we wouldn’t be able to match the boundary conditions everywhere on the
surface (the waves would become out of phase as we moved along the surface)8.

8This is also the answer to the question raised in the last section about why we can safely assume that
all three waves have the same time-dependence e−iωt. We can then arrange for the boundary conditions
to be satisfied at a particular time and they will remain satisfied for all times.
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We next arrange our axes so that the incident wave propagates in the y–x plane, or
in other words we choose kz = 0, and this implies that the reflected and transmitted
waves will also propagate in the y–x plane. This is the “plane of incidence”. The k
vector components are

k =
n1ω

c
(x̂ cos θ + ŷ sin θ) (2.76)

k′′ =
n1ω

c
󰀃
−x̂ cos θ′′ + ŷ sin θ′′

󰀄
(2.77)

k′ =
n2ω

c
󰀃
x̂ cos θ′ + ŷ sin θ′

󰀄
(2.78)

where the angles θ, θ′, θ′′ give the directions of the three waves, and x̂, ŷ and ẑ are the
unit vectors.

We can immediately obtain two laws of optics. First, setting ky = k′′y gives

sin θ = sin θ′′ (2.79)

or angle of incidence = angle of reflection. Setting ky = k′y gives

n1 sin θ = n2 sin θ′ (2.80)

which is Snell’s law. If n2 < n1, the wave speeds up on entering the second material,
and it bends away from the normal; if n2 > n1, the wave slows down on entering the
material and it bends towards the normal.

Now let’s derive the reflection and transmission coefficients. This requires match-
ing the electric and magnetic fields at the boundary. In TE mode, the electric vector
is perpendicular to the plane of incidence, or parallel to the surface. Therefore the
boundary condition that E󰀂 is continuous is straightforward to apply, giving

E0 + E′′
0 = E′

0 (2.81)

as before. The magnetic fields are more tricky because they have components perpen-
dicular and parallel to the interface. The magnetic fields are

H0 =
E0

Z1
[x̂ sin θ − ŷ cos θ]

H′′
0 =

E′′
0

Z1
[x̂ sin θ + ŷ cos θ]

H′
0 =

E′
0

Z2

󰀅
x̂ sin θ′ − ŷ cos θ′

󰀆
. (2.82)

A second boundary condition is H󰀂 continuous, giving

E0 − E′′
0

Z1
cos θ =

E′
0

Z2
cos θ′. (2.83)

Equations (2.81) and (2.83) are simultaneous equations that can be solved to find E′
0

and E′′
0 in terms of the incident amplitude E0. The result is

E′′
0

E0
=

Z2 cos θ − Z1 cos θ′

Z2 cos θ + Z1 cos θ′
(2.84)
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E′
0

E0
=

2Z2 cos θ

Z2 cos θ + Z1 cos θ′
. (2.85)

This is actually another optics result in disguise. When µ1 = µ2 = µ0 you can show
that Z2 → n1 and Z1 → n2 in the above equations. With some manipulation, equation
(2.84) becomes

E′′
0

E0
=

sin (θ′ − θ)

sin (θ′ + θ)
(2.86)

Fresnel’s equation for the TE mode.
For the TM mode, the magnetic vector is perpendicular to the plane of incidence,

and then the boundary conditions become

(E0 + E′′
0 )

Z1
=

E′
0

Z2
(2.87)

(H󰀂 continuous) and then

󰀃
E0 − E′′

0
󰀄

cos θ = E′
0 cos θ′ (2.88)

(E󰀂 continuous). The result is then

E′′
0

E0
=

Z1 cos θ − Z2 cos θ′

Z1 cos θ + Z2 cos θ′
(2.89)

E′
0

E0
=

2Z2 cos θ

Z2 cos θ′ + Z1 cos θ
. (2.90)

Again when µ1 = µ2 = µ0 a simplified version for the reflected amplitude is

E′′
0

E0
=

tan (θ − θ′)

tan (θ′ + θ)
, (2.91)

Fresnel’s equation for the TM mode.
The reflectivity R in the two cases is

R (TM) =

󰀕
Z1 cos θ − Z2 cos θ′

Z1 cos θ + Z2 cos θ′

󰀖2

(2.92)

R (TE) =
󰀕

Z2 cos θ − Z1 cos θ′

Z2 cos θ + Z1 cos θ′

󰀖2

(2.93)

I’ve included a sketch of R against the angle of incidence θ below for the case of a wave
going from air to glass. For the TM mode, the reflectivity goes to zero at a particular
angle ≈ 56◦, known as Brewster’s angle. At this angle, only the TE mode reflects, so an
unpolarized beam of radiation is 100% polarized on reflection.
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2.3.4 Optics results

Let’s collect together the various optics results we’ve seen already, plus some new
ones.

1. angle of incidence = angle of reflection θ = θ′′

2. Snell’s law n1 sin θ = n2 sin θ′
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If n2 > n1 (wave slows down) θ′ < θ (move towards the normal).

If n2 < n1 (wave speeds up) θ′ > θ (move away from the normal).

3. Total internal reflection

There is a critical angle of incidence for which θ′ = π/2.

n1 sin θc = n2 → θc = sin−1
󰀕

n2

n1

󰀖

For glass to air, θc = 41◦. For θ > θc, all the incident energy is reflected and there
is an evanescent wave in medium 2. This is total internal reflection. e.g. optical
fibres

4. Non-reflective coating

The boundary conditions at x = 0 are

E0 + E′′
0 = E′

1 + E′′
1

n0(E0 − E′′
0 ) = n1(E′

1 − E′′
1 )

and at x = a
E′

1eik1a + E′′
1 e−ik1a = E2′eik2a

n1

󰀓
E′

1eik1a − E′′
1 e−ik1a

󰀔
= n2E′

2eik2a

There is zero reflected wave E′′
0 = 0 if we choose

n1 =
√

n0n2

and
a = (2j + 1)

λ1

4

e.g. MgF2 coating for lenses: n1 = 1.38 which is ≈
√

1.5.
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5. Reflection Reflectivity for normal incidence

R =

󰀕
Z2 − Z1

Z1 + Z2

󰀖2

For oblique incidence, Fresnel equations

R =

󰀕
E′′

0
E0

󰀖2

=
sin2(θ′ − θ)

sin2(θ′ + θ)
TE

R =

󰀕
E′′

0
E0

󰀖2

=
tan2(θ − θ′)

tan2(θ′ + θ)
TM

6. Brewster’s angle at which the reflectivity is zero for TM. Corresponds to θ + θ′ =
π/2 so that R vanishes (denominator in Fresnel equation diverges).

To find θ:
θ′ =

π

2
− θ ⇒ sin θ′ = cos θ

n1

n2
sin θ = cos θ

(using Snell’s law)

⇒ tan θ =
n2

n1
.

For n2 = 1.5 and n1 = 1 (air to glass), θ = 56◦.

2.3.5 A physical explanation for the reflected wave

In §2.3.1, we assumed that there would be a reflected wave, and calculated its ampli-
tude by matching the boundary conditions. But this begs the question, where does
the reflected wave come from? Here is an argument that gives a physical explanation
for the reflected wave, while at the same time deriving the correct expression for its
amplitude.

We saw in Part 1 of the class that switching on a surface current K in a plane created
a disturbance that propagated outwards at a speed c:

If K depends on time K(t), then B at position x must depend on whatever the current
K was at the sheet one light travel time ago, that is at a time t − x/c. In other words,
the magnetic field must be

B(x, t) =
µ0

2
K
󰀓

t − x
c

󰀔
.
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The quantity t − x/c is called the “retarded time” (retarded because we evaluate the
current at an earlier time, based on the light travel time to whatever spatial position x
we are looking at).

Now consider a transmitted wave E′
0eik′x−iωt propagating into the dielectric. At a

distance x into the dielectric, there is a current

K(x, t) = σ(ω)E′
0eik′x−iωtdx,

where σ(ω) is the conductivity of the dielectric (e.g. as given by the Lorentz model).
(The dx is there to convert from the volume current density J = σE to a surface
current). Now consider a position x0 which is in the vacuum outside the dielectric
(x0 < 0). The magnetic field there is a sum over all the magnetic field contributions
from the currents inside the dielectric induced by the propagating wave

B (x0, t) =
󰁝

µ0

2
σ(ω)E′

0 dx eik′xe−iω(t−(x−x0)/c),

or
B(x0, t) =

µ0

2
σ(ω)E′

0e−iω(t+x0/c)
󰁝 ∞

0
dx eik′x+iωx/c.

Notice that B is a function of t + x0/c, in other words it is a wave travelling to the left,
as expected for the reflected wave.

To get the amplitude of the reflected wave, we need to do the integral and evaluate
the prefactor:

B(x0, t) = e−iω(t+x0/c) µ0σE′
0

2
1

i(k′ + ω/c)

󰁫
1 + ei∞

󰁬
.

We assume that we can drop the contribution from x = ∞, because the contributions
from further and further away mix rapidly in phase and will gradually taper off de-
pending on what happens at large distance into the dielectric (see Feynman 30-7 for a
discussion of a similar ei∞ term)9. Also, we use the relations k′ + ω/c = (ω/c)(1 + n)
and 󰂃r − 1 = n2 − 1 = (n − 1)(n + 1) = σ/(−iω󰂃0) (see the dispersion relation
eq. [2.28]). The result is

cB(x0, t)
E0

=
E′′

0
E0

e−iω(t+x0/c) = −e−iω(t+x0/c) E′
0

E0

n − 1
2

or since E′
0/E0 = 2/(1 + n), we see that

E′′
0

E0
=

󰀕
1 − n
1 + n

󰀖

as we found previously.

9And for a similar approach to understanding the reflected wave see Feynman lectures I 30-7, 31-1,
31-2, and volume 2 18-4 is also relevant.
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2.4 Scattering of light from single electrons

In Part 1 of the course, we derived Larmor’s formula for the power radiated by an
accelerated electron

Power =
q2a2

6π󰂃0c3

where a is the acceleration of the electron (see eq. [1.22] from Part 1 of the notes). The
angular distribution of the emitted energy is given by the Poynting flux

S = r̂
q2a2

16π2󰂃0c3r2 sin2 θ

(see eq. [1.21]), where θ is the angle of the emitted radiation with respect to the acceler-
ation direction. The radiation is concentrated in directions perpendicular to the accel-
eration (sin θ ∼ 1) and with no emission in the direction of the acceleration (sin θ = 0).

When an electromagnetic wave encounters a single electron, it accelerates the elec-
tron, causing it to emit radiation in all directions. The result is scattering of the incom-
ing wave, and we can use Larmor’s formula to calculate the scattering cross-section.

2.4.1 Thomson scattering

Consider first a single free electron which is accelerated by a passing wave which we
write as usual E = E0e−iωt. The acceleration of the electron is a = −eE/me and so it
radiates a power

〈Power〉 = 1
2

󰀃
e2E/me

󰀄2

6π󰂃0c3 ,

where we have used Larmor’s formula and included a factor of 1/2 coming from
the time-average of sin2. The incoming energy flux in the wave is (1/2)c󰂃0E2. By
comparing the incoming energy flux to the power reradiated, we can calculate the
cross-section for scattering σ. The cross-section is defined by

1
2

󰀃
e2E/me

󰀄2

6π󰂃0c3 =
1
2

c󰂃0E2 × σ (2.94)

which gives

σ =
1

6π󰂃2
0

e4

(mec2)2 .

A useful way to rewrite this is in terms of the classical electron radius, defined by

e2

4π󰂃0re
= mec2 ⇒ re =

1
4π󰂃0

e2

mec2 .
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The cross-section is then

σ = σT =

󰀕
e2

4π󰂃0mec2

󰀖2 8π

3
=

8π

3
r2

e (2.95)

which is the famous Thomson cross-section σT for the scattering of EM radiation by
an electron.

Putting in numbers, σT = 6.65 × 10−29 m210. An example is the Sun, which is a
large ball of ionized plasma with average density ρ ≈ 1 g cm−3. The electron density
is therefore ne ≈ ρ/mp ≈ 1030 m−3. The mean free path for scattering of photons is
therefore λmfp ≈ 1/neσT ≈ 1 cm, much smaller than the size of the Sun (about 109 m
or 1011 mean free paths!). Thomson scattering is therefore extremely important in the
solar interior and in fact controls the energy transport.

We can also derive a differential cross-section which gives the angular distribution
of the scattered radiation because we know the angular distribution of the radiated
power. The power that goes into solid angle dΩ in direction (θ, φ) is

dP = |S| r2dΩ = |S| r2dφ sin θdθ

or
dP
dΩ

= r2 |S| = q2a2

16π2󰂃0c3 sin2 θ.

The differential cross-section is defined as

dP
dΩ

=

󰀕
1
2

c󰂃0E2
󰀖

dσ

dΩ

giving
dσ

dΩ
=

(e2E/me)2

16π2󰂃0c3 sin2 θ
1

(1/2)c󰂃0E2 =

󰀕
e2

4π󰂃0mec2

󰀖2

sin2 θ

dσ

dΩ
= r2

e sin2 θ. (2.96)

This angular dependence means that the scattered beam is polarized in some direc-
tions, even when the incoming beam of radiation is unpolarized.

A good practise question to help you think this through is Q4 from the 2012 final
exam.

10The number I remember is that the Thomson cross-section in cm2 is approximately the inverse of the
proton mass in g. Useful if you are using cgs units.
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2.4.2 Rayleigh scattering

Now consider a bound electron. Looking back at the Lorentz dielectric with γ = 0,
the displacement is

x =
eE/m

ω2 − ω2
0

and the acceleration is

a = − ω2

ω2 − ω2
0

eE
me

,

the same as for a free electron except for the factor ω2/(ω2 − ω2
0). Therefore the cross-

section for the bound electron must be

σ = σT
ω4

(ω2 − ω2
0)

2
(2.97)

dσ

dΩ
= r2

e sin2 θ
ω4

(ω2 − ω2
0)

2
. (2.98)

Two limits are

1. ω ≫ ω0. Then σ → σT. The bound electron acts as a free electron for short
photon wavelengths.

2. ω ≪ ω0. Then

σ → σT

󰀕
ω

ω0

󰀖4

∝
1

λ4 .

This is Rayleigh scattering. The strong dependence on wavelength is the reason
that blue light scatters more in the atmosphere and gives blue sky/red sunsets.

SUMMARY

Here are the main ideas and results that we covered in this part of the course:

EM waves in a plasma. The current is π/2 out of phase with the electric field J =
i(nee2/meω)E. How to get the dispersion relation n2 = (ck/ω)2 = 1 − (ωp/ω)2

where the plasma frequency is given by ω2
p = nee2/me󰂃0, or fp = 9 kHz(ne/cm−3)1/2.

Evanescence of low frequency waves and reflection of radio waves from the iono-
sphere.

Waves in a conductor. Current and electric field are in phase, J = σE. The dispersion
relation n2 = (ck/ω)2 = 1 + iσ/󰂃0ω. The limit of a good conductor σ/󰂃0 ≫ ω
where conduction current dominates displacement current. The complex wavevector
k = (1 + i)/δ in the good conductor where δ2 = 2/(µ0σω) defines the skin depth.
Calculation of the Poynting flux and Ohmic dissipation in the conductor.
Waves in an LIH dielectric. Assuming instantaneous response of the material gives
a wave speed c′2 = 1/(µ󰂃) or c′ = c/n where n2 = 󰂃rµr defines the refractive index.
Typical values of 󰂃r and µr for real materials.
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The Lorentz dielectric. Derivation of the frequency-dependent conductivity in this
model

σ (ω)

󰂃0
=

iωω2
p

ω2 − ω2
0 + iωγ

and the dielectric constant

󰂃r = 1 −
ω2

p

ω2 − ω2
0 + iωγ

.

The real and imaginary parts of 󰂃, anomalous dispersion, absorption near the reso-
nance.

Reflection and transmission at a boundary. Decomposition into incident, reflected,
and transmitted waves, and the boundary conditions on the fields at the surface for
both normal and oblique incidence. For normal incidence, the reflectivity is R = (n1 −
n2)2/(n1 + n2)2 and fraction of intensity transmitted is T = 4n1n2/(n1 + n2)2. The
definition of impedance Z as the ratio of E to H in the wave. Impedance of free space󰁳

µ0/󰂃0 = 377 Ohms.

Optics results: angle of incidence equals angle of reflection; Snell’s law n1 sin θ =
n2 sin θ′; total internal reflection; non-reflective coating with n1 =

√
n0n2 and thick-

ness a multiple of λ/4; the difference between TE and TM modes and Brewster’s
angle.

Scattering. The classical derivation of the Thomson cross-section,

dσT

dΩ
= r2

e sin2 θ σT =
8π

3
r2

e ,

where re = (e2/mec2)/4π󰂃0 is the classical electron radius. Rayleigh scattering from a
bound electron σ ∝ 1/λ4 for long wavelengths.

The polarization of the scattered radiation.

You should be able to:

• know the relation between refractive index, permittivity 󰂃 and wavevector k,
and how to interpret the real and imaginary parts of a complex wavevector or
permittivity.

• Use the electron equation of motion to determine the relation between J and E
for a material, under some approximation such as plasma, conductor, or Lorentz
dielectric. From there you should be able to get the dispersion relation for the
material.

• Use the dispersion relation for a conductor to derive an expression for the skin
depth.

• Be able to calculate the reflection and transmission coefficients between two ma-
terials with different dispersion relations by matching boundary conditions at
the interface.
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• Calculate the scattering cross-section for an electron, including the total and dif-
ferential cross-sections.

• Be able to describe the concepts of normal and anomalous dispersion, and the
link between the real and imaginary parts of the permittivity.

Appendix A: Natural frequencies of a plasma or conductor

One question you may have is that when we derived the dispersion relation for a
plasma or conductor, we included the current induced by the EM wave in Ampere’s
law, but we did not consider density perturbations in the plasma as a source term
in Gauss’ law. The reason is that the waves are transverse. If the wave caused a
perturbation to the electron density δne, then Gauss’ law ∇ · E = ρ/󰂃0 gives

ik · E0 = − eδne

󰂃0
. (2.99)

But for a transverse wave k · E0 = 0 and the EM wave does not cause any perturba-
tions to the electron density.

However, it is worth thinking about waves that would be driven by density fluc-
tuations, as they give some insight into the two characteristic frequencies that enter
into the dispersion relation, either the plasma frequency for plasmas or σ/󰂃0 for con-
ductors. The continuity equation is ∇ · J + ∂ρ/∂t = 0, or

ik · J0 + iωeδne = 0. (2.100)

Eliminating δne gives a relation between the divergences of the electric field and cur-
rent density

ik · E0 =
k · J0

󰂃0ω
(2.101)

Physically, this just says that if there is a charge overdensity, it must have come from
a non-zero divergence of the current density, but will also lead to a divergence of E
through Gauss’ law. So the divergence of the current density and the divergence of
the electric field must be related.

Now consider first a conductor for which J0 = σE0. Then equation (2.101) implies
that either k · E0 = 0 or iω = σ/󰂃0. In other words, the response to a non-transverse
perturbation in a conductor has a time-dependence ∝ e−iωt ∝ e−σt/󰂃0 . In a conductor,
a charge excess decays on a timescale 󰂃0/σ.

Similarly, for a plasma, J0 = (ine2/mω)E0 gives either k · E0 = 0 (transverse wave)
or ω = ωp. Unlike in the plasma case, the frequency is real: there is a longitudinal
oscillation in a plasma driven by electron density perturbations whose frequency is
the plasma frequency (this is known as a plasma oscillation or Langmuir wave).

In this way, we see that the plasma frequency and σ/󰂃0 are “natural frequencies”
of plasmas or conductors, respectively.
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Appendix B: A note on calculating the Poynting flux

When you are using complex notation, it is important to remember that if you are
evaluating a quantity that is a product, such as the Poynting flux E × H, you should
take the real parts of E and H before you evaluate the product, not afterwards. In
other words

Re (E × H) ∕= Re (E)× Re (H)

(or similarly Re(z2) ∕= Re(z)2 for a complex number z). In the sections on plasmas
and conductors above, I wrote the real parts of E and B first, and then used them to
calculate the Poynting flux, taking the appropriate time average of sin2 ωt for example.

An alternative and faster method is to use the identity

〈S〉 = 1
2

Re (EH󰂏) (2.102)

where H󰂏 is the complex conjugate of H (and I’ve written E and H as scalars, assuming
that they are in orthogonal directions). You’ll prove this relation in one of the problem
sets.

Examples:

• Plane wave. E = E0eikx−iωt, B = (E0/c)eikx−iωt. Then equation (2.102) gives

〈S〉 = 1
2

E2
0

µ0c
=

1
2

c󰂃0E2
0.

• Plasma with ω < ωp. Then E = E0eikx−iωt with k = i/δ. Faraday’s law is

ωB = kE ⇒ B =
i

δω
E0e−x/δ−iωt.

The product

EH󰂏 =
E2

0
δω

e−2x/δ (−i)

is imaginary and so
〈S〉 = Re(EH󰂏) = 0

(compare eq. [2.37]).

• Conductor. The dispersion relation is

k =
(1 + i)√

2
(µ0σω)1/2 =

1 + i
δ

.

Again Faraday’s law relates B to E,

ωB = kE =
1 + i

δ
E.

The Poynting flux is

〈S〉 = 1
2

Re (EH󰂏) =
1
2

E2
0e−2x/δ 1

δµ0ω
=

1
2
√

2
E2

0

󰀕
σ

ωµ0

󰀖1/2

e−2x/δ

(compare eq. [2.46]).
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Part 3: Time-dependent Fields and Radiation

These are notes for the third part of PHYS 352 Electromagnetic Waves. In part 1, we
discussed the idea that accelerating charges radiate, and we saw Thomson’s geomet-
ric argument that led to Larmor’s formula for the power radiated by an accelerated
charge:

Here we will put that on a firmer footing by directly solving the wave equations for
the potentials φ and A.

3.1 Retarded potentials

We saw in part 1 that choosing the Lorentz gauge

∇ · A = − 1
c2

∂φ

∂t

gives the following decoupled wave equations for the potentials φ and A:

−∇2φ +
1
c2

∂2φ

∂t2 =
ρ

󰂃0
(3.103)

−∇2A +
1
c2

∂2A
∂t2 = µ0J, (3.104)

where in general the source terms are functions of position and time, ρ(r, t) and J(r, t).
We want to solve these equations to determine the potentials in the time-dependent
case. There are two approaches to this. The first is a more physical approach from
Griffiths book, the second a more mathematical treatment from Pollack and Stump.
We’ll go through each in turn, and then apply the results to calculate the fields of a
current-carrying wire after the current is turned on.

3.1.1 Derivation by analogy with statics

The idea is to make a generalization based on what we already know from electrostat-
ics and magnetostatics. In the static case, Poisson’s equation ∇2φ = −ρ/󰂃0 has the
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solution

φ (r) =
󰁝

ρ(r′)
4π󰂃0|r − r′|d

3r′,

and similarly Ampere’s law ∇2A = −µ0J has the solution

A (r) =
󰁝

µ0J(r′)
4π󰂃0|r − r′|d

3r′.

This works because the Green’s function that satisfies

∇2φ = −δ(r)
󰂃0

is
φ (r) =

1
4π󰂃0|r|

= G(r)

so that the solution for a general charge distribution is

φ(r) =
󰁝

d3r′ρ(r′)G(r − r′)

=
󰁝

d3r′
ρ(r′)

4π󰂃0|r − r′.|
In the integral, we visit each point in space, and include the contribution from the
source at that point by using the Green’s function.

We can do something similar in the time-dependent case, by making one important
modification. We’ve already introduced the idea that electromagnetic disturbances
propagate at the speed of light, so that the field a given point in space depends on
what the source was doing one light travel time ago – at the retarded time (t − r/c).
This suggests the solution

φ (r, t) =
󰁝

ρ(r′, t − |r − r′|/c)
4π󰂃0|r − r′| d3r′ (3.105)

A (r, t) =
󰁝

µ0J(r′, t − |r − r′|/c)
4π|r − r′| d3r′. (3.106)

These are the retarded potentials. At every point in the integral r′, we include the
contribution from the source at that location, but evaluate the source at the retarded
time t − |r − r′|/c. This then takes into account the fact that the information from the
source takes a light travel time to get to the location r that we are interested in.

We can see our guess was correct by verifying that the retarded potential solutions
satisfy the wave equations. It is straightforward to do, but you have to be careful that
the integral has an r dependence not only in the denominator as usual, but also in the
numerator because of the retarded time. When you take the spatial derivative, you’ll
get terms like

∇ρ(r′, t − |r − r′|/c) = ∇ρ(r′, tr) =
∂ρ

∂tr
∇tr = −1

c
ρ̇∇|r − r′|

that aren’t there in the static case. Try it! You should find that the wave equation is
satisfied.
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3.1.2 Derivation of the Green’s function

The other approach is to come from the other direction and develop a Green’s func-
tion for equations (3.103) and (3.104). To do this, make a Fourier decomposition and
assume the sources have an e−iωt time-dependence

ρ(r, t) = ρ̃(r)e−iωt.

We look for a solution
φ(r, t) = φ̃(r)e−iωt

⇒ −∇2φ̃ − k2φ̃ =
ρ̃

󰂃0

where we have defined k = ω/c. This is the Helmholtz equation, which has a Green’s
function eikr/4πr, i.e.

−
󰀃
∇2 + k2󰀄 eikr

r
= δ(r).

To see that this is true, (i) note that ∇2(eikr/r) = −k2eikr/r so that the left hand side
(LHS) vanishes except at the origin, and (ii) if you integrate the LHS over a spherical
volume centred on the origin you get a value of 1 independent of the radius of the
sphere.

Having obtained the Green’s function, we can then construct the solution

φ̃(r) =
󰁝

d3r′
ρ̃(r′)

󰂃0
G(r − r′) =

󰁝
d3r′ρ̃(r′)

eik|r−r′|

4π󰂃0|r − r′| .

Now for arbitrary time-dependence,

ρ(r, t) =
󰁝 ∞

−∞
ρ̃(r, ω)e−iωtdω

and
φ(r, t) =

󰁝 ∞

−∞
φ̃(r, ω)e−iωtdω

=
󰁝 ∞

−∞
dωe−iωt

󰁝
d3r′ρ̃(r′, ω)

eiω|r−r′|/c

4π󰂃0|r − r′|
(where we use the fact that k = ω/c)

=
󰁝

d3r′
1

4π󰂃0|r − r′|

󰁝 ∞

−∞
dωe−iω(t−|r−r′|/c)ρ̃(r′, !)

=
󰁝

d3r′
1

4π󰂃0|r − r′|ρ(r
′, t − |r − r′|

c
),

which is the retarded potential from earlier.
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3.1.3 An example: Time-dependent fields of a current-carrying wire

As a first application of the retarded potentials, consider an infinite straight wire that
carries a current I for t ≥ 0 (and I = 0 for t < 0). Use cylindrical coordinates so that r
is the radial distance from the wire and z is along the wire:

The vector potential is then

A(r, t) =
µ0

4π
ẑ
󰁝 ∞

−∞
dz

I(tr)√
r2 + z2

.

Notice that the current is evaluated at the retarded time I(tr), and is non-zero only for
tr > 0 or

(ct)2 > r2 + z2

z2 < (ct)2 − r2.

This tells us how to set the limits of the integral:

A(r, t) =
µ0

4π
ẑ
󰁝 √

c2t2−r2

−
√

c2t2−r2
dz

I√
r2 + z2

.

This integral can be done, giving

A(r, t) = ẑ
µ0 I
2π

ln

󰀣
ct +

󰁳
(ct)2 − r2

r

󰀤
r < ct

A(r, t) = 0 r > ct.

For r > ct, none of the wire lies within a light travel time and so none of the wire
contributes to the integral and A = 0.

The fields are
E(r, t) = −∂A

∂t
=

µ0 Ic
2π

󰁳
(ct)2 − r2

ẑ

and
B = ∇× A = −φ̂

∂Az

∂r
= φ̂

µ0 I
2πr

ct󰁳
(ct)2 − r2

.

It is interesting to look at the limits. At late times, ct ≫ r, then

B =
µ0 I
2πr

φ̂ E = ẑ
µ0 Ic

2π(ct)
→ 0

which agrees with the static case. For r < ct, the ratio of E to B is

E
cB

=
r
ct

,

so that E = cB at the front which moves outwards from the wire at speed c.
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3.2 The Hertzian Dipole and Some Properties of Antennas

3.2.1 The Hertzian Dipole

The Hertzian dipole is the simplest example of a radiating system. We consider two
metal spheres joined by a wire of length L, with charge oscillating back and forth at
frequency ω. The total charge is zero, so as charge moves back and forth between
the two spheres, one sphere has charge +q(t) and the other has charge −q(t). We’re
interested in the fields a large distance r ≫ L from the wire.

We will also assume that the dipole is short in the sense that L ≪ λ = 2πc/ω. This
means that the light travel time across the dipole is short compared with the timescale
on which the charge oscillates. Then, to a first approximation, each part of the wire
has the same retarded time tr ≈ t − r/c =constant. In the retarded potential integral
for A, 󰁝 J(tr)

r
d3r =

I(tr)L
r

=
1
r

dq
dt

L =
1
r

dp
dt

where p = qL is the dipole moment. Therefore the vector potential is

A(r, t) =
µ0

4πr
I(tr)L =

µ0

4πr
dp(tr)

dt
(3.107)

with tr = t − r/c.
To work out the fields, first change coordinates into spherical coordinates:

The vector A always points straight up (same direction as the current). In spherical
coordinates,

Ar = A cos θ Aθ = −A sin θ Aφ = 0
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where A(r, t) is a function of distance r and t only. Taking the curl of A, we see that
the only non-zero component is

Bφ =
1
r

󰀗
∂

∂r
(rAθ)−

∂Ar

∂θ

󰀘
=

∂Aθ

∂r
= − sin θ

∂A
∂r

(3.108)

or

Bφ = − sin θ
µ0L
4π

∂

∂r

󰀕
I(tr)

r

󰀖
(3.109)

= − sin θ
µ0L
4π

󰀕
− [I]

r2 +
[ İ]
r

∂tr

∂r

󰀖
(3.110)

where I’ve introduced a new notation [ ] which indicates that the quantity inside the
square brackets should be evaluated at the retarded time. Then

Bφ =
µ0L
4π

sin θ

󰀕
[I]
r2 +

[ İ]
rc

󰀖
(3.111)

=
µ0

4π

󰀕
[ ṗ]
r2 +

[ p̈]
rc

󰀖
sin θ. (3.112)

The second term in B is known as the radiation field. It is proportional to p̈ and falls off
as 1/r at large distance.

To get the electric field, we first need the electric potential φ. To find it, we can use
the Lorentz gauge

∇ · A = − 1
c2

∂φ

∂t
or

− 1
c2

∂φ

∂t
=

1
r2

∂

∂r
󰀃
r2A cos θ

󰀄
+

1
r sin θ

∂

∂θ
(sin θ(−A sin θ)) = cos θ

∂A
∂r

.

But we have already calculated ∂A/∂r = −Bφ/ sin θ, which gives

− 1
c2

∂φ

∂t
= − cos θ

µ0

4π

󰀕
[ ṗ]
r2 +

[ p̈]
rc

󰀖

and therefore

φ =
cos θ

4π󰂃0

󰀕
[p]
r2 +

[ ṗ]
rc

󰀖
.

The first term should look familiar — it is the usual static electric dipole potential. The
second term is new, and again is a radiation field term. In the homework, you will
work through deriving φ from the retarded potential integral directly. For now, note
that whereas in the integral for A we were able to take the lowest order approximation
r′ = r, the electric potential is different because the lowest order terms vanish (the
net charge is zero). There are two first order terms: the first with φ ∝ 1/r2 comes
about because the two charges are at slightly different spatial locations (the usual static
dipole); the second with φ ∝ 1/r is because we see the charges at slightly different
retarded times, so they don’t quite cancel each other out. (This is why we are able to
get a monopole potential from a system with zero net charge!)
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With both potentials in hand, we can evaluate E = −∇φ − Ȧ, which gives

Er =
2 cos θ

4π󰂃0

󰀕
[p]
r3 +

[ ṗ]
r2c

󰀖
(3.113)

Eθ =
sin θ

4π󰂃0

󰀕
[p]
r3 +

[ ṗ]
r2c

+
[ p̈]
rc2

󰀖
(3.114)

Eφ = 0. (3.115)

Notice that Eθ has a radiation field ∝ 1/r. The first terms in Er and Eθ are the usual
static dipole fields. There are also terms ∝ 1/r2, intermediate between the static and
radiation fields that depend on ṗ, but do not contribute to radiation.

The radiation fields are the ones that dominate when r ≫ c/ω or r ≫ λ. They
satisfy Eθ = cBφ. The Poynting flux is

S =
Eθ Bφ

µ0
=

sin2 θ

(4π)2󰂃0

[ p̈]
r2c3 . (3.116)

Integrating over a sphere with area element r2dΩ = r2 sin θdθdφ gives the total power

P =
[ p̈]2

6π󰂃0c3 (3.117)

Larmor’s formula. Another way of writing it is

P =
[ İ]2L2

6π󰂃0c3 . (3.118)

3.2.2 Properties of antennas

The Hertzian dipole is a simple antenna. An important concept in antenna design is
radiation resistance which is defined as the time-averaged radiated power divided by
〈I2〉. For the Hertzian dipole

Rr =
〈P〉
〈I2〉 =

L2

6π󰂃0c3
〈[ İ]2〉
〈I2〉 .

Assuming we are driving the antenna with a sinusoidally-varying current with fre-
quency ω, this is

Rr =
L2ω2

6π󰂃0c3 =

󰀕
Lω

c

󰀖2 1
6π

󰁵
µ0

󰂃0
=

2π

3
Z0

󰀕
L
λ

󰀖2

= 789 Ω
󰀕

L
λ

󰀖2

where recall we have assumed L ≪ λ so Rr ≪ 789 Ω. (The impedance of free space
Z0 = 377 Ω.)

To see the importance of the radiation resistance, consider using the Hertzian
dipole as a receiver. If we expose the dipole to an incoming EM wave, it will act
as a receiver:
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where the dipole is arranged parallel to the electric field of the wave E. The electric
field causes a current to flow in the dipole, which therefore radiates. We can model
this as the following circuit:

The current that flows is
I =

EL
R + Rr

,

and the power absorbed in the load is

Pabs =
(EL)2

(R + Rr)2 R.

The power absorbed is maximum when R = Rr (matched resistance) and equal to

Pabs,max =
E2L2

4Rr
=

E2

Z0

3λ2

8π
.

But E2/Z0 is the incoming flux in the wave Sinc = EH = E2/Z0, and therefore we see
that the effective cross-section of the antenna is

σ =
3λ2

8π
,

independent of L (and again we are in the limit L ≪ λ).
Another quantity that you may see discussed for antennas is the power gain which

quantifies its directionality. The gain G(θ, φ) is the flux in a direction (θ, φ) divided by
the flux averaged over all directions. For example, the Hertzian dipole has S ∝ sin2 θ,
so

G =
sin2 θ󰁕

dΩ sin2 θ/4π
=

3
2

sin2 θ.

If you are looking at the equator of the dipole, you are receiving a flux that is 3/2 of
the flux averaged over all directions.
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3.3 Multipole radiation

We now develop a multipole expanson of the vector potential. First a reminder of the
multipole expansion in electrostatics or magnetostatics. A large distance away from a
charge distribution, the electrostatic potential can be expanded as

φ(r) =
󰁝

ρ(r′)d3r′

4π󰂃0|r − r′| =
Q

4π󰂃0
+

r̂ · p
4π󰂃0r2 +

r̂ · Q2 · r̂
4π󰂃0r3 + ...

where the total charge is

Q =
󰁝

ρ(r′)d3r′,

the dipole moment is

p =
󰁝

ρ(r′)r′d3r′,

and the quadrupole moment tensor is

(Q2)ij =
󰁝

ρ(r′)
󰁫
3r′ir

′
j − r′2δij

󰁬
d3r′.

Similarly, for a current distribution J, the vector potential can be expanded

A(r) =
󰁝

µ0J d3r′

4π|r − r′| =
µ0

4πr2 m × r̂ + ...

where the magnetic dipole moment is

m =
1
2

󰁝
r′ × J(r′)d3r′.

To derive these results, use the expansion

1
|r − r′| =

1
r

󰀕
1 +

r̂ · r′

r
+

3(r̂ · r′)2 − r′2

r2 + ...
󰀖

.

You may have seen this before but written as a sum of terms involving Legendre
polynomials (see eq. [5.79] in Griffiths for example).

Now the idea is to do something similar for the time-dependent case by expand-
ing the retarded potentials, and in particular the radiation fields, as a sum of multipole
components. The key difference from the static case is that there is now a new length-
scale in the problem, λ = 2πc/ω. We will assume that

L ≪ λ ≪ r,

where L is the source size. In other words, we assume that the light crossing time for
the source L/c is short compared to the wave period, which is short compared to the
light travel time to the observer. If we look at individual Fourier components,

J = J(r)e−iωt
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etc., then the vector potential is

A = A(r)e−iωt =
µ0

4π

󰁝 J(r′)d3r′

|r − r′| e−iωteiω|r−r′|/c,

or

A(r) =
µ0

4π

󰁝 J(r′)d3r′

|r − r′| eik|r−r′|,

where k = ω/c. We will expand A and then get the fields from B = ∇ × A and
Faraday’s law E = i(c/k)∇× B. In this section I am following the approach of Pollock
& Stump.

3.3.1 Electric dipole term

We first write |r− r′| ≈ r just as we did for the Hertzian dipole (we ignore the variation
of retarded time across the source), giving

A(r) =
µ0

4π

eikr

r

󰁝
J(r′)d3r′.

Then we rewrite this using the identity

∇ · (riJ) = ri∇ · J + J ·∇ri = iωρri + Ji

to integrate by parts, giving

A(r) =
µ0

4π

eikr

r
(−iω)

󰁝
ρ(r′)r′d3r′ =

−iωµ0peikr

4πr
.

To find the radiation fields, we take the curl, noting that because we want the terms
that scale as 1/r, we need only differentiate the eikr term and not the 1/r. The answer
is

B =
k2eikr

4π󰂃0rc
r̂ × p

E = −c r̂ × B =
k2eikr

4π󰂃0r
r̂ × (p × r̂).

The radiated power per unit steradian is

dP
dΩ

=
1

2µ0
Re

󰀅
r2r̂ · (E × B󰂏)

󰀆
=

k4c
32π2󰂃0

󰀃
p2 − (r̂ · p)2󰀄 = k4c

32π2󰂃0
p2 sin2 θ,

where cos θ = p̂ · r̂. Integrating over all space, the total power is

P =
k4c

4π󰂃0

p2

3
=

ω4 p2

12π󰂃0c3 ,

Larmor’s formula for the time-averaged power from an oscillating dipole.
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3.3.2 Magnetic dipole and electric quadrupole

For the next term, we expand |r − r′| to the next order. First consider the exponent,

k|r − r′| ≈ kr − kr̂ · r′ + ...

which gives
eik|r−r′| ≈ eikre−kr̂·r′ ≈ eikr 󰀃1 − ikr̂ · r′ + ...

󰀄
.

We had the first term already in the electric dipole piece, the new term is the second
term. We could also expand the denominator 1/|r − r′|, but the new term from that
part is smaller by a factor of kr ≈ r/λ which we have assumed is ≫ 1. Therefore, the
next term in the expansion of A is

A(r) = −ik
µ0

4π

eikr

r

󰁝
J(r′)r̂ · r′d3r′.

We again integrate by parts using

∇ ·
󰀃
rirjJ

󰀄
= rirj∇ · J + (J ·∇ri)rj + (J ·∇rj)ri = rirj∇ · J + Jirj + Jjri

or
1
2
󰀃

Jirj − Jjri
󰀄
= −Jjri −

1
2

rirj∇ · J.

The result is
󰁝

J(r′)r̂ · r′d3r′ =
−iω

2

󰁝
r′(r′ · r̂)ρ(r′)d3r′ +

1
2

󰁝
r̂ ×

󰀃
J × r′

󰀄
d3r′.

So we naturally get two pieces: the first term is the electric quadrupole term, the
second term is the magnetic dipole term.

The magnetic dipole term is

A(r) =
ikeikr

r
µ0

4π
r̂ × m.

The radiation fields are

B = − k2eikr

r
µ0

4π
r̂ × (r̂ × m)

E =
k2c
r

eikr µ0

4π
m × r̂.

The power is
dP
dΩ

=
µ0

32π2c3 m2ω4 sin2 θ

P =
µ0m2ω4

12πc3 .

The ratio of the magnetic dipole power to the electric dipole power is (m/pc)2 ∼
(v/c)2 where we define a velocity v = J/ρ.
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The quadrupole field is more complicated to deal with. The resulting fields are

B =
−iω3µ0

24πrc2 eikr r̂ × (Q2 · r̂)

with E = cB × r̂ and the power is

dP
dΩ

=
1

2µ0

ω6µ2
0

(24π)2c3 |r̂ × (Q2 · r̂)|2.

The ratio of the power in the quadrupole term to the electric dipole term is ∼ (kL)2 ∼
(L/λ)2 ≪ 1 (assuming that the size of the quadrupole moment is ∼ L × p).

SUMMARY

Here are the main ideas and results that we covered in this part of the course:
The retarded time and retarded potentials. The physical idea that to calculate the
contribution of a point a distance r away to the electric/magnetic field, we need to
evaluate the charge/current density there at the retarded time tr = t− r/c. The retarded
potentials are

φ (r) =
󰁝

ρ (r′, tr)

4π󰂃0 |r − r′|d
3r′

A (r) =
󰁝

µ0J (r′, tr)

4π |r − r′|d
3r′.

We also use a square bracket notation to indicate that the quantity inside should
be evaluated at the retarded time. Examples: calculation of the fields of an infinite
straight wire or a current sheet in which the current is turned on abruptly at t = 0.
The static limit is reached at times much greater than a light travel time across the
source.

Hertzian dipole. Two charged spheres connected by a thin wire, distance L ≪ λ =
2πc/ω. The fact that the current and the rate of change of the dipole moment are
related: ṗ = IL. The vector potential A (r, t) = µ0 [ṗ] /4πr, and the three components
of the fields: the radiation field ∝ 1/r, static dipole, and intermediate fields. How to
go from the fields to the Poynting vector, dP/dΩ and total power P.

Antennas. The radiation resistance (Rr = radiated power/〈I2〉), power gain G(θ, φ).
Using an antenna as a receiver: effective area, load matching R = Rr, the idea that
some of the incident power is absorbed and some reradiated (scattering) (a Hertzian
dipole scatters a fraction Rr/(R + Rr) of the power input). The effective area of the
Hertzian dipole is 3λ2/8π. The radiation resistance of the Hertzian dipole is small
789 Ω (L/λ)2 (where L ≪ λ). Why it matters whether the radiation resistance is large
or small (power radiated for a given current).

Multipole radiation. The multipole expansion applied to radiation fields. Dipole
moments

p =
󰁝

ρ
󰀃
r′
󰀄

r′d3r′ m =
1
2

󰁝
r′ × J

󰀃
r′
󰀄

d3r′
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and quadrupole moment tensor

(Q2)ij =
󰁝

ρ
󰀃
r′
󰀄 󰁱

3r′ir
′
j − r′2δij

󰁲
d3r′

The ordering of scales L ≪ λ ≪ r which means that the phase factor exp(−ikr) is the
piece which gives successive terms in the expansion (i.e. variations in retarded time
across the source). The electric dipole term from setting |r − r′| = r in the denominator
and the phase factor. The power radiated in the electric dipole term is

dP
dΩ

=
ω4 p2

32π2󰂃0c3 sin2 θ P =
ω4 p2

12π󰂃0c3 .

The magnetic dipole and electric quadrupole terms from taking the next term in the
expansion of |r − r′| in the phase factor. The power in the magnetic dipole is ∼ (v/c)2

relative to the electric dipole. The power in the electric quadrupole is ∼ (kL)2 com-
pared to the electric dipole emission.
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Part 4: Relativity and Electromagnetism

These are notes for the fourth part of PHYS 352 Electromagnetic Waves. The question
we want to answer here is how electromagnetism fits with special relativity.

We know from relativity that light moves at speed c in vacuum in all inertial
frames. When we derived the speed of light from Maxwell’s equations, we didn’t ask
what frame we were in, which suggests that they are already independent of frame.
However, this doesn’t seem the case at first glance. By changing frame, we can make
moving charges appear stationary, implying that E and B must mix under a Lorentz
transformation. How does this work, and how do we write Maxwell’s equations in a
relativistically covariant way?

We’ve already had a hint of how to do this in the symmetry between the wave
equations for φ and A, which we mentioned can be written as a single equation in-
volving 4-vectors. But we will also write down an electromagnetic field tensor that
describes the electromagnetic field at a given location, with the division into E and B
occurring once we choose a reference frame.

4.1 A review of some ideas from special relativity

First, we’ll go over some of the ideas from special relativity that we will build on to
incorporate electromagnetism.

4.1.1 Lorentz transform

We consider a frame S (the “lab” frame) and a frame S′ moving with velocity v with
respect to frame S. Events in the two frames are related by the Lorentz transform:

t′ = γ
󰀓

t − vx
c2

󰀔
x′ = γ (x − vt) y′ = y z′ = z

where
γ2 =

1
1 − β2 β =

v
c

and we’ve taken v along the x-direction. A useful identity to remember is γ2β2 =
γ2 − 1.

A couple of important results follow immediately:

1. Time dilation. Consider two events in S′ at the same location ∆x′ = 0, but
different times ∆t′ > 0. Then in S, the time delay between the events is

∆t = γ

󰀕
∆t′ − v∆x′

c2

󰀖
= γ∆t′ > ∆t′.

2. Length contraction. Two events in S′ spaced a distance ∆x′ = L. Make a simul-
taneous measurement in S:

∆t = 0 ⇒ ∆t′ = −v∆x/c2
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∆x = γ∆x′ + γv∆t′ = γ∆x′(1 − β2) =
∆x′

γ

⇒ ∆x =
L
γ
< L.

4.1.2 4-vectors

Just as we think of events as having coordinates in 4D spacetime, we can also define
4-vectors that span the 4D spacetime (or Minkowski space). The idea is that just as 3D
vectors exist independently of particular choice of coordinate axes, a 4-vector exists
similarly in Minkowski space. Components of the 4-vector in one reference frame are
related to those in another frame by the Lorentz transform.

In terms of the 4-vector xµ = (ct, x), the Lorentz transform is

x′µ = Λµ
νxν, (4.119)

with

Λµ
ν =

󰀳

󰁅󰁅󰁃

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

󰀴

󰁆󰁆󰁄 .

Memorising this matrix is a good way to learn the Lorentz transform. Here we use the
usual convention that greek indices run over all 4-indices from 0 to 3 (roman indices
run over the spatial indices 1 to 3), and we use the Einstein summation convention.

The (frame-independent) scalar product of two 4-vectors is given by

gµνaµbν = −a0b0 + a · b,

where the metric
gµν = diag(−1, 1, 1, 1).

A useful way to think about this is in terms of contravariant and covariant vectors.
A contravariant vector transforms according to equation (4.119), whereas a covariant
vector, written with indices down, transforms according to

x′µ = (Λ−1)ν
µxν. (4.120)

Note that the components of the inverse matrix Λ−1 are the same as Λ except the
off-diagonal components change sign. The covariant and contravariant vectors are
related by contracting with the metric, for example

xµ = gµνxν.

An important example of a covariant vector is the derivative ∂/∂xµ = ∂µ (see Ap-
pendix A). Note that because of the form of gµν that we will be using here (flat space-
time), the contravariant and covariant vectors differ only by a minus sign in the time-
component. The scalar product is then

aµbµ = gµνaµbν = −a0b0 + a · b.
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Going in the other direction, we can construct a tensor which has a more complicated
transformation

T′µν = Λµ
ρΛν

σTρσ.

Note that each index gets a separate Lorentz transformation.
A general principle is that if we can write down a physical equation in one frame

in terms of scalars, 4-vectors or tensors, we know how it transforms from one frame to
another. This is equivalent to writing down a vector equation in 3D like F = ma where
we don’t have to worry about the coordinate system or vector components. We’ll use
this idea to figure out how we should write the electromagnetic field.

4.1.3 Dynamics in special relativity

Now consider a particle moving with velocity u in some frame. We want to describe
its dynamics.

1. Proper time. We’ve seen that the norm of a 4-vector is a Lorentz scalar, e.g.
xµxµ = −(ct)2 + x2 + y2 + z2 is the same in all frames. Along a particle’s trajec-
tory in spacetime, the interval

ds2 = −c2dt2 + dx2 + dy2 + dz2

is a scalar. In the rest frame, the spatial part is zero (the particle is not moving),
and so the interval has a contribution only from the dt term. We therefore write
ds2 in terms of the time experienced in the rest frame dτ:

dτ2 = −ds2

c2

where τ is known as the proper time. The corresponding time in the lab frame
is (using the Lorentz transform with dx′ = 0, dt′ = dτ)

dt = γdτ

(longer because of time dilation).

2. 4-velocity. We define the 4-velocity as

ηµ =
dxµ

dτ
.

Because it is composed of a 4-vector and a scalar, it is another 4-vector (it trans-
forms in the same way as xµ). For a particle moving at speed u, the components
are

ηi =
dxi

dτ
= γ

dxi

dt
= γui η0 = c

dt
dτ

= γc.

Therefore
ηµ = γ(u)(c, u)
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with
γ2(u) =

1
1 − (u/c)2 .

You can check that ηµηµ = −c2 is indeed invariant as it should be.

3. 4-momentum. We define the 4-momentum

pµ = mηµ

where m is the rest mass of the particle. The components are

p0 = γmc =
E
c

pi = γmui = pi

where the particle energy and momentum are E = γmc2 and p = γmu. The dot
product pµ pµ = −E2/c2 + p2 = −m2c2. In collision problems, conserving the
4-momentum is equivalent to conserving both momentum and energy.

4. Equation of motion. We write the equation of motion of a particle as

dpµ

dτ
= Kµ

where Kµ is the Minkowski force. Consider a particle in frame S subject to force
F. Then

K =
dp
dτ

= γ
dp
dt

= γF K0 =
1
c

dE
dτ

=
γ

c
dE
dt

=
γ

c
F · u

so that

Kµ = γ

󰀕
F.u

c
, F

󰀖
. (4.121)

Note that Kµηµ = 0.

With these results in place, we’ll now consider how to incorporate electromagnetism
into a Lorentz-covariant form in the next section.

4.2 The Lorentz force and the electromagnetic field tensor

One way to see how we should write the electromagnetic field in special relativity is
to consider the Minkowski force (eq. [4.121]) that arises from the Lorentz force on a
particle, and try to write it in terms of 4-vectors, i.e. in a frame-independent way. We’ll
see that it leads us to the conclusion that the electromagnetic field should be written
as a tensor.

Consider a particle in frame S subject to a Lorentz force

F = q (E + v × B) .
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The spatial part of Kµ is therefore

K = γuq (E + u × B) .

The idea is to write this in terms of the components of a 4-vector that we already know,
in particular the 4-velocity ηµ = γu(c, u), and so

K = q
η0

c
E + qη × B

or in components

Ki = qη0 Ei

c
+ q󰂃ijkη jBk. (4.122)

The time part of Kµ is

K0 = γuq
u · E

c
= q

η · E
c

= q
ηiEi

c
. (4.123)

Now we define the electromagnetic field tensor Fµν with components

F00 = 0 F0i = −Fi0 =
Ei

c
Fij = 󰂃ijkBk

or written as a matrix

Fµν =

󰀳

󰁅󰁅󰁃

0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
−Ez/c By −Bx 0

󰀴

󰁆󰁆󰁄 .

Then we can write equations (4.122) and (4.123) as

Kµ = qηνFµν. (4.124)

Because ηµ and Kµ are both 4-vectors, then Fµν must be a tensor, ie. it transforms
according to

F′µν = Λµ
σΛν

τ Fστ (4.125)

where the equation is evaluated at the same space-time position, ie. on the left hand
side F′ is evaluated at x′µ and on the right F is evaluated at xµ, where the components
x′µ and xµ are related by the usual Lorentz transforms.

The equation of motion of a particle under the Lorentz force is therefore

dpµ

dτ
= qηνFµν. (4.126)

In frame S the components are

dp
dt

= q (E + u × B)
dE
dt

= qu · E

as expected. (Note that I’m using the symbol E to refer to the particle energy E and
the electric field E here. It should be clear from the context which is which!)
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4.3 Transformation laws for E and B

We can use the Lorentz transformation of Fµν (eq. [4.125]) to figure out how E and
B transform between frames. Consider the usual setup in which S′ moves along the
x-axis of S with velocity v, and

Λ =

󰀳

󰁅󰁅󰁃

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

󰀴

󰁆󰁆󰁄 .

First, think about the electric field. From the definition of Fµν, we pull out the piece
that gives the electric field in frame S′:

E′i = cF′0i = cΛ0
ρΛi

τ Fρτ.

Then it is just a matter of working out which terms contribute on the right hand side.
For example, note that ρ must be either 0 or 1 to give a non-zero element of Λ0

ρ. Then
we look at each value of i in turn:

• i = 1: τ = 0 or 1 for non-zero Λ1
τ, but F00 = 0 and F11 = 0 so there are only two

terms, either ρτ = 01 or ρτ = 10. Writing these out gives

E′
x = cγ2 Ex

c
+ c(−βγ)2 Ex

c
= γ2Ex(1 − β2) = Ex.

• i = 2: this time τ must be 2, and ρ can be 0 or 1 so there are two terms again
involving F02 and F12:

E′
y = cγ

Ey

c
+ c(−βγ)Bz = γ(Ey − vBz).

• i = 3: similar to i = 2:
E′

z = γ(Ez + vBy).

The B field in S′ is B′i = F′jk where ijk is a cyclic permutation. This is left as an exercise
which is covered in one of the problems. The result is

B′
x = Bx B′

y = γ

󰀕
By +

vEz

c2

󰀖
B′

z = γ

󰀕
Bz −

vEy

c2

󰀖
.

More generally, the transformation of E and B is

E′
󰀂 = E󰀂 E′

⊥ = γ(E⊥ + v × B⊥)

B′
󰀂 = B󰀂 B′

⊥ = γ

󰀕
B⊥ − v × E⊥

c2

󰀖
. (4.127)

For inverse transforms, swap E′ ↔ E, v ↔ −v and B′ ↔ B. As we anticipated, the
fields E and B mix when we make a Lorentz transformation, specifically the fields
perpendicular to the boost direction.

To see these transformations at work, consider two examples. The first is a parallel
plate capacitor as viewed from a frame moving along the plates:
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In S, B = 0 and Ez = σ/󰂃0 (standard result for plane parallel capacitor), Ex = Ey = 0.
In S′, using the transforms gives

E′
z = γ

σ

󰂃0
E′

x = E′
y = 0

and
B′

y =
γv
c2

σ

󰂃0
B′

x = B′
z = 0.

Physically, the observer in S′ sees an increased surface charge density because of
length contraction σ′ = γσ, and the electric field is as expected E′ = σ′/󰂃0. The B
field arises because there is now a surface current K′ = σ′v = γσv and the B field
is the expected value B′ = µ0K′ = µ0γσv = γσv/󰂃0c2. (And you can check that the
direction of B′ makes sense given the direction of motion and the right hand rule).

The second example is an electromagnetic wave travelling in the x-direction. Its
perpendicular E and B fields will mix under a boost in the direction of propagation,
and it is interesting to look at what happens. Write the wave as

Ez = E0ei(kx−ωt) By = −E0

c
ei(kx−ωt).

There are two pieces to transform: the coordinates x and t, and the electric and mag-
netic field amplitudes. First the coordinates:

kx − ωt = kγ(x′ + vt′)− ωγ

󰀕
t′ +

vx′

c2

󰀖

which can be written as k′x′ − ω′t′ with

k′ = γ
󰀓

k − vω

c2

󰀔
ω′ = γ(ω − vk).

Two things to note are (1) we can define a 4-vector kµ = (ω/c, k) (which is consistent
with the photon 4-momentum pµ = h̄kµ), and (2) the dispersion relation ω = ck in
frame S also holds in frame S′, ω′ = ck′. However, the frequency and wavelength are
different in the new frame: using the dispersion relation to eliminate k gives

ω′ = γ(1 − β)ω =

󰁶
1 − β

1 + β
ω

which is the relativistic Doppler shift.
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Now look at the field amplitude:

E′
0 = γE0 + γvBy = γE0 − γβE0 = E0γ(1 − β) = E0

󰁶
1 − β

1 + β
.

Similarly, you can show that

E′
z = E′

0ei(k′x′−ω′t′) B′
y = −E′

0
c

ei(k′x′−ω′t′).

In the moving frame the wave has the same polarization, but its frequency/wavelength
is Doppler shifted and the amplitude changes. For v > 0 the observer is moving with
the wave and the frequency is redshifted, ω′ < ω, and E′

0 < E0. For v < 0 the observer
is moving against the wave and the frequency is blueshifted, ω′ > ω, and E′

0 > E0.
In each of the two examples, an important point is that we would get the same

answer if we had just applied Maxwell’s equations in the new frame, as long as we
account for length contraction of the sources (in the capacitor example, σ′ = γσ). This
suggests that Maxwell’s equations are already Lorentz covariant. In the next section,
we will show this explicitly by writing them in tensor notation in terms of Fµν.

4.4 Maxwell’s equations in covariant form

4.4.1 The 4-current Jµ

Before we can write down Maxwell’s equations, we need to know how to write the
sources ρ and J as a 4-current Jµ. To motivate this, think about an element of charge
moving in frame S:

In the rest frame, the charge density is ρ0 and there is no current density. In S, the box
is contracted in the x-direction but contains the same number of charges, so the charge
density in S must be γρ0. The current density in S is J = vγρ0. We see that ρ and J
naturally mix under Lorentz transformations. This suggests that we should define a
4-current

Jµ =

󰀕
ρc
J

󰀖
= ρ0ηµ. (4.128)

To get a feeling for this, think about a couple of examples:

1. in frame S′, J′ = 0, charge density = ρ. Then, in S we have

cρ = γ(cρ′ − βγJ′x) ⇒ ρ = γρ′

which is as expected (length contraction increases the charge density). The cur-
rent is

Jx = βγcρ′ + γJ′x ⇒ Jx = vγρ′

again as expected from our earlier arguments.
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2. Now consider ρ = 0, J = x̂ Jx in frame S. Boost into frame S′:

cρ′ = −βγJx ⇒ ρ′ = −γvJx

c2

and
J′x = γJx.

In this example, a charge density appears in frame S′. We can understand this
from the different length contractions for the positive and negative charges that
are carrying the current, but moving in opposite directions. How should we
understand the change in the current density from one frame to another?

The 4-current allows a compact expression for charge conservation,

∂

∂xµ
Jµ = ∂µ Jµ = 0,

which you should be able to show is equivalent to ∇ · J = −∂ρ/∂t.

4.4.2 Maxwell’s equations in terms of the EM field tensor

We might guess that Maxwell’s equations are going to come from a derivative of Fµν,
so let’s look at ∂νFµν. The time component is

∂

∂xν
F0ν =

∂

∂xi F0i =
1
c
∇ · E

which is the left hand side of Gauss’ law. The spatial component is

∂

∂xν
Fiν =

1
c

∂

∂t
Fi0 +

∂

∂xj Fij = − 1
c2

∂Ei

∂t
+ 󰂃ijk

∂

∂xj Bk =

󰀗
− 1

c2
∂E
∂t

+∇× B
󰀘

i

which looks like Ampere’s law without the source term. This suggests that we add
the 4-current as a source:

∂

∂xν
Fµν = µ0 Jµ. (4.129)

Looking again at the spatial and time components, the new term adds a term µ0J
to Ampere’s law, and a term µ0ρc = ρ/󰂃0c in the time component, as needed for
Gauss’ law. Therefore equation (4.129) is half of what we were looking for - a Lorentz
covariant way of writing two of Maxwell’s equations, the equations with the source
terms.

The other two Maxwell equations come from the dual field

Gµν =
1
2

󰂃µναβFαβ.

The components are

G00 = 0 Gij =
1
2

󰂃ijαβFαβ = −󰂃ijk Ek

c
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and
Gi0 = −G0i = −1

2
󰂃0ijkFjk = −1

2
󰂃0ijk󰂃jkl Bl = −Bi.

(I use the fact that the contraction of 󰂃’s with two common indices gives a factor of 2,
i.e. 󰂃ijk󰂃ijl = 2δkl). As a matrix,

Gµν =

󰀳

󰁅󰁅󰁃

0 Bx By Bz
−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0

󰀴

󰁆󰁆󰁄 .

To get Gµν from Fµν, replace E/c with B and B with −E/c.
Then

∂

∂xν
Gµν = 0 (4.130)

has components

∇ · B = 0 ∇× E − ∂B
∂t

= 0.

(Try it!)
Equations (4.129) and (4.130) are Maxwell’s equations written in covariant form.

4.4.3 The 4-potential

We earlier derived the wave equations for the potentials φ and A,

− 1
c2

∂2

∂t2 A +∇2A = −µ0J

− 1
c2

∂2

∂t2 φ +∇2φ = − ρ

󰂃0
.

One the left hand side, we now see that we have the operator

∂

∂xµ

∂

∂xµ
= ∂µ∂µ = − 1

c2
∂2

∂t2 +∇2 = □2

and on the right hand side we have components of µ0 Jµ. This suggests we define a
4-vector

Aµ =

󰀕
φ

c
, A

󰀖

and then
□2 Aµ = −µ0 Jµ.

Some notes:

1. To obtain the fields from the potentials previously, we wrote B = ∇× A and
E = −∇V − ∂A/∂t. The equivalent here is

Fµν =
∂Aν

∂xµ
−

∂Aµ

∂xν
.

(You should be able to show this gives the right answer).
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2. The wave equations were derived for the Lorentz gauge choice ∇ · A = −(1/c2)(∂φ/∂t)
which can be written

∂µ Aµ = 0,

so that we are back to the simple choice of choosing a zero-divergence vector
potential, but now in the world of 4-vectors.

3. Note that when

Fµν =
∂Aν

∂xµ
−

∂Aµ

∂xν
,

then

Gµν =
1
2

󰂃µναβ

󰀕
∂Aβ

∂xα
− ∂Aα

∂xβ

󰀖

and
∂

∂xν
Gµν =

1
2

󰂃µναβ
󰀃
∂ν∂αAβ − ∂ν∂β Aα

󰀄
= 0.

So writing the field in terms of potentials guarantees that the Maxwell equations
without source terms are satisfied, as expected.

4.4.4 Invariants

Finally, we can use Fµν and Gµν to find invariants. The quantity FµνFµν is a scalar (we
have contracted all indices). Lowering both indices using the metric, you can show
that

Fµν =

󰀳

󰁅󰁅󰁃

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 Bz −By
Ey/c −Bz 0 Bx
Ez/c By −Bx 0

󰀴

󰁆󰁆󰁄

(as you may have expected the time components have changed sign). Then

FµνFµν = 2
󰀕
−E2

c2 + B2
󰀖

so that

X = −1
2

FµνFµν =
E2

c2 − B2

is a scalar. Similarly, you can show that

Y =
1
4

GµνFµν = −B · E

is a scalar. Both E2 − c2B2 and E · B are invariant under Lorentz transforms.
This has some interesting implications:

1. An EM wave has X = 0 and Y = 0, and so in all frames E and B are perpendic-
ular and |E| = c |B|.
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2. Is there a frame in which the electromagnetic field is pure E or pure B? For this
to happen, E · B must vanish (since it will vanish in the pure frame and so must
vanish in all frames), so only if Y = 0. Then if X > 0 there is a frame where B
vanishes (pure E is the only pure field that can make X positive and it must be
the same in all frames), while if X < 0 there is a frame in which E vanishes (pure
B).

4.5 Energy and momentum conservation in relativity

In part 1 of the course, we derived the equation for energy conservation

∂

∂t

󰀕
B2

2µ0
+

󰂃0E2

2

󰀖
+∇ ·

󰀕
E × B

µ0

󰀖
= −J · E. (4.131)

At this stage, you might notice that on the left hand side there is a time-derivative and
a spatial derivative. Could we write the left hand side as a 4-divergence? The answer
is yes, we can write energy and momentum conservation as

∂νTµν = −JνFµν (4.132)

where Tµν is the energy-momentum tensor. The µ = 0 component of equation (4.132) is

1
c

∂

∂t
T00 +

∂

∂xi T0i = − J · E
c

(4.133)

where we’ve used F00 = 0 and F0i = Ei/c. Comparing with equation (4.131), we
see that T00 is the energy density in the fields, and cT0i is the i-th component of the
Poynting flux Si.

What about the i-th (spatial) component of equation (4.132)? Using the definition
of Fµν on the right hand side, it is

1
c

∂

∂t
Ti0 +

∂

∂xj Tij = −
󰀓

ρEi + 󰂃ijk J jBk
󰀔

. (4.134)

The right hand side is the Lorentz force per unit volume. A force per unit volume gives
a rate of change of momentum per unit volume, or a rate of change of momentum
density. Therefore we interpret Ti0/c as the momentum density, and we already know
how to write that – it is Si/c – and therefore Ti0 = T0i = Si/c.

What about Tij? We see from the form of equation (4.134) that Tij must be a mo-
mentum flux. Specifically, Tij is the flux of the i-th component of momentum in the
j-direction. Equation (4.132) represents both energy and momentum conservation in
a single equation. Integrating the momentum equation (4.134) over a volume gives

−
󰁝

dV (ρE + J × B) =
∂

∂t

󰀕󰁝
dV

Ti0

c

󰀖
+

󰁝
dV

∂

∂xj Tij (4.135)

or, using the divergence theorem to transform the last term into a surface integral,

−
󰁝

dV (ρE + J × B) =
∂

∂t

󰀕󰁝
dV

Ti0

c

󰀖
+

󰁝
dS njTij (4.136)
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where nj is the j-th component of the normal vector to the surface. We see that the
diagonal parts of Tij, e.g. Txx give the forces perpendicular to the surface – they act
like the pressure of a gas which is always perpendicular to a surface. The off-diagonal
components represent forces that are parallel to a surface. For example, Txz represents
a force in the z direction on a surface whose normal vector is in the x-direction. These
off-diagonal pieces are shearing forces. Tij for electromagnetic fields is known as the
Maxwell stress tensor.

Given the fact that we have already identified T00 with the energy density in the
fields ∼ E2 + B2 and cTi0 with the Poynting flux ∝ E × B, it is possible to deduce the
form of Tµν written in terms of the field Fµν. It must be quadratic in the fields, and in
fact is

Tµν =
1
µ0

󰀗
FµρFν

ρ −
1
4

gµνFρσFρσ

󰀘
. (4.137)

In terms of E and B,

T00 =
B2

2µ0
+

1
2

󰂃0E2 (4.138)

T0i = Ti0 =
󰂃ijkEjBk

cµ0
=

Si

c
(4.139)

Tij =

󰀕
B2

2µ0
+

1
2

󰂃0E2
󰀖

δij − EiEj

µ0c2 − BiBj

µ0
. (4.140)

For a time-independent situation, equation (4.136) gives a way to evaluate the
force on a system of charges and currents (left hand side) as a surface integral of the
Maxwell stress tensor (right hand side). You’ll see some examples in the old exams.
The strategy is to first calculate the E and B fields due to the currents and/or charges,
use them to evaluate Tij, and then choose a suitable surface and compute the surface
integral of Tij. Whereever possible in these problems, use symmetry to simplify the
calculation, e.g. by choosing the right surface you may only have to calculate one or
two components of Tij.

4.6 The fields of a moving charge

4.6.1 Derivation using Lorentz transform

In frame S, a charge q moves with velocity v in the x-direction. What are the E and B
fields? We can answer this by moving into the rest frame S′ of the particle, where the
charge is at the origin and

E′(x′) =
q

4π󰂃0

x′

|x′|3 B′ = 0 (4.141)

where x′ = (x′, y′, z′).
We are interested in the field at position (x, y, z, t) in frame S, or x′ = γ(x − vt),

y′ = y, z′ = z. At that point, the electric field components in S are Ex = E′
x, Ey = γE′

y,
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Ez = γE′
z (using the Lorentz transforms for E and B). Putting this all together gives

E(x, t) =
qγ

4π󰂃0

(x − vt)x̂ + yŷ + zẑ

[γ2(x − vt)2 + y2 + z2]3/2 . (4.142)

The x coordinate of the moving charge is x = vt.
Equation (4.142) is actually a little wierd. The field is radial and points away from

the current charge position. This means that the field everywhere “knows” the instan-
taneous position of the charge, despite the fact that the information from the charge is
communicated at the speed of light, i.e. depends on what the charge was doing one
light travel time ago. We used this when we used Thomson’s geometric argument for
the radiation from an accelerated charge in Part 1 – we assumed that the field pointed
radially back at the charge even for a moving charge.

If v ≪ c so that γ ≈ 1, then the electric field is the Coulomb field centered on the
current position of the charge.

When v is large enough that γ becomes significant, E falls off more quickly in the
x-direction than in the y or z directions. This means that the electric field lines are
compressed into a disk perpendicular to the direction of motion.

The magnetic field is Bx = 0, By = −γvE′
z/c2, and Bz = γvE′

y/c2 (i.e. B = γv ×
E/c2) or

B(x, t) =
µ0γqv

4π

(yẑ − zŷ)

[γ2(x − vt)2 + y2 + z2]3/2 . (4.143)

These are loops of magnetic field around the direction of motion,
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We can rewrite B as
B =

µ0γqv
4π

φ̂
r

[r2 + γ2(x − vt)2]3/2 , (4.144)

where we use a cylindrical coordinate system with x being along the symmetry axis.
Note that

c|B|
|E| ≈ v

c
. (4.145)

4.6.2 Larmor’s formula

Thomson’s geometric argument for the radiation from an accelerated charge gave Lar-
mor’s formula:

P =
q2a2

6π󰂃0c3 (4.146)

where P is the power radiated by a charge q with acceleration a. Earlier, we derived
the power radiated by an electric dipole

P =
( p̈)2

6π󰂃0c3 (4.147)

from the retarded potential. If we write the dipole moment of a single charge as p = qr
and therefore p̈ = qa, we get Larmor’s formula (eq. [4.146]). Note that the electric
dipole formula assumes that the source size is much smaller than the wavelength of
the radiation. For a moving charge, it means that in one wave period, the charge
should move much less than a wavelength, v × Period ≪ λ or v ≪ c. The electric
dipole formula can only be applied to non-relativistic particles. This is all consistent
because in the geometric argument, we used the standard Coulomb field which we
see from equation (4.142) is only true for v ≪ c.

For relativistic charges, we must recompute the potentials and the fields using the
moving charge as a source term (a moving delta function). We’re out of time, so won’t
cover this here, but if you want to look this up, the potentials of a moving charge are
the Lienard-Wiechart potentials (see Griffiths for example). These potentials give two
contributions to the fields of a moving charge: the first term is the “velocity field”
(same as eq. [4.142]) which applies for a charge moving at constant velocity; the sec-
ond term is a “radiation field” that leads to radiation and gives Larmor’s formula
(eq. [4.146]).

There is one more thing we can do using ideas from this chapter. We can get the
total power radiated by a relativistic electron by transforming from the particle rest
frame. In the particle rest frame, the charge is non-relativistic (not moving) and so
Larmor’s formula applies. First, define the 4-acceleration

aµ =
dηµ

dτ
(4.148)

where ηµ = γu(c, u) is the particle’s 4-velocity. In the particle rest frame, dτ = dt′.
Also, note that dγ′

u/dt′ = 0 in the particle rest frame because γ′
u is quadratic in u′:

dγ′

dt′
=

d
dt′

󰀕
1 − u′ · u′

c2

󰀖−1/2

=
γ′3

2c2
d

dt′
󰀃
u′ · u′󰀄 = γ′3

c2 u′ · du′

dt′
= 0 (4.149)
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since u′ = 0 in the rest frame. This means that in the rest frame,

a′µ = (0, a′) (4.150)

Therefore, we can write the power radiated as

P =
q2

6π󰂃0c3 a′ · a′ =
q2

6π󰂃0c3 a′µa′µ. (4.151)

The second of these is written entirely in terms of Lorentz scalars: it must be true in
all reference frames. The relativistic generalization of Larmor’s formula is therefore

P =
q2

6π󰂃0c3 aµaµ. (4.152)

In the lab frame,

aµaµ = −
󰀕

cγ
dγ

dt

󰀖2

+

󰀕
γ

d
dt

(γu)
󰀖2

. (4.153)

Using dγ/dt = γ3u · a/c2, this is

aµaµ = γ4 |a|2 + γ6 (u · a)2

c2 . (4.154)

Dividing the acceleration vector into components parallel and perpendicular to the
velocity a󰀂 = u(a · u)/u2 and a⊥ = a − a󰀂 = u × (a × u)/u2, Larmor’s formula in the
rest frame is

P =
2q2

3c3 γ4
󰀓

a2
⊥ + γ2a2

󰀂

󰀔
. (4.155)

We see that for a relativistic particle, the power is boosted by either γ4 or γ6 depending
on whether the acceleration is along the velocity direction or perpendicular.

A classic example of this is synchrotron radiation from relativistic particles in a
magnetic field. Consider a particle with charge q moving in a magnetic field B. The
equations of motion are

d
dt

(γmu) = q
u × B

c
(4.156)

and
d
dt

󰀃
γmc2󰀄 = qu · E. (4.157)

If the electric field is E = 0, usually the case in astrophysical applications for example,
then the energy of the particle is constant (γ is a constant) (recall that the magnetic field
does no work on the particle because the force is always perpendicular to the velocity).
The solution to equation (4.156) is helical motion: a constant velocity parallel to the
magnetic field, u󰀂 = u · B/B, and uniform circular motion in a plane perpendicular to
B, with gyration frequency

ωB =
qB

γmc
. (4.158)
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The angle α is known as the pitch angle. The velocity perpendicular to the magnetic
field is u⊥ = u sin α, so that α = π/2 for pure circular motion (u󰀂 = 0).

The acceleration is a⊥ = u⊥ωB, so that the total power is

P =
2e2

3c3 γ4ω2
Bu2

⊥ =
2
3c

r2
0u2

⊥γ2B2 (4.159)

where r0 = (e2/mc2) is the classical electron radius. For a uniform distribution of
pitch angles, the total power is

P =
2
3

r2
0cγ2β2B2

󰁝
sin2 α

dΩ
4π

. (4.160)

The integral is 2/3, and the Thomson cross-section is 8πr2
0/3, giving the famous result

P =
4
3

σTcβ2γ2UB (4.161)

where UB = B2/8π is the magnetic energy density. Synchrotron radiation is observed
across our Galaxy and is the source of radiation from the bright radio lobes that are
huge galaxy-size bubbles blown by jets from the central black holes of radio galaxies.

SUMMARY

Here are the main ideas and results that we covered in this part of the course:
Lorentz transforms and 4-vectors. How 4-vectors transform between frames, e.g. po-
sition vector

x′ = γ (x − vt) t′ = γ
󰀓

t − vx
c2

󰀔

xµ′ =

󰀳

󰁅󰁅󰁃

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

󰀴

󰁆󰁆󰁄 xµ

The difference between contravariant vectors x′µ = Λµ
σxσ, and covariant vectors x′µ =󰀃

Λ−1󰀄ν

µ
x′ν. Useful identities

γ2 = 1/(1 − β2) γ2β2 = γ2 − 1
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Raising and lowering with the metric tensor. Scalar product

aµbµ = gµνaµbν = −a0b0 + a · b

The gradient as a covariant vector.

Kinematics and dynamics in special relativity. Time dilation ∆t = γ∆t′. Length
contraction ∆x = ∆x′/γ. Velocity addition

u󰀂 =
u′
󰀂 + v

1 + u′
󰀂v/c2 u⊥ =

u′
⊥

γ
󰀓

1 + u′
󰀂v/c2

󰀔

Time-like and space-like intervals. Proper time dτ = dt/γ, 4-velocity, 4-momentum,
Minkowski force,

ηµ =
dxµ

dτ
= γu (c, u) pµ = mηµ = (E/c, p) Kµ = γu

󰀕
F · u

c
, F

󰀖

and equation of motion dpµ/dτ = Kµ.

The electromagnetic field tensor and transformation of E and B. The EM field tensor

F00 = 0 F0i = −Fi0 =
Ei

c
Fij = 󰂃ijkBk

Fµν =

󰀳

󰁅󰁅󰁃

0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
−Ez/c By −Bx 0

󰀴

󰁆󰁆󰁄

The Lorentz force Kµ = qηνFµν. Transformation of E and B

E′
x = Ex E′

y = γ(Ey − vBz) E′
z = γ(Ez + vBy)

B′
x = Bx B′

y = γ(By +
vEz

c2 ) B′
z = γ(Bz −

vEy

c2 )

The invariants E2 − c2B2 = 0 and E · B, and what they tell you about whether there is
a frame in which E or B vanish.

Maxwell’s equations in covariant form. 4-current Jµ = (ρc, J) and continuity ∂µ Jµ =
0. The 4-potential Aµ = (φ/c, A), and the wave equation

□2 Aµ = ∂ν∂ν Aµ = − 1
c2

∂2Aµ

∂t2 +∇2Aµ = −µ0 Jµ.

The Lorentz gauge can be written as ∂µ Aµ = 0. The field tensor is obtained from the
vector potential by Fµν = ∂µ Aν − ∂ν Aµ. The dual field

Gµν =

󰀳

󰁅󰁅󰁃

0 Bx By Bz
−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0

󰀴

󰁆󰁆󰁄
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and Maxwell’s equations ∂νFµν = µ0 Jµ, ∂νGµν = 0.

Energy and momentum. Energy and momentum conservation in the single equation
JνFµν = −∂νTµν where the energy-momentum tensor is

Tµν =
1
µ0

󰀗
FµρFν

ρ −
1
4

gµνFρσFρσ

󰀘

or in terms of the fields

T00 =
B2

2µ0
+

1
2

󰂃0E2 Ti0 = T0i =
Si

c

Tij = δij
󰀕

B2

2µ0
+

1
2

󰂃0E2
󰀖
− 󰂃0EiEj − BiBj

µ0
.

The interpretation of the different components: T00 is the energy density, cT0i the
Poynting flux, Ti0/c the momentum density, and Tij the Maxwell stress tensor. How
to use the Maxwell stress tensor to derive the force on a charge distribution by doing
a surface integral.

The fields of a moving charge. A charge moving with constant velocity has an E field
that is radial, but compressed into a pancake perpendicular to the direction of motion.
The B field circulates around the velocity direction, and has a magnitude ∼ vE.

Radiation from an accelerated charge. For relativistic particles, generalized Larmor’s
formula is

P =
q2

6π󰂃0c3 aµaµ =
q2

6π󰂃0c3

󰀓
γ4a2

⊥ + γ6a2
󰀂

󰀔
.

Appendix A: Transformation properties of the gradient ∂/∂xµ

We know that xµ transforms according to x′µ = Λµ
νxν. The Lorentz transform is a

linear combination of the coordinates, so we can write

Λµ
ν =

∂x′µ

∂xν
.

For example, consider ct′ = γ(ct − βx), which implies that ∂t′/∂t = γ and ∂ct′/∂x =
−βγ which are the first two elements of the Lorentz transform matrix.

This means that we can write

∂

∂xµ
=

󰀕
∂x′ν

∂xµ

󰀖
∂

∂x′ν
= Λν

µ

∂

∂x′ν

(Λ−1)
µ
σ

∂

∂xµ
= (Λ−1)

µ
σΛν

µ

∂

∂x′ν
=

∂

∂x′σ
.

Therefore
∂

∂x′σ
= (Λ−1)

µ
σ

∂

∂xµ
.
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The gradient transforms as a covariant vector, opposite to xµ which is a contravariant
vector. Note that the notation is to write ∂/∂xµ (index up in the denominator) or ∂µ

(index down in the numerator). Also, the components of Λ−1 are the same as Λ except
the −βγ terms have their signs changed to +βγ.
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Computational Exercise 1: Numerical solution of Laplace’s equa-
tion

These notes describe the Gauss-Seidel method for solving Laplace’s equation ∇2V(x, y) =
0. To obtain a numerical solution, we divide the region of interest into a grid of dis-
crete points labelled by i, j at which we will compute the potential Vi,j. We will assume
that the points are uniformly spaced in x and y.

First, consider the Taylor expansion which relates the potentials at neighbouring
points in the x-direction. This is

V(x + ∆x, y) = Vi+1,j = Vi,j + ∆x
∂V
∂x

󰀏󰀏󰀏󰀏
i,j
+

(∆x)2

2
∂2V
∂x2

󰀏󰀏󰀏󰀏
i,j
+ ... (4.162)

or in the opposite direction

V(x − ∆x, y) = Vi−1,j = Vi,j − ∆x
∂V
∂x

󰀏󰀏󰀏󰀏
i,j
+

(∆x)2

2
∂2V
∂x2

󰀏󰀏󰀏󰀏
i,j
+ ... (4.163)

By either summing or subtracting equations (4.162) and (4.163), we obtain second or-
der accurate expressions for the first or second derivatives

∂V
∂x

󰀏󰀏󰀏󰀏
i,j
=

Vi+1,j − Vi−1,j

2∆x
+O

󰀃
∆x2󰀄 (4.164)

∂2V
∂x2

󰀏󰀏󰀏󰀏
i,j
=

Vi+1,j + Vi−1,j − 2Vi,j

(∆x)2 +O
󰀃
∆x2󰀄 . (4.165)

The finite difference representation of Laplace’s equation is therefore

∂2V
∂x2 +

∂2V
∂y2 =

Vi+1,j + Vi−1,j − 2Vi,j

(∆x)2 +
Vi,j+1 + Vi,j−1 − 2Vi,j

(∆y)2 = 0. (4.166)

For simplicity, we consider the case where the spacings in the x and y directions are
the same, ∆x = ∆y, and therefore

Vi,j =
Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1

4
. (4.167)

This equation has a simple interpretation: Laplace’s equation implies that the poten-
tial at any grid point i, j is equal to the average of the potentials at the four nearest
neighbours.

Equation (4.167) is the basis of the Gauss-Seidel method. We first make a guess at
the solution (it doesn’t have to be very accurate, e.g. we can just set V = constant).
We then visit each grid point in turn, and set the potential at that grid point equal to
the average of the four nearest neighbours. After making a pass over the whole grid
(one iteration), we repeat, and the solution will converge on the correct answer. The
grid points on the boundaries must be set appropriately according to the boundary
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conditions. Interior grid points may also be held fixed, e.g. to model conducting
surfaces held at constant potential.

The convergence is quite slow for this algorithm (the number of iterations required
is ∝ N2 where N is the number of grid points in each direction), but it is simple to
program and so a good starting point for investigating numerical methods.

I have supplied a starting code that implements the Gauss-Siedel method in python.
See if you can get it running and then try the following exercises:

• Look at the convergence of the solution as a function of number of iterations.
For example, you could find the maximum change in V across the grid from one
iteration to the next, and plot it against iteration number.

• The example I gave is a simple example with a constant potential on the up-
per boundary and periodic boundary conditions in x. Try to implement a more
complex geometry. For example, you could calculate the potential of a finite
parallel-plate capacitor.

• Here is an idea to make the code run a lot faster: because the update to a given
grid point depends on the nearest neighbours only, it is possible to divide the
grid into two interwoven grids like a checkerboard. The updates to the white
squares relies only on the black sqaures, for example. This means that you could
do the update in a vectorized form rather than looping through each grid point.
This should run a lot faster. Try it and measure the speed up.
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Computational Exercise 2: Numerical Solution of the Wave Equa-
tion

The goal of this exercise is to solve Maxwell’s equations for a propagating wavepacket.

Maxwell’s equations. We start with Maxwell’s equations in the form

∂B
∂t

= −∇× E
∂E
∂t

=
c2

󰂃r
∇× B (4.168)

where we assume that µ = µ0 but allow for 󰂃 ∕= 󰂃0. For a wave propagating in the
x-direction, and writing ct → t, cB → B, and 󰂃r = n2, these equations are

∂B
∂t

= −∂E
∂x

(4.169)

∂E
∂t

= − 1
n(x)2

∂B
∂x

, (4.170)

where we allow the refractive index n(x) to be a function of position.

Finite differencing. In Exercise 1, we wrote down finite difference approximations
for derivatives, in particular the second order accurate derivative

∂ fi

∂x

󰀏󰀏󰀏󰀏
x=xi

=
fi+1 − fi−1

2∆x
.

Using this for the time-derivatives and spatial-derivatives gives the update scheme

Bn+1
i = Bn−1

i − ∆t
∆x

󰀃
En

i+1 − En
i−1

󰀄

En+1
i = En−1

i − ∆t
∆x

󰀃
Bn

i+1 − Bn
i−1

󰀄 1
n2

i
.

Here subscript i labels the grid cell and superscript n the time step. To find the values
at time n + 1 requires storing both values from the previous two timesteps, n and
n − 1. This is known as a leapfrog method.

The simplest boundary conditions to use are periodic, so for example if you have
N grid cells from i = 1 to N, then you take EN+1 = E1 and E0 = EN when updating
the points at the edge of the grid.

Exercise 1: Getting a wave to propagate. Code up the algorithm above. Set the refrac-
tive index to n = 1 across the grid and start with a Gaussian profile for the electric field
centered on your grid. Can you choose an appropriate profile for B to get the pulse to
move either to the left or to the right? Does it move without changing shape? Try a
sine-wave multiplied by a Gaussian (as in HW3 question 1). Observe the wavepacket
propagating and again check to see if it propagates without changing shape.

Exercise 2: Reflection at an interface. Now set n = n1 on the left half of your grid
and n = n2 on the right half of the grid. Start a pulse in the left half moving towards
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the right. Do you see the expected behaviour when the pulse encounters the change
in n at the middle of the grid? (Things to check are: the amplitudes of reflected and
transmitted waves, relative velocities, behaviour with different ratios of n2 to n1.)

Exercise 3: Dispersion. Now add an extra term to Maxwell’s equations to introduce
dispersion as in a plasma. [Hint: in the plasma, dJ/dt ∝ E so you can do this by in-
tegrating a third equation for J.] Set up a simulation of a wavepacket travelling from
air into plasma. Do you see the expected behavior of the wavepacket in a dispersive
medium? Explore how the transmission and reflection change as you increase the cur-
rent and interpret what you see in terms of what you know about waves propagating
in a plasma (with ω larger or smaller than ωp).
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