
PHYS 551 Quantum Theory, Fall 2021

1. Fundamentals

The postulates of quantum mechanics
1) State as a vector in Hilbert space |Ψ〉.
2) Observables ↔ Hermitian operators, |Ψ〉 =

!
a ca |a〉.

3) Measurement: |Ψ〉 → |a〉, Prob(a) = |〈ψ | a〉|2.
4) Time-evolution

i!
∂ |Ψ〉
∂t

= Ĥ |Ψ〉

Hilbert space. Hilbert space as a vector space. Dual space. Inner prod-
uct. Adjoint operator and Hermitian operators. Proof that Hermitian oper-
ators have real eigenvalues and orthogonal eigenvectors. Unitary operators.
Change of basis operator.

Matrix representation of operators. How to find the matrix elements
given a basis. You should know how to find the eigenvalues and eigenvectors
of an operator (how to diagonalize it).

Degeneracy. The idea of a subspace. How to deal with degeneracy. Linear
combination of degenerate eigenstates is also an eigenstate.

Identity operator.
!

n |n〉 〈n|,
"
dx |x〉 〈x|

Observables. Compatible and incompatible observables. The commutator
[Â, B̂]. If two operators commute, the basis vectors for one are also eigen-
vectors of the other. What happens when a sequence of measurements are
made on a system, either involving compatible or incompatible observables
(what happens to the state of the system after each measurement). The
generalized uncertainty relation

〈(∆A)2〉〈(∆B)2〉 ≳ 1

4
|〈[A,B]〉|2 .

Useful commutators.

[x, p] = i!, [xi, f(p)] = i!
∂f

∂pi
, [pi, g(x)] = −i!

∂g

∂xi

Unitary operators. U †U = 1. Preserves the inner product. Change
of basis operator U =

!
n |bn〉 〈an|. Unitary equivalent observables A and

U †AU have the same eigenvalue spectrum.



Composite systems. General state (two component system)Ψ =
!

cab |a〉 |b〉
where |a〉 is a basis in Hilbert space 1 and |b〉 is a basis in Hilbert space 2.
Dimensions of the combined Hilbert space is n×m.

Entanglement and correlated observables. Observables in 1 and 2
are uncorrelated if the state is a product state |Ψ〉 = |Ψ1〉 |Ψ2〉; otherwise
the state is entangled and observables are correlated. The EPR state Ψ =
(|↑↓〉 − |↓↑〉)/

√
2. The EPR paradox and how Bell’s inequalities rule out

hidden variable theories.

Quantum computing. The qubit. The general state of the qubit and
the Bloch sphere. The basic idea of quantum computing, its advantages,
and the challenges in implementing it. Examples of quantum gates (NOT,
Hadamard operator, CNOT). The idea of a control register and why it is
useful.

The density operator ρ =
!

n pn |n〉 〈n| and its properties Tr(ρ) = 1,
¯〈A〉 = Tr(ρA). Pure states vs. mixed states. Tr(ρ2) ≤ 1. The reduced

density operator. Entanglement with the environment: decoherence and
measurement.



2. Time-dependent systems

Time-dependent Schrödinger equation

i!
∂

∂t
|ψ〉 = Ĥ |ψ〉

and the idea of time-evolution by expanding in stationary states (Ĥ |E〉 =
E |E〉)

|ψ〉 =
#

aE |E〉

with
aE(t) = aE(0)e

−iEt/!.

Time-energy uncertainty relation. The idea that time-evolution de-
pends on superpositions of stationary states, with observables evolving at
a rate that depends on the energy differences. The uncertainty relation
∆E∆t ≳ !.

Time-evolution operator

|ψ(t)〉 = Û(t) |ψ(0)〉

obeys

i!
∂

∂t
Û = ĤÛ .

For a time-independent Hamiltonian,

Û(t) = e−iĤt/! =
#

E

|E〉 〈E| e−iEt/!.

Time-dependent Hamiltonian

Û(t) = exp

$
− i

!

% t

0
Ĥ(t′)dt′

&

where you have to be careful about time-ordering in the integral.

Heisenberg picture. Make sure you understand the differences between
Schrödinger and Heisenberg pictures. In the Heisenberg picture, the opera-
tors evolve according to Â(t) = Û †Â(0)Û , states are time-independent, basis
vectors |n(t)〉 = Û †(t) |n(0)〉.

The equation of motion

dÂ

dt
=

[Â, Ĥ]

i!
+ Û †∂Â

∂t
Û .



Mixed states. Density operator evolves in time in Schrödinger according
to

dρ̂

dt
=

[Ĥ, ρ̂]

i!

The interaction picture. H = H0 + V (t). Use Heisenberg for H0 and
Schrödinger for V (t):

i!
∂

∂t
|ψ〉I = VI(t) |ψ〉I ,

where VI(t) = eiH0t/!V (t)e−iH0t/!. With |ψ〉I expanded in stationary states

|ψ〉I =
#

n

cn(t) |n〉

the coefficients obey
i!ċn = eiωnmtVnmcm

Vnm = 〈n|V (t)|m〉 , !ωnm = En − Em

The two state system with V ∝ eiωt as an example.

Fermi’s golden rule. The transition rate from a state |n〉 with energy En

to a state |f〉 with energy Ef is

Γ =
2π

!
g(Ef ) |〈f |V0|n〉|2 ,

where g(E) is the density of states in energy (number of states between
E and E + dE is g(E)dE), V = V0e

iωt is the perturbing potential and
Ef = En + !ω.

Time-dependent perturbation theory. cn(t) = c
(0)
n (t)+c

(0)
n (t)+c

(0)
n (t)...

For c
(0)
n = δnm (initially in stationary state m),

c(1)n (t) = − i

!

% t

0
eiωnmt′Vnm(t′)dt′

c(2)n (t) =

'
− i

!

(2#

ℓ

% t

0
dt′

% t′

0
dt′′eiωnℓt

′
Vnℓ(t

′)eiωℓmt′′Vℓm(t′′)

Position and momentum eigenstates. The position operator x̂ and its
eigenstates |x〉. Wavefunction Ψ(x) = 〈x |Ψ〉. Probability density |〈x |Ψ〉|2.
Orthonormality 〈x |x′〉 = δ (x− x′). The momentum operator p̂ = −i!∂/∂x
and its eigenstates 〈x | p〉 = (2π!)−1/2eipx/!.



Adiabatic and sudden transitions. A sudden change in the Hamiltonian
leaves the state unchanged. A slow change in the Hamiltonian leads to
adiabatic evolution of the state H(t) |n(t)〉 = En(t) |n(t)〉. The Berry phase

γ = i

% t

0
dt′ 〈n| ∂

∂t
n〉

and its expression in terms of integrals in parameter space

γ =

)
dR ·A; A = i 〈n|∇R|n〉 .

Propagator and path integrals. K(x, t;x′, t′) = 〈x, t|x′, t′〉 = 〈x|e−iH(t−t′)/!|x′〉 .
Equal to δ(x− x′) for t = t′. Integral solution of Schrödinger’s equation

ψ(x, t) =

%
dx′K(x, t;x′, t′)ψ(x′, t′).

Free particle propagator

K =

*
m

2πi!(t− t′)
exp

'
i(x− x′)2m

2!(t− t′)

(

The path integral

〈x, t|x′, t′〉 =
%

D[x(t)] eiS[x(t)]/!

where S =
"
dtL(t) is the action associated with a particular path.



Harmonic oscillator
Ĥ = !ω(â†â+ 1/2)

â =

*
mω

2!

'
x̂+ i

p̂

mω

(
, â† =

*
mω

2!

'
x̂− i

p̂

mω

(

a |n〉 =
√
n |n− 1〉 , a† |n〉 =

√
n+ 1 |n+ 1〉 , [â, â†] = 1

Time-independent perturbation theory

∆E(1)
n = 〈n0|λĤ1|n0〉 , ∆E(2)

n =
#

m ∕=n

+++〈m0|λĤ1|n0〉
+++
2

E
(0)
n − E

(0)
m

|n〉 =
++n0

,
+

#

m ∕=n

〈m0|λĤ1|n0〉
E

(0)
n − E

(0)
m

|m0〉

Motion in electromagnetic fields
Hamiltonian

H =
(p− qA)2

2m
+ qφ

Mechanical momentum

π = p− qA, [π̂i, π̂j ] = i!qεijkBk

Gauge transformation

A → A′ = A+∇λ(r) φ → φ′ = φ− ∂λ

∂t

|ψ〉 → |ψ′〉 = eiqλ(r)/! |ψ〉

leaves 〈x〉 and 〈π〉 gauge invariant.

Landau levels. Charged particle in uniform B-field. Energy levels are

En = !ωc

'
n+

1

2

(
+

p2z
2m

with cyclotron frequency ωc = qB/m.
Stationary states in the x-y plane

Ψ(x, y) = eikyfnk(x− !
qB

)



where fnk(x) is the nth stationary state of the harmonic oscillator with
origin shifted to x = (!/qB)k. Energy depends only on n, not k.

You should know how to write down the density of states for a free
particle

dn =
d3kd3x

(2π)3
=

d3pd3x

h3

Each Landau level has
qB

2π!
=

B

Φ0

states per unit area. (This is just the number of states in energy range
!ωc for an unmagnetized system “collapsed” into the Landau level.) Φ0 =
2π!/q = 4× 10−15 T m2 is the “flux quantum”.

Magnetized Fermi gas: at T = 0 a gas of fermions fills the levels up to the
Fermi energy. The quantization into Landau levels introduces oscillations
in quantities such as the total energy of the gas.

Atomic transitions. Application of Fermi’s Golden Rule to atomic transi-
tions. How to write down the vector potential for an electromagnetic wave.
The electric dipole approximation. How to write down the density of states
for a transition to a bound state or a continuum state. The concept of
selection rules and how they arise from the matrix element 〈f |x|i〉.



3. Multi-particle systems

Non-interacting particles and exchange symmetry If the Hamiltonian
can be written as a sum of single-particle Hamiltonians then we can write
down the stationary states as a product of single particle stationary states
ψ(r1, r2) = ψ1(r1)ψ2(r2).

Fermions and bosons The stationary states must be either symmetric
or antisymmetric under exchange of any two particle labels. Bosons (in-
teger spin) are symmetric; fermions (half-integer spin) are antisymmetric.
Consequences:
Pauli-exclusion principle Fermions cannot occupy the same quantum state.
E.g. atomic levels, Fermi gas
Bose-Einstein condensation Bosons can occupy the same state. At T =
0, can form a condensate, with a macroscopic number of particles in the
ground state. Paired fermions can act as bosons, e.g. in superfluids and
superconductors.

The helium atom. Use the hydrogen-like atom wavefunctions as single
particle states. Solution by perturbation theory or variational principle.
Singlet and triplet states can have different energies even without spin terms
in the Hamiltonian, because they imply different symmetries for the spatial
wavefunction.

Second quantization. Occupation number representation of the state of
a multi-particle system |n1, n2, ...nN 〉. Creation and annhiliation operators
and their (anti)commutation relations.

[a†i , a
†
j ] = 0, [ai, aj ] = 0, [ai, a

†
j ] = δij bosons

{a†i , a
†
j} = 0, {ai, aj} = 0, {ai, a†j} = δij fermions

An additive single particle operator can be written

K =
#

i

kia
†
iai

in a diagonal basis (where the creation and annhiliation operators add or
remove particles from the eigenstates of the operator), or

M =
#

i,j

a†iaj 〈ki|M |kj〉



for a non-diagonal basis. Pairwise interaction:

V =
1

2

#

ij

Vija
†
ia

†
jajai

or

V =
1

2

#

ijℓn

〈ij|V |ℓn〉 a†ia
†
janaℓ,

where
〈ij|V |ℓn〉 =

#

αβ

Vαβ 〈ki|mα〉 〈mα|kℓ〉 〈kj |mβ〉 〈mβ |kn〉 .

For a two body potential in the momentum representation

V =
1

2

%
d3pid

3pjd
3q Ṽ (q) a†pi+qa

†
pj−qapjapi

where q is the momentum transfer and

Ṽ (q) =

%
d3x eix·q V (x).

Pairing. Cooper instability: an arbitrarily weak attractive potential near
the Fermi surface leads to bound states of two electrons. Phonon scatter-
ing at low frequency as the origin of the attractive potential between two
electrons.

The BCS Hamiltonian

H =
#

kσ

εknk +
#

k,k′

Vkk′c
†
k↑c

†
−k↓c−k′↓ck′↑

and ground state

|ψG〉 =
-

k

.
uk + vkc

†
k↑c

†
−k↓

/
|0〉 .

The broadening of the Fermi surface that allows electrons to interact, low-
ering the total energy. The condensation energy −(1/2)g(EF )∆

2. Size of a
Cooper pair ≫ electron separation. Excitations: Ek = (ξ2k +∆2)1/2.



4. Relativistic quantum mechanics

Klein-Gordon Equation

$
∂µ∂µ −

.mc

!

/2
&
Ψ =

$
1

c2
∂2

∂t2
−∇2 −

.mc

!

/2
&
Ψ = 0

Represents spin zero particles (no spin components). Gives the correct
energy-momentum relation for free particles E2 = (pc)2 + (mc2)2. Can
incorporate EM fields by using Dµ ≡ ∂µ + iqAµ/!c (equivalently replace
pµ → pµ − qAµ/c), where Aµ = (φ,A), pµ = (E/c,p). (Using cgs units for
EM here)

Compton wavelength. λC = h/mc. The scale on which particle energies
become comparable to their rest mass. The idea that this can lead to particle
production, which ultimately leads to the breakdown of the single particle
wave equation approach and instead to second quantization / quantum field
theory.

Particles and antiparticles. The Klein Gordon equation has positive
and negative energy solutions. Interpret them as representing particles or
antiparticles. If Ψ solves the KG equation for charge q, Ψ∗ solves the KG
equation for −q. Because the KG equation is second order, we need to
specify both ψ(x) and ∂ψ/∂t at t = 0 which we can think of as specifying
both the particle and antiparticle components.

Dirac equation. .
iγµ∂µ − mc

!

/
Ψ = 0

where Ψ is a four-component spinor that tracks up and down spin and
particle/antiparticle. Written as 2x2 matrices of 2x2 matrices, the gamma
matrices are

γ0 =

'
1 0
0 1

(
γi =

'
0 σi

−σi 0

(
,

where σi are the Pauli spin matrices (i = x, y, z). The gamma matrices
satisfy (γ0)2 = 1, (γi)2 = −1,

1

2
{γµ, γν} = ηµν .

Dirac Hamiltonian.
H = α · pc+ βmc2



where αi = γ0γi and β = γ0. Can use this to derive a probability conserva-
tion law

∂µj
µ =

∂ρ

∂t
+∇ · j = 0

where
jµ = Ψ̄γµΨ

and Ψ̄ = Ψ†γ0. The probability density is ρ = Ψ†Ψ = (E/mc2)Ψ̄Ψ and
current is j = Ψ†αΨ = pΨ̄Ψ/mc. Introducing a magnetic field and tak-
ing the non-relativistic limit, we end up with the usual spin Hamiltonian
π2/2m− µ ·B where µ = g(q/2m)S and S = (!/2)σ.

Free particle solutions:

E = +Ep, +helicity ψ = (1, 0, pc/(Ep +mc2), 0)

E = −Ep, +helicity ψ = (−pc/(Ep +mc2), 0, 1, 0)

E = +Ep, −helicity ψ = (0, 1, 0,−pc/(Ep +mc2), 0)

E = −Ep, −helicity ψ = (0, pc/(Ep +mc2), 0, 1)

(with normalization factor 2Ep/(mc2+Ep) omitted and also ψ ∝ exp(−ipµxµ/!).)
Helicity Σ · p – projection of spin onto the momentum direction. The

Dirac Hamiltonian commutes with the helicity operator, so helicity is con-
served in a given frame. Lorentz transformation mixes left and right handed
helicities.

Charge conjugation: if Ψ is the wavefunction (spinor) for a particle with
charge q, then iγ2Ψ( is the wavefunction for the corresponding antiparticle
with charge −q. [Here the matrix γ2 is γi with i = 2.]



 

HYS551PartIFundanenf Sep 1 2021

We start by reviewing the mathematical
language that we use to describe quantum
systems

1 Hilbertspace generalized vector space

A quantum state corresponds to a

vector in Hilbert space

147
Ket

or more correctly a ray since it's the
direction that counts We can multiply a

state by a scalar to normalize it for example
ie change the length of the vector

but it is still the same state

Dimension of thespace howmany numbers
we need to describe the state

ie numberof possible values of an

observable



eg spin z particle 193 11 N 2

eigenstates that
we can use as a basis to span
the space

general state 14 a 19 t bl t
T

complex coefficients

eg particle in a box
If

basis vectors can be the stationary
States

147 E on In
or position eigenstates

147 S dx Y x x



Eigenstates of an operator

A In an
complex

eigenvalue
T Tsame

state

Q Which operators were we using in the

examples above

4 Dualspace one toone

14 ET y

Ket bra
Hilbertspace dual space

a 4 a y at

Innerproduct 4147 complex number

ply 4147 complex conjugates

a 4 is real



A

ÉI7fis the dual of 14

ingeneral 4 I F 24 At

but this is true for Hermitian operators

A At

Note that 4 It 4 7

411103

4 Hermitian operator A

Aln an In

ml AT at Cml
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First discuss the reading questions from
this week

1 641114 I
We know that 41477 54147
so the key thing is to treat

Ala as another Ket

with corresponding bra 4 At

411114 41 At 147

2 Proof that Hermitian operators have
real eigenvalues and orthogonal eigenstates

Consider a Hermitian operator A
and write



Aln an In

Cmt AT at Cml

Cml Aln an mln

m At In ant mln

O an ant mln

where we used the fact that At A

Either Im In same eigenstate
then

an ant realeigenvalues
or m In

then since an ant in general

mins o
eigen.EEt



The eigenstates of A form an orthonormal
basis that spans the Hilbert space

147 E Cn In
n

where on h y



Postulates of am

I The state of a system is a vector in
Hilbert space

y

This contains all the information that we
have about a system

2 Observables Hermitian operators

14 E Cala

3 Measurement 14 Lapses ya

Prob measuring a y a t

cat

We can also add a 4th postulate that tells
us how to time evolve the state ie

Schrodinger's equation



it 147 4147

but we'll discuss this more in Part 2
when we talk about dynamics



A coupleof more points about the formalism

1 Identity and projection operators

147 E en In

mi y E Cn mln

Ecn Smn

Cm

so the expansion coefficients are Cn n ly

similar idea to Fourier expansion etc

Therefore we can write

147 E Cn ly In
En In n 14

E In nl 147

Thit operator



In Cnl is the projection operator

eg In al 147 n y In

is the component of 147 in the
direction In

When we sum the projection operator over
a complete basis we get the identity operator

The product 147 41 is referred to
as the outer product

as opposed to inner product 4 07

2 Matrix representation of operators

With the expansion 147 E Cn th

the set of coefficients an specify the
state



Now consider A 4 for some
operator A

1114 E on it In

Aly on Em Im m Aln

insert identity operator

Em E Cna Aln Im

Thsefthodricients that
represent the Ket 114
ie Ily Ebm m

with bm En Amn Cn

and Amn m A n



We see that we can write

147 114
as a matrix multiplication I I E

The quantities Ann m Aln

are the matrix elements
of A in the basis In

Notes
Hermitian operator has Amn Atm

Hermitian matrix

if In 3 are the eigenvectors of A
then Amn is diagonal

n it Im am calm
am Snm



we can think of bra's as row vectors
and kets as column vectors

14 I 241 at at cot

then 4147 is a scalar dot product

147 41 is a matrix outer product



End with a bit of discussion about
measurement

Consider measuring two observables A and B

Important quantity is the commutator

A B AB BA

If A B 0 then A and B have a

complete set of simultaneous eigenstates
We refer to them as compatibleobsenables

To see this use the eigenstates of A as

a basis
I In ant

and then ask is n Blm diagonal
in this basis

If we assume A B 0

then n IA B my o



Cnl AB Im n Balm 0

an n Blm am n Blm o

an am n Blm o

Snl Blm Snm

ie B is diagonal in this
basis if A B o

eg 147 In IT In
An bn
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Last time we began to discussmeasurement
Main ideas

Observables c s Hermitian operators

I
real eigenvalues
orthogonal eigenstates

Measurement postulate

147 In

Probability of measuring an is in 471

Compatible observables commute

A B o

A and B have a common

eigerbasis

147 In B
In

bn



Discussion of reading question 2

What happens if there is degeneracy

eg Aln a n

A Im alm

Important points

any linear combination of m and 1h
is also an eigenstate with the same

eigenvalue

Alain t plm a AIN t pAlm

a tin t play

we say that there is a degenerate
subspace of the Hilbert space

dimension degenerate states



we can construct an orthogonal basis
for the subspace using linear combinations
of Im and In

Example problem 1.23 from Sakurai

Operator A has representation

with basis vectors 117 127 137

127 and 137 have the same eigenvalue a

there is a 2D subspace

Any orthogonal linear combinations of 127
and 137 would give the same matrix for A

Now consider a second operator B With the
same basis vectors





B
o g g

can show
that A B

0 it 0

We see that 117 is an eigenvector of B
but 127 and 137 are not

The eigenvectors and eigenvalues of
o its b
its o

are f
Ii b

Note that both of these are eigenvectors of
A with eigenvalue a

So in this problem where we are interested in
A and B a natural basis to use is

lab l ab

l a b tall



Now imagine measuring A then B

If the measurement of IA returns ta this
is straightforward

147 la b la b
b

If A returns a then the state of the

system must be a linear combination of
1 a b and I a b after the
measurement

Which linear combination depends on the
initial state 147
after the measurement the state will be

the projection of 147 into the subspace

eg 14 Co la b t c f a b

Cal a b



14 É
e Fiat

For a similar example see Shankar p132



132 

CHAPTER 4 

measurement, though the eigenvalue will not, as the following example will show. 
Consider two operators A and n on w3(R). Let I be one common eigenvector. 
Let }q = Az =A. Let OJ I # COz be the eigenvalues of n in this degenerate space. Let us 
use as a basis lm"lc), lm2.A), and jw3A.3). Consider a normalized state 

(4.2.16) 

Let us say we measure n first and get w3 • The state becomes i w3},3 ) and the subse-
quent measurement of i\ is assured to give a value ),3 and to leave the state alone. 
Thus P( W3, A.3) =I (ro3A.3I '1')1 2 = a 2 . Evidently P(o>3, A3) = P(A.3, w3). 

Suppose that the measurement of n gave a value m 1 • The resulting state is I m 1},) 
and the probability for this outcome is I (m 1A.I '1')1 2 The subsequent measurement of 
i\ will leave the state alone and yield the result A with unit probability. Thus P(m 1 , A.) 
is the product of the probabilities: 

(4.2.17) 

Let us now imagine the measurements carried out in reverse order. Let the result 
of the measurement be il. The state I'!'') after measurement is the projection of I 'If) 
in the degenerate A eigenspace: 

p I VI\ Ill WJA) + rl Olzt,) 

I'!'')= (/32+ y2)1;2 
(4.2.18) 

where, in the expression above, the projected state has been normalized. The prob-
ability for this outcome is P(il) = [3 2 + y2 , the square of the projection of llfl) in the 
eigenspace. Iff.! is measured now, both results w 1 and w2 are possible. The probability 
for obtaining m1 is I (m 1A.I '1'')1 2 = f3 2/(f3 2 + y2). Thus, the probability for the result 
i\ =A., Q = m 1 , is the product of the probabilities: 

."\ . 2 2 /3 2 
2 

P(A, u>J = (jJ + y ) · 13--, 2= f3 = P(m1, A.) 
-+ y 

(4.2.19) 

Thus P(w 1 , .lc) = P(},, wJ) independent of the degeneracy. But this time the slate 
suffered a change due to the second measurement (unless by accident llf!') has no 
component along I m2A.) ). Thus compatibility generally implies the invariance under 
the second measurement of the eigenvalue measured in the first. Therefore, the state 
can only be said to remain in the same eigenspace after the second measurement. If 
the first eigenvalue is non-degenerate, the eigenspace is one dimensional and the state 
vector itself remains invariant. 

In our earlier discussion on how to produce well-defined states llf!) for testing 
quantum theory, it was observed that the measurement process could itself be used 
as a preparation mechanism: if the measurement of Q on an arbitrary, unknown 
initial state given a result w, we are sure we have the state I 'If)= I m ). But this 
presumes m is not a degenerate eigenvalue. If it is degenerate, we cannot nail down 
the state, except to within an eigenspace. It was therefore suggested that we stick to 
variables with a nondegenerate spectrum. We can now lift that restriction. Let us 



An example with incompatible observables

see Sakurai p 32 fig 1.8 I added it
on the next page

Equations 1.4.46 and 1.4.47
give the probability of measuring Ic's
given the input la ie I c la t

In this case where B is measured as well

DATOEDT
it is summed over all possible B

measurements

cc lb l Icb la t

whereas for

DTE



it is c lb b'la f
These are not the same Even though we

average over all b values the act of

measuring B charges the state and

removes the cross terms that are present in

This has echoes of the double slit
experiment in the different b choices
interfere cross terms whereas in they
do not because we measure b in each case
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Last time
Compatible and incompatible observables
how measurement works when there is degeneracy

The fact that compatible observables share
eigenstates means that we can know the values
of both observables at the same time
measurement of one does n't affect measurement
of the other

This is generally written in the form of the

uncertainty relation

EAT C BY I I I A B T
where DA A A

A LY I A 147

E Kan ly t an



is the expectation value of A given the
state 143

DAY A2 A

4112147 9411147
variance

You can find the proof of the uncertainty
relation in

Sakurai 1.4.5 p33

Shankar 9.2 p 237

Example X p it

Ax Ap 2h12

Sx Sy it Sz

I I o

th ta o

I g 0



Composite states and Entanglement

See Binney Skinner Chapter G for a

good discussion of this topic

electron in H atom9

Item 0 Is

T t
infiniteHilbert

Space
20 Hilbert space

4 I I I n e my
alt bits

The Ox indicates that we are taking the
direct product of two vectors from different
Hilbertspaces We usually don't need to
write it because it will be obvious from the
context what we mean

eg when we write I It 5

what we really mean is I o I t I 0 s



Often we would just use the shorthand

I n l m s to represent the state

but it's important to realize that when
we do so we are implicitly talking about
two separate Hilbert spaces

Another example is a multiple particle system

eg Ispin patides
147 alt If t b 197 It

t c It In t d It It

I
particle 1

particle 2



Note that

dimension of

product space
product of

dimensions of
constituent spaces

147 E Cam In Im
N M

J t basis for
basis for
Hilbert space 1

Hilbertspace2

product space has dimensions N X M

ie we need Nx M coefficients Cnm to

specify the state

This can get very large very quickly
as we add more components particles to

a system



A product state 147 A I B

an Ins Ebm lm

Em anbm In I m

is a special case where we only need
to specify Nt M coefficients

N for the an and M for b 3

States of the form A 1137 have the

property that measurements of A and B
are uncorrelated

If 147 can not be written as a product
we say that the state is entangled

Measurements of A and B are then
correlated



eg 147 a 19 117

It p 19 8113

this is from Binney Skinner Ss6 1 1

Measure thespin of particle 1

1 the result is t

14 In to

if we then measure the spin of particle 2
we are guaranteed to get 9

2 the result is I

u

Ight
measure particle 2



Prob t pff 1 Prob t ftp
Summarize in a table

A measurement B measurement P BIA

4 4 100

T I 0

I I ftp
t t pÉp

The outcome of the B measurement

depends on what we measured for A

The two particles in this case are entangled

Exercise make the table for the case

where we measure B and then A



EPR state yet
Classic example nucleus with spin

zero decays

e

t

14 Ir It 11 19

Int 119

spin singlet

One observer measures the spin of the electron
The result is either

14 1917
or 147 It 97

Take the first one the electron is measured
to have Sale 9

If a second observer then measures the positron
spin in the same direction they are guaranteed



to get Sz et I

But they might choose a different axis eg
if they measure S instead they will get

Sx I 50 probability
or

Sx 1 50 probability

So depending on the relative choice of
axes that the two observersmake their
measurements can be anywhere between

fully correlated or not correlated at all

Non locality Observation of one of
the particles collapses the wavefunction of
the whole system no matter how far

away the 2nd particle is

EPR Paradox Einstein Podolsky Rosen
1935

EPR made a similar argument involving
position momentum measurements and

argued that AM must be incomplete
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Last time

Compositesystems

147 E Cij I ai lbj

If 147 can not be written as a product

147 E ai lais Ep lbj
then the state is ENTANGLED

Measurements of observables associated with
different components af thesystem are

arrelated

Discussion of IIe ring Question 3



Quantum computing

To simulate a quantum system requires
keeping track of a largenumber of amplitudes

Eg N coupled 2 state systems

total dimension 2N

This can quickly get out of hand eg 21
1030

Impossible to simulate on a classical computer
But turning this around can we use a quantum

system to perform computations out of reach of
classical machines

Basic building block Eee it

2 state system
linear combination of 107 and 117

eg 2 qubits 147 a 1007 t Aoi 01

an 1107 an 117



3 qubits 147 a ooo 0007 T doo 10017

ago 0107 t a 1 0117

a too 11007 t Elio I 1017

t ago I 1107 t all 1117

2N terms

In a classical byte for example we have
8 bits 8 ones or zeros

But with 8 qubits we have 28 256

possible terms that form the state of the
system
All values 0 255 are present at once
in the superposition

Perform computations by evolving the system
in time
Massively parallel computations for free
Challenging to maintain coherence

How to read out the answer



Bloch sphere
Write 107 and 113 as eigenstates
of operator É

Z lo 107
É 117 117

in this basis É d4
analogous to 52197 thy Its

5 1 t 412 It

Most general state of a qubit

14 cos92 107 t singe 113

Vector 147 lies on
the Blochsphere

j

yy



What angles correspond to 147 107
and 147 117

HW 1 Q2 8 72 14 lies in the
y plane

147 lo t et 11



Unitary operators Sakurai 1.5
Sheinkar p28

Utu I Unt

Preserves the inner product

1017 U 147
Y't yl Ut

41141 41 ut u 07 4 4

An example is the charge of basis operator

U E Ibn ant

changes basis from Ian to Ibn

Ulan Ibm am an

1 Ibn
acts on nth basis I to give the n thvector in Ian basis basis vector in Ibn basis



The matrix element of U is

Cam U an am l bn

similar to a rotation matrix in 3D

Consider a state expanded in the Ian basis

147 Elan 4 an

The b coefficients are

Cbm ly E Cbm an Can 147

E Cam at an Can147

ie b ut a

Similarly A UTA U

P P matrix representatio
matrix representation of A of A in the
in the Ibn basis Ian basis



For a general unitary operator U

A and UtAU are unitaryequivalent

observable

They have the same eigenvalue spectrum

A la a la

CutAU ut la a atlas

eg Sx and Sz which are related
by a unitary rotation operator



Another important example of a unitary
operator is the time evolution operator

14 t Act to Yet

eg time independent Hamiltonian

act to exp
it t tola

We'll say more about this later



Quantum gates

A quantum gate is a unitary operator that evolves a single qubit or system
of qubits. An example is the NOT gate that acts on a single qubit as follows:

X̂ |0〉 = |1〉
X̂ |1〉 = |0〉

Just a reminder that the states |0〉 and |1〉 are eigenstates of the Ẑ operator.
In this computational basis, the Ẑ operator is

Ẑ =

!
1 0
0 −1

"
.

Questions:

1. Write down the matrix representation of X̂

Computing the matrix elements, e.g. 〈1|X̂|0〉 = 〈1|1〉 = 1 etc. gives

X̂ =

!
0 1
1 0

"
.

2. What happens when X̂ operates on the general state α |0〉+ β |1〉?

X̂ (α |0〉+ β |1〉) = α |1〉+ β |0〉
or if we write the state as a vector,

X̂

!
α
β

"
=

!
β
α

"
.

3. What are the eigenvectors of X̂ (let’s refer to them as |+〉 and |−〉) in
terms of |0〉 and |1〉?
We already know the answer from the Pauli spin matrices,

|+〉 = 1√
2
(|0〉+ |1〉) = 1√

2

!
1
1

"

|−〉 = 1√
2
(|0〉 − |1〉) = 1√

2

!
1
−1

"



4. Write down the operator that changes basis from |0〉, |1〉 to |+〉, |−〉.
This is an important operator known as the Hadamard operator.
What is the matrix representation of this operator in the |0〉, |1〉 basis?
The operator that changes |0〉 to |+〉 and |1〉 to |−〉 is

ÛH = |+〉 〈0| + |−〉 〈1| = 1√
2

!
1 1
1 −1

"
.

5. What does Ẑ do to |+〉 and |−〉?

Ẑ |+〉 = |−〉 , Ẑ |−〉 = |+〉

Note that this means Ẑ acts like a NOT operator for the |+〉 |−〉 basis.

6. Are X̂ and Ẑ unitary?

Yes, you can verify that Û Û † = Û †Û = 1 for both X̂ and Ẑ.

Now consider a two qubit system, with general state a |00〉+ b |01〉+ c |10〉+
d |11〉. We can write this as a 4-component vector

#

$$%

a
b
c
d

&

''(

7. Write down the matrix representation of the operator that applies a
NOT to qubit 2 but leaves qubit 1 unchanged.

We need an operator that changes

|00〉 → |01〉

|01〉 → |00〉

|10〉 → |11〉

|11〉 → |10〉



The matrix representation is

#

$$%

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

&

''( .

Finally consider N qubits.

8. If we initialize each one in the state |0〉 and then apply the Hadamard
operator to each one in turn, what is the resulting state?

The Hadamard operator acts on a single qubit and takes |0〉 → |+〉. So
if we operate on each qubit with the Hadamard operator, the state becomes

Ψ = |+〉 |+〉 |+〉 ... |+〉

or multiplying out in terms of |0〉 and |1〉

Ψ =
1

2N/2
(|0〉 |0〉 ... |0〉+ |0〉 |0〉 ... |1〉+ ...+ |1〉 |1〉 .. |1〉)

which we can write as

Ψ =
1

2N/2

)
|0〉+ |1〉+ |2〉+ ...+ |2N − 1〉+ |2N − 1〉

*
.

This state is an equal superposition of all possible states for the N qubits.
This is the maximally entangled state.



Quantum
computation

By applying the Hadamard operator to
each of N qubits that are in the 107 state
we can create a state that is an equal
superposition of the 2N available States

z
lo t t 12N I

One could then imagine a sequence of
operations gates that evaluate a

function f
Au Ins I fCn

whef CIL is
an integer in the range

However this doesn't work in general if different
values of n give the same value of f

n I It it Im Cf n l f n

f n flu I



but Cn littleIm CnIm o

for hFm

Instead a common approach is to have a

control register as well as a data register

Then In Im

it In Im In I mtfcn

The States are orthogonal even for two values of
h that have the samevalve of f



Another common example is the CNOT
controlled NOT

co

takes 00 Oo

01 o l

lo 11

11 to



Generating the 
Bell (EPR) state



Simulation results
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Perhaps the simplest example of a quantum
algorithm is the Deutschalgorithn

one bit function f maps o i 0 13

either constant or balanced

f o f I

9 9
constant
constant

0 I balanced
I o balanced

How can we tell if f is constant or balanced



Use the operator

In Im In Im Fln
p

mod 2 addition

with Im 1 3 103 117

if fln o N n 1 3 In t

f n I Aln 1 In 117

In Ios
In I s

Aln l 1
An
In i s



Now compute

in It i s ta I lost
All 1 s

I C 1
f
I 717

E 1 FC 11 1 7

Ig 1
for
lo 174117 1 7

Id E output
0 0 It to
1 I It 1
0 I

l o
1 I s

I 1

J
if we read the control register with X

then we will get It for constant
1 for balanced



Weget the answer with one measurement
whereas it would take two computations with
a classical computer ie evaluate fco and
f I and compare

This may seem like a trivial examples but
it can be generalized to functions of
N bits

f n 0 or I

for n in the range 0 241

Deutsch Tosca algorithm determine
whether f n is constant all o's or I s

or balanced half O half 1 in one

operation compared to 2N classically

An exponential speed up



This time we set the control register to
the maximally entangled state

In 1412 no

using Hadamard operators acting on 107

Then
I 14 t

In If c if in t

For a Instant function this is I 1471 7

So we operate with Hadamard operators
again and if the control registergoes
back to 10 then the function was

constant

Q what does the control register go to if
the function is balanced Can you show
that Prob o 0 in this case



Thedensity operator
Binney Skinner 6.3
Shankar p133

Often we don't know which state a system is in
Even if we try to prepare a state with a measurement

of an observable there is experimental error for
example
But we may know the probability of being
in state In for examples call this pin

Note we are not saying that the state of
the system is 14 E Tpi In
That would be a definite quantum state J

eg CAT E pn Cn IAlnn

averaged over theensemble

Inserting la Cail identityoperator

CAT En pn C n lA laid ai 1h7

ai l ai



CAT NE pn Kailn I ai TH

J E Prob of
Prob of being measuring ai when in

in state In state In

The dersityoperator is defined as

p Pn In Cnl

The ph's represent our incomplete state of
knowledge about which state In the system is
in

Consider

PA pn In Cnl fai lai sail

Pna In Enlai sail



Cml palm
n
Pnai mln Enlai

w sail m
Smn

4 pm ai IContai I

If we sum over m we get
Cmlpalm CAT gig

This is thetrace of the

operator g A

Tr ga CAT



Properties g pi 114 stil

g ft Hermitian

Tr g Epi I

Colly lol pi 1401471

Prob of finding thesystem to
be in state 147

This implies the diagonal entries are always
non negative
off diagonal elements can be so

Tr g I E th 1

for eigenvalues Xk

Tr f E TE E I



Pure state then
p 147 41

Tr ga I

Mixed state p Ep 14 L Yi l

Tr g
2 C 1 purity

eg imagine we have an experiment in which
we try to prepare qubits in the state
107 but it fails now and again and with
probability p produces a 117

What is g
what is Tr y

2

Repeat for the case where the failure mode
is to produce a It state

eg a qubit is in the state a 107 t p117
what is g Tr ly

2



Density operator

1. Imagine we have an experiment in which we try to prepare qubits in the
state |0〉, but it fails now and again and with probability p produces a |1〉.

(a) Write down ρ. What is Tr(ρ2)?

ρ = (1− p) |0〉 〈0|+ p |1〉 〈1|

To find the matrix representation of ρ, calculate the matrix elements 〈0|ρ|0〉,
〈0|ρ|1〉 etc. This gives

ρ =

!
1− p 0
0 p

"
.

Multiplying the matrix by itself gives

ρ2 =

!
(1− p)2 0

0 p2

"
.

Therefore the purity is

Tr(ρ2) = (1− p)2 + p2 = 1− 2p(1− p).

Note that Tr(ρ2) = 1 for p = 0 and p = 1, as expected since the system is
then in a definite quantum state. The minimum value of Tr(ρ2) is 1/2, when
p = 1/2, which is the state of maximum uncertainty (|0〉 or |1〉 are equally
likely).

(b) Repeat for the case where the failure mode is to produce a |+〉 state.

Now we write
ρ = (1− p) |0〉 〈0|+ p |+〉 〈+|

(this emphasizes the point that the states in the sum do not have to be
orthogonal to one another). Using |+〉 = (|0〉+ |1〉)/

√
2, we find

ρ =

!
1− p/2 p/2
p/2 p/2

"
.

ρ2 =

!
1− p+ p2/2 p/2

p/2 p2/2

"
.



Tr(ρ2) = 1− p+ p2 = 1− p(1− p).

This has the correct limits as before. Note that the minimum value is now
greater than 1/2.

2. A qubit is in the state α |0〉+ β |1〉. What is ρ? What is Tr(ρ2)?

ρ = |Ψ〉 〈Ψ| = |α|2 |0〉 〈0|+ |β|2 |1〉 〈1|+ α!β |1〉 〈0|+ β!α |0〉 〈1|

ρ =

!
|α|2 β!α
α!β |β|2

"
.

ρ2 =

!
|α|2 β!α
α!β |β|2

"
.

Tr(ρ2) = |α|2 + |β|2 = 1.

As expected since we are in a definite state, so ρ2 = |Ψ〉 〈Ψ| |Ψ〉 〈Ψ| =
|Ψ〉 〈Ψ| = ρ (since 〈Ψ|Ψ〉 = 1). *
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Last time we discussed the density operator

j E pi Ni ail

for a single system where 14i are possible
states of the system

Ideas from last time

Expectation valve CAT Tr PA

Purity Tr f E l

Pure state Tr p2 1
Mixed state Tr p2 I

Now consider composite systems We'll see
that things get interesting



First note that we can write the
density operator in terms of its matrix elements
in some basis In as

I Eg Pij Ii gl

since this gives

n I É Im Ej Pij In i Cjlm

Pnm

this is true for any operator



Now let's do this for a composite
system

fi E la lbj fijke Cakkbel

je t basis vectors in
basis vectors in

Hilbertspace 2Hilbert space 1
eigenstates ofeigenstates of

operator A operator B

Consider observable Q in Hilbertspace 1
ie A acts only on the a states not the
Ibi States

We know that COT Tr pd

In ant bul pQ I an Ibm

Now insert H



In Canton Eye lait fiskeCartel

Q Ianbm

We have terms

Canton aib Sni Sinj

Cartel Q anbn Sem Sak Alan

Tr pd In Pnmkm ak Q an

Carla an Em Pnmkm

a IIIIITon
Hilbert space 2



We define the reduced density matrix

of but flat bn

take the trace over the B eigenstates

E bulb lai pipe ak belton
nijkl

En lai pinkn ak

with matrix elements

Pie aj I f lae
In finen

Comparing with Al we see that

cat Ig ak 101 an Ink



But Tr p Q

I can ftp.lai finkncakl
Q I am

E
mmnk Pmnkn ak A am

E Pmk Carla 1am

LOT Tr p a

So once we calculate the reduced
density matrix we can just use it as
usual as the density matrix for Hilbert
space 1



Reduced density operator

Consider two particles in the EPR state

|Ψ〉 = 1√
2
(|01〉 − |10〉) .

(a) Write down the density matrix using the basis (|00〉 , |01〉 , |10〉 , |11〉).
Verify that it has the properties you expect for a density matrix of a pure

state.

(b) Taking the trace over particle 1, derive the reduced density matrix for

particle 2. Write out the matrix using the basis |0〉 , |1〉 for particle 2. Does

this reduced density matrix correspond to a pure state or a mixed state?

(c) How does the reduced density matrix you found in part (b) compare with

the density matrix for a single particle in the pure state |Ψ〉 = (|0〉+|1〉)/
√
2?



 

Reduceddersityopoat

147 Izz lol Ilo

a This is a pure slate

f Epi 11475141
has only one term if 147 41

t lol 5011 I1075011 10175101

1 110 lol

Now calculate the matrix elements

Use the basis 1007 1017 1103 1117

we need Cool too
001 f l 017

etc 16 terms



1007 1017 I 107 1117

O O O 0 Cool
o 1 I a soil

2 o I I 0 401

O O O O CH I

Tr g I

i
f

0 I 1 O

O O O O

Tr p2 1 as expected for a
pure stair

b We need to take thepartial trace over the

particle 1 States

The reduced density operator is



pi Echl f l n
n
tparaded eigenstates

matrix elements in the402,1172 basis

015210 fog Ciolflio
Ot tz z

0192113 fog Cio 181 il

O t O O

I Ifi lo fog Lill Elio
O t o O

1182117 fog Lil 181 it

z t O z



Therefore pi E ol 9

In Dirac notation this is

Ji Iz lo so I t t 113511
CH

Tr g
2

mixedstate

In fact this is the maximally disorded
State minimum purity

c For the pure state 14 tf Io t 117

a t.fi
which has Tr p2 I



In part b we ended up with something
similar but with the off diagonal
elements vanishing

From the point of view of an observerwho
can only measure particle 2 it is not in a

pure slate corresponding In a superposition of
107 and 117 instead it is in the nixed
state 1



 

Oct 4 2021

Last time

loss of information on taking the partial
trace
eg 147 t 1107 1017

partial trace p ko

Note the off diagonal zeros this is
a mixed state with the same density
matrix as a classical ensemble

Two applications

1 decoherence

147 I computer environment

U
becomeentangled over

time



2 measurement problem

Copenhagen interpretation two pieces

it Off 4147

147 la
collapse

on measurement

Many worlds interpretation

only have it
off A 147

Everett 1960s
Entanglement decouples parts of the
wavefunction

Eg Bousso 2012 et al

lo 117 107A

p
system

measuring apparatus



infraction a lossto a t b IPs PA

Now add environment

147 a 103107A IDE t b Ds AIDE

We don't keep track of the environmental
degrees of freedom

PSA Tre ly 41

1
Ip

There is a decoupling of the outcomes
Looks like a classical ensemble with

probabilities a 2 Ibl



Part 2 Quantum dynamics

Time dependence in quantum mechanics

Schrodinger equation it 147 4147

Stationary States HIE E IE

have time dependence a e
Eth

Basic recipe is

write the initial state as a sumof
stationary states
evolve each one in time with e

iEth
sum to get the state at time t

Dynamics comes from energy differences
since then a relative phase develops
between different stationary states



eg two level system

14 o t to t 11

14 ti o e
it.tk

I Erik

Can show that

1 414 4 o t 65 DEI

where DE El E

Starts dropping below 1 ie the state
at time t is becoming uncorrelated with
the initial state for times

t the Time energy
uncertainty
relation



Time evolution operator

We can write down the recipe above as
an operator

14 t E CE 46 e
Eth
IE

1414 UCH 14 o

where U t I E KEI e
EM

Notes
This is a unitary operator

We can also write U t e
i th

in general f A E f Xi Hi at

where I Xi is the basis in which A is

diagonal This works if f A has a

polynomial expansion f A Chan



Has the properties

UTC ta ti U ti ta

IIE to

U t til UCE E UCE t

If I is time dependent then

UCH exp St FILE dt

Need to be careful about time ordering in the
integral if I at different times do not
commute ie we need time to increase

right to left in the integrand



Heisenberg Schrodinger pictures

Consider the matrix element

01 A 147 evaluated at time t

lo o UtA U 146

There are two ways to look at this

Schrodinger Heisenberg

q o Ut I 4 4 o Aco UtAU 141017
Oct A 14 H Lol ACE 14

Time dependence is in the
States Time dependence is in

the operator

There is a geometric interpretation of this
which becomes clearwhen we look at the basis
vectors



The basis bets are defined by A a a la

Schrodinger picture A is constant so the
basis vectors are also constant
in time

Heisenberg picture A is time dependent
so the basis vectors are also time

dependent

They evolve according to 1a Ut la

since then we always satisfy

Act a CH a la Ct

Since the left hand side is

UtAco U ut la cos

UtAcosta o a Ut a o

a la CH y



So in the Schrodinger picture the basis
vectors are fixed the state 14 evolves
Because the time evolution operator is unitary
we can think of it as a rotation in Hilbert

space 147 U147

In the Heisenberg picture the state is
fixed and instead the basis vectors rotate
but in the opposite direction

a ut la

The expansion coefficients if a are
the same in each case

Schrodinger Y t a

Cy o at la F
the

Heisenberg 41 act
safe

41 Ut la o
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Last time Schrodinger vs Heisenberg pictures

Schrodinger 14 t U 14 o

Heisenberg 147 fixed
ACE UtAU

la t Ut la

Expansion coefficients

147 E Lyla la

Schrodinger 14 t E 4 t a la

E Lycos ut la la

Y
raft projection of the

time dependent state onto
fixed basis vectors



Heisenberg 147 E Yfacts acts

E 4 ut la o Uttacos

Te
Notice that the values of ca t are the
same in each case probability of measuring
observable a is the same

An example that uses both pictures

Two state system with a time dependent
potential

H Ho t V t

Ho I n En In

We are interested in transitions between
the States caused by the potential V t



Interaction picture Sakurai55.5
use Heisenberg for the evolution
according to Ho and Schrodinger for
the interaction part V t

127 eitl.tk a s

remove the background Ho
time dependence from the
Schrodinger state

and add it to the operators

A eiHoth as e
it th

Then we have

it g la I it et 12 s

t.it h
a s



eiHota Hot V a s

ftp.eit h a s

e
these commute so the Ho
terms cancel

it 8,1 ett V la s

eitloth v e itlothetitloth 1a

VI t K I

it 8,127 VICHY I 4

We just need to solve the Schrodinger
equation for the interaction part
Note that a I doesn't change if V O



We can solve this by expanding

12 I E Cn t In

Note that this is equivalent to

147s E Cn H e
iHook

n

so we see that the Ho time dependence has
been taken out

Now de Cn I ee

it in n I V11 a I

Em Cm t n VI Im

n UI m ei En Em th niv m

et what Unm

it

Em eiwnmtvnn.cm

TT



t t t
1 Il

An example with analytic solution is an

oscillating potential

V1 V22 0

Viz feint V2 ye
int

initially 9 1
Cz o

ground state

solution is

1412 8h

If t w 0215
4

x sin E agar t



Heisenberg equation of motion

ACH UtAU

It dad In Utday U t Uta
dug

But
I

i fl U
I

fit I Hut

dig If Hatta
Uta ti u

these
commute

ti 43 0

ACH

In AYI Alt



Check ft 411147
4 I did 14

use Heisenberg

so ly is time
independent

SCIFI It
This is Ehrenfest's theorem which you may
have seen before derived from the TDSE

Particle in a ID potential

EI VCI

Let's calculate dy dig

Use the results Xi f f it
off

I pi ga ik day



1 Ep H Cp Va it

dy CI

2 I H LILI
I pp Ipp pix

XP p t PII P
zit P

dig Im



We see here a connection to classical
mechanics

classical quantum

canonical variables operators

Poisson brackets commutator

Tif
THamiltonian formulation of classical

mechanics H E p

equations of motion p gtf
i of



A function f P q evolves according to

dig f H

If Fei
Notice that q Pj Sig





 

More on transitions between state
Oct 14,2021

Interaction picture

H H Vct

127 E Cn t In

with it in Em eium Unm Cm

Unm En Em Unm nlt m

Now consider the initial condition t o

Cn I for some n and

Cj 0 for j n

then

of e
Wint
y



If V t Vo e
int

Vin j Ivi n e
it

j IV In

Ej ly e win
o

j IV In

Integrate
Cj t ei win

o t t

Cg

N

Transition probability

Cj1 E 4 Cj v In T sin LEG
42 win w

This is the same as our exact result from
last time but with y strength of potential
small JK w wait



Fermi's Golden Rule

Typically there is a continuum of end states
with energy E and

density of states g E

such that the total transition probability is

P J d E g Ej g t

SdEj g Ej Igt
sin LEI't

Charge variables x win w
z

Ej En tw 2k

Ej 2tx Ent to

P YS dx g Ent tu t Ztx sing
x Enthwt 2kx V IEn I



The function sing looks like

I height is t

i.int

27g t o Tif 291 X

area TtTha be

As t grows it becomes more peaked and
concentrated near x a 0 ie final states
with Wjnt w At IE t

The area is linear in t At early times
we can tolerate some uncertainty in energy more

available states more width

As t becomes large sing Tt S x



With the replacement sing at Sex

we have

P 2 t g Ent to Ent to V En't

The transition rate is

P 2,1 g Enthw Ent tu V En f

Fermi's Golden Rule

transition rate

E x densityof final x matrix
elementStates

P Ey g Ef Mf T



Time dependent perturbation theory

We've actually been doing perturbation
theory to first order
See Sakurai 5.7

Look for a solution

Cn t Cl t t Ci t t ch e t

T t
Oct

I
01 OCI

If 127 In initially then

Cio t Snm

Cmc H

I got e
0mn VC't do



Ci Ctl I E f do fo dt

eiwmet Vme et e'went Ven t

For V U e
t

you can check that
Cnc t is what we were using above

Note that in the second order expression
we are summing over intermediate states l

If you include this term in the fermi's
Golden Rule derivation you'll see that the
delta function 8 x assures energy
conservation between initial and final
States but the inbetween transitions
n e lo m

are energy non conserving Virtual
transitions



Adiabatic and sudden transitions

We've been discussing a periodic potential
t More generally VCE might represent

a change in the Hamiltonian over time

Two limits

1 Sudden rapid change over time K Wii

eg atomic p decay Z Zt 1

The state remains the same But now will
be a mixture of stationary states of the new
Hamiltonian

2 Adiabatic slow change over time 22 Win

If we are in a stationary state initially
stay in the slowly evolving stationary state of
H t



size of the atom of
time to eject the electron Ez

I

hydrogenic atom E Z g mec

a

energy difference between states is

DE N Z'd Mec

Die Eared
t É

Use a Lee

If a Ea



Oct
Berry phase

For a time independent Hamiltonian if the
system is in stationary state 1h at t o
the state at time t is

14 e
i Enth

In

What about a slowly varying Hamiltonian H t

At each time we solve for the stationary States
and their energies

I e In t En t InCt

For 147 In at t o we might
expect

y y exp i ftEnt't de Into

but it turns out that this is not quite right
We need to add an additional phase
the Berry phase



147 e'rt exp I got Ence de InCoD

Substitute into it9 14 H t 147

it d Inca K j In t o

it

i Cn t fln t j

y i ft net's f In H de

This phase factor is actually measurable
There is a topological phase that develops
when the parameter controlling the Hamiltonian
is taken back to its starting value ie does a

loop in parameter space



eg parameters I H Elt

then y i got n Iir Edt
i go die n Irl n

vector field A i Cn Ip In

p So de A

f da IEA
area of
theloop

Note that y is unchanged by multiplying
the basis vector by an arbitrary phase

In eisel in
I A IRS

leaving 2 1 unchanged



What matters is the topology of the path
through the R spaces not the phasevariation

along the path

eg Holstein 1989 Sakurai 85.6.3 55.6.4

H t
2g S B

spin z particle in a magnetic field that
is changing direction

I tf Big I tr

y
solid angle

subtended by theMt
path of the B vectortie

Richardson 19881 measurement using ultracold
neutrons



LPropagator and Path Integrals

Position eigenstates XIX x x

orthogonality x x S x xD

14 S dx 4 x 1 7

4 x XIN

identity operator f dx Ix ext
Propagator The amplitude for going

from lx's at time t to
Ix at time t

K x t x t x e
it t t'M in

x In ni xD e
IEn t t

We can use it to evolve the wavefunction



S dx k at x't 44 El

fax x e
it t t

Ix x yet's

identity
x e

it t E A 14 t

x I 4617

4 x t Green's function
Solution

Properties of K
Satisfies the TD SE

Est k t Vk Itg
K x t x H 86 x



Now consider x l U t t xD

t
write citict th

as U E E

break this into two pieces

U t E U E E UCE E

Ext u t t x's

fax ext U t t I lx x U E E xD

t t t
propagators

we have to to and from intermediate
consider all location x
possible intermediate
locations

We could break this up into moreand more
pieces 1 I 1 I 1

It I 1 i i ne
t ta ta ta ts



with many integrals over the intermediate
coordinates S dx dx dx dx dx

We soon see that an equivalent way of
writing the propagator is as an integral over
all possible paths

intent

Classically there is a unique path from
X t to x El thepath that minimizes
the action S Styx It

t

In QM we need to consider all paths
In fact

paths

eistpathyx t l x it's r E



This is Feynman's path integral formulation
of AM We will go into the details next

time but one thing to note now is that
it reproduces the classical path in thelimito large S since paths near the
classical one have similar S valves 85 0

and so constructively add together whereas

furtheraway the variations in S give a rapidly
oscillating phase that cancels



Propagator for a free particle

Since I Ban the momentum eigenstates

are eigenstates of H and so we can write

K x t x t x Sap Ip cpl e
it

Ii

Sdp xp pix e
iECP's

with Elp Pkm At t t

Mcgee ply pips

pl p's 8 p p p it

x Ips Eyeipxth

K at gap either
ipx'm

e

it



We can do the integral by completing the square

p x x ftp.tmtt

EI P Kitty

You can see that there is a factor

e
i x x m 2 t t th

and the rest is a Gaussian integral

The result is

K z.fm eiEEte

The classical action for a freeparticle is

Se JI mi VI at



along the trajectory with X constant

So I at

EE

We see that the freeparticle propagator is

A E e
ish

with A t such that K S x x

as E t

dig Ig e
Me so

Note that it is not generally the case

that k a eisch Holds for V x x up to

quadratic in x or X



Derivation using path integral

Evaluate K Xn tn Xo to

I D x t ei Stats y

We Consider N discrete steps th to t ne

with time spacing E CEN to N
and later take the limit Es o

S ft LCH de It mi dt

N i

s E E Cini e

The integral is

K lim Afaxfdxz fax esh

of
normalization Constant



We have a series of integrals of the form

dy expf t yay t ly y D

iz exp 959012

After integrating over all the Xi's thisgives

K AGmt Ehinger ing
this dbe I fisisthfeparticle

propagatorA
12,1
E B N

S DEAD If 9554 fate



Formulation of the path integral

Divide the time evolution into N steps

e
it th

e insta

Factorize

e
insta

e
its the t o se

where H TTV Ent V

Then write

xn I UH t Xo

x I Up su IXo

Xo Ut At Ur Cst HTCst

Ut At Uw At Xo



Now insert identityoperators as we did
previously but now over position and momentum

Sdx Gdp Hi exit pi spit

where i labels the timestep

xn I UH t Xo

Jax din i ift
expf if Ej Van Tpm Philly

this is from the
timeevolutionoperators

Thiisfrom
the Ip
eigenstates

xp EYE



In the continuum limit N x this is

an e
it th Ix

S D xp exp I got de pi HcpxD
where Dex p da dxn idyijf.tt

This is the Hamiltonian formulation of the
path integral The integration is over paths in
phase space p and x

The integrand is in fact the Lagrangian L
since the Legendretransform relating H and L
is

H p x pi Llp x



For a quadratic k.E.pt2m the momentum

integral can be carried out Gaussian integral
whichgives

x e
th
lx

f DID exp IStdt L xx

and Dix fig Tty dx den

This agrees with what we had earlier
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Propagatorforafreepartide

K m

it t t
P É

Thismight remind you of the Green's function for
the diffusion equation

4 x t fax k x t x E 4 x E

Pathintegral

K S D xp eisectin

Y
dingo ftp fdxidxz dxn



General recipe

1 Divide evolution into N steps

e
it th

e
insta

2 Factorize

e
in th

e
thnk

e
Nt

to se

3 Introduce identity operators

Sdxi Hi exit fdp lpi pit

Cal ult xp fax dxn
idpciffxexpf

if.IE VCxnltPEm Pntif 7



4 Take the continuum limit N It o

x e
it lx

S DExp exp I got at pi H pix
where

DExp im dx day dp dpw
Nyo Zak

Two further points to make about this

I the factor pix H is actually the
Lagrangian L

L PX H Legendre transform



2 For K E Pym quadratic we can

do the momentum integral Gaussian integral
ampule the square like last time

x le
it

x

S DEAD exp I St L xx de

with DECH HI 1317g da da

J
this factor that ive had last time

comes from the momentum integration



Semiclassical approximation

We saw that for a free particle or linear or

quadratic potentials K x exp if
where Se is the action of the classicalpath
As we discussed this is maybe not surprising
since the classicalpath is where 5 0

We can expand around the classicalpath
X E Xc t

STx S Ext Sx yo
1st order tom
85 0

SIX t

If de si ti I ISN
xx

Ft
2nd order term

Because the leading tom is quadratics we

again get a Gaussian integral



K It e
is

Expand S ft do IE V x

S xd got at Est IV Cal si

Six ft de m
p

v se

K Efe tangy e's
p

det productof eigenvalues
over the N steps



ShankarChp 2

Lagrangian and Hamiltonian with EM fields

The Lagrangian L I mo 24 t 2 A

gives the correct equation of motion Eon

g me E E t est
tforce

Canonical momentum P 8
is

I MI t 1

Hamiltonian H 1 I L

Iz mu t q0

III
t ed



whichgives the correct Xp 8,1
and

PF II gives the correct Eon



Units
Cgs Gaussian SI
Shankar Binney Skinner
Sakurai f Napolitano

f me Eat f metal

E q Et Ext E ECEtexE

E Ilo IOI E Ig Ot
Ot Ot

I E http F E Pe

EXE I EXE of
Ot ot

I 12 0

IxE toff 1 I IxE etµI



Aharanov Bohm Effect

The additional term in the Lagrangian 2.1

can be observed

omit
impenetrablecylinder with
uniformmagneticfield B

Outside the cylinder 2hrAp Bx area of
cylinder

E

It Aa Etr
Even though B vanishes outside the cylinder A
does not



Contribution to the action is

É e Adt E de

Consider pairs of trajectories going aboveand
below the cylinder

net phase is If I E de

phase difference 2T is accumulated for

I 24L QI flux quantum

4 10 15 Tm
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EM Lagrangian mo 24 q

Hamiltonian H mu t 24

I III t ed

Distinguish between canonical momentum P T E
and mechanical momentum T Mo

Aharanov Bohm Med

Édmagnetic
flux I

net phase I f g A de
I I 24,1



flux quantum go 24 4.1 10
7
Gcm

in SI Go 2
4 4 10 Tri

Gauge invariance

We discussed the fact that the Berry phase
y if ChlEp In de

So B de S de IRXAB

is unchanged if we change our phase convention
for In

In eisertin
since then

I I IR S

Exa is unchanged



What about gauge changes in E14 We know

that we are free to choose a gauge

A A It

which leaves the physical field
I Ex A uncharged

since I I 0 I only has two independent
components whereas A has 3 this leads to
thegauge freedom represented by the freedom to
choose t

So it might seem strange that thegauge
dependent quantity A is now appearing in
the Hamiltonian

The Aharanov Bohm phase depended on E
so it's gauge invariant because we integrated
around a loop 14 foA de f I xa.de
But ingeneral consider the path from
I to 1



S L de

ft de t.mx t 22 e4

Now make a gauge charge I It
o ft

since 1 2 1 I 20 Ac

S St DS

DS ft dt 2121 I

St dt f t 7 t

thisitsthetotalderivative
along the path

DS
E H XE's



The change in the propagator is

KCI t I e K x ett XI ter'D

or

I t I t Castle é lait's

we can absorb the gaugecharge
into a redefinition of the phaseof
thebasis vectors

Gange invariance in QM

I A t It

145 14 s e
9th
ly



Notes
1 unitary 49417 4147

as it should be since we derived it from
eissa

2 4 414 4 4 47
x gauge independent
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e
iebc
p eighth

e
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Theta
girth at q

E IX I
So thegaugechangegives an extra term in Cps
that cancels the charge in Etz

T is gauge invariant



Landau levels

Spinless particle in a uniformmagnetic field

I BE A BC y x o

H at e4 t Ey EE
pi

In Tf t Ty t

É
Define the Larmor frequency to Eg
then Tx Px t tmwy

Ty Py mw x

Note that whereas p and p commutes Tx and

Ty do not



Ty Ty Pattemwy Py tmwx

tmw Px x t tmw y Py

I
I mwh

Now define the ladderoperators

a In tixtitty
at
In tix its

ata Ig Titty t i TixTig

hwata Tizi ftw



So we see that H Tw atat k If
with

a at 1

The particle moves freely along the magnetic field
direction PE term
but has quantized motion perpendicular to
the field with energies iz hw
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Clarification about last time

Gauge charge I At 27

Propagator
CI I UCH le's

Hei n t e
ith le's

propagator will remain the same if we

apply a phase charge to the basis vectors

In e
inflate

1

The wavefunction then picks up a phase of
the oppositesign

4 I Cr ly e
The

yes

Alternatively we can apply the phasecharge to
theStates directly

14 eid ly



Landau levels

Particle in a uniform magnetic field I BE

H Em CREIL
Last time we wrote z BC y x 0

Symmetricgauge

H ht ata hw t Pim
Wpf Efc Larmor frequency

Quantized motion perpendicular to B
Energies En tu nth n 0,1

Note that we went from two degrees of freedom
Tx Ty to one n there is a large
degeneracy in each Landau level To investigate
this we need the wavefunctions



Landon level wavefunctions

Simplestway to derive the wavefunctions is to
use the Landangange A B o x 0

then H Pfm t Pg gE
consider horizontal motion only
Notice that I H Py 0 which suggests

4 x y f x eiky

Hy tf t tf 4

BI t tmw x
Esk 4

This is a harmonic oscillator with a

shifted origin at
X É



the stationary States are

Yuk x y elk fuk x

Pharmonic oscillator
shifted to x thy

Energies do not depend on k
En hw n t z

Note that if we had instead chosen
A BC y o o

we would get wavefunctions Y n elk fukly

The form of the wavefunction depends on the

gauge chosen When we choose a gauge we

are choosing one of the symmetries of the problem
symmetricgauge rotationally symmetric
London gauge translational symmetry

and thereby which constant of the motion to use

to label the degenerate eigenfunctions

See HW 4 and 2020 midterm Q2 for more



Density of states

Freepartite with B o Ff
Periodic b c s over length L I I

K ZI n
number of states in interval dk

is Lt
In 3D this becomes Edgy

phasespace density is at
d x d k

Youmighthaveseen thisbefore in stat mech

In our case wehave a freeparticle wavefunction in
the y direction but a localized

wavefunction in the

x direction



Consider an area L x Ly Ly

The shift in the localized States is
top ky

we need by C qBLx
Tc

total number of states Lifts
Lxly Etc

number of States per unit area is

4h
B

4 10 15Tmz



With 13 0 the density of States is

44 144 YET

144 Egg
de

in an energy range hw the numberof

states is 2114TH EEE

ie all the B 0 States collapse onto the
Lordan level

B 0

glan

A so
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Quantum Hall effect

Taeffearminder B
PJ Hall current

Ex

current J E nffomberdensity

drift velocityelectricalconductivity

N

É
charges feel a force in the y direction

HexB off
which implies a Hallcurrent ExB

In Iq Ex B

We've assumed that the scattering time t
is short compared to we in the opposite
limit JH is divided by OBE



Now think about the quantum case Add
E E I to our Hamiltonian for free electrons

Ex

H Imf pi t dy est Ex

Tosimplify we can complete thesquare Compared

to previously there is an additional shift in x

x x

Gigi
The energies are now

Enke tu nth EEfifty
j

tharmonic oscillator as MEEi electrostaticbefore
1 energy

kineticenergy



Note that Enn now depends on k
Becausethere is an energy cost to changing position
in the electric potential

Now look at the current

x direction Lynk Tx I Yuk 0

no net momentum in the H O eigenstates
Tx a at at

g direction Yuk Ty lynk

Ty itfy qBx
I

Ty th EB ex

Kk set t

MC E
T

can also calculate groupvelocity Ny tf



This perpendicular velocity is known as

Ex B drift Alsoget this classically try it

Therefore we have a current perparticle

I
qty 2CEg

Per Landau level there are
244 particles per

unit area if the Landau level is full

total current Efx 295 LEE
perunit area

perLandaulevel

The resistivity is 214 Ig
where u is the of London levels populated



We can see this in the transverseresistivity us B

My
LM plateaus at integervalues toIiii

numbers of Landau

As B increases each Landau level has morestates
so fewer levels are populated pay goes up

Whenever a new Landau level is available there
is a discretejump in theresistivity

Lotsof physics in this For a good introduction

you can look for the lectures by David Tong



 

Radiative transitions in atoms

Semi classical approach treat the EM wave

as a perturbing potential Then Fermi's Golden Rule

gives the rate

P 24 g Ep Cf Vol ist

where V t Vo et int perturbing potential
Ii initial state
If final state

EM wave

A A I e
int e't't 1ktwe

k I 0

Introduce as a perturbation

In Lead Em t.am tEI



1st order term is V ftp.heih
For atomic transitions X a

Kx at
eik x1

electric dipole approximation

matrix element is

fl V Ii emf I Cf Ili

Rewrite this using H x it Pj
fly i

ing
Cf EH I is

in Ef Ei f I i

im w Cf Il is

Cfl V Ii iedgwn If ali



Often we want a cross section Cm

pittston s s
Two examples

1 Atomic absorption

Choose
g Ef SCE EF

P
2g SCE Ep e AIw fix i t

Photon flux in the wave is E Ex I
2AÉ f

Tip It x 211
SCE Ef e w

x Kf x in



rip 472 a hw SCE Ep FIX Ii T

a É
Rough size o

Iggy x as

can be size of atom

Selection rules arise from the matrix elements
only certain choices of Ii and If give a
non zero fl x Ii

Eg H atom wavefunctions we need Al It
since parity of each state is C De

Is Ip allowed
Is 2s not allowed



2 Photoelectriceffect Ii Ynem

If eil.IM

g Ee dEe Vg
dr

V

y dy
de der

45 1 Ungar

If Efi x 4 x YI
x

x

Eff K fl Ili tbound free
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Y
use themomentum version
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The final result looks like

Yg ftp.telf
x

I J d r e I th y e

see Sakurai 5.8.3 for evaluation of this
for a k shell electron



Helium atom

The helium atom is interesting as an example of a two-fermion system with
interactions.

A reminder about hydrogen. The stationary states ψnℓm(r) of a hydrogen-
like (single electron) atom are labelled by n, ℓ and m, where n tells you the
energy of the state,

En = −1

2
α2Z2mec

2 1

n2

and ℓ and m specify the orbital angular momentum (the angular part of the
wavefunction is ∝ Yℓ,m(θ,φ) ∝ eimφPℓ(cos θ)). The ground state wavefunc-
tion is

ψ100(r) =
1

π1/2a
3/2
Z

e−r/aZ ,

where aZ = a0/Z and a0 = h̄/(αmec) is the Bohr radius. Another way to
write the energy is in terms of e2/4πε0a0 = α2mec

2.

• Plug numbers into the formulae above for En and a0 and check that
they give the values you expect. (If you know the electron rest mass
in keV that will give you a useful starting point).

• A useful number to remember is mec
2 = 511 keV, which gives the

binding energy of hydrogen as (1/2)× (1/137)2 × 511 keV = 13.6 eV.

• For the size, the lengthscale h/mec is the Compton wavelength of the
electron. Putting numbers gives a0 = α−1(h̄/mec) = 0.53×10−10 m =
0.53 Å. Another useful quantity to remember is that h̄c = 197 MeV fm,
so we can also compute this as

a0 =
h̄c

αmec2
=

197 MeV fm

α 511 keV
=

197× 137

0.511
= 5.3× 104 fm.

Ground state. We can construct the Hamiltonian for helium by taking
two copies of the hydrogen Hamiltonian and adding the Coulomb interaction
between the two electrons:

H = H1 +H2 +
e2

4πε0|r2 − r1|
,



Hi =
p2i
2m

− Ze2

4πε0|ri|
where r1 and r2 are the positions of the two electrons, and Z is the charge
on the nucleus (Z = 2 in the case of helium).

• Assume the electrons are non-interacting. Write down the wavefunc-
tion for the ground state in terms of the single-particle hydrogen-like
atom wavefunctions ψnℓm. What are the units of your wavefunction?

• What do you predict for the ground state energy (i.e. the ionization
energy of helium) ignoring the electron-electron interaction?

• Estimate the relative size of the interaction term at the “back of the
envelope” level. How much do you expect the interaction term to
change the ground state energy?

• We can construct the ground state by putting both electrons into ψ100,
but then we need an antisymmetric spin state (singlet) so that the
wavefunction is overall antisymmetric:

ψ(r1, r2) = ψ100(r1)ψ100(r2)
1√
2
(|↑〉 |↓〉 − |↓〉 |↑〉) .

Note that it is not possible to write down an antisymmetric spatial
wavefunction when both electrons have the same single particle wave-
function, so there is no ground state wavefunction where the electrons
are in the spin triplet state.

• The two-particle wavefunction has the normalization integral
!

d3r1

!
d3r2 |ψ(r1, r2)|2 = 1

from which we can see that ψ has units of 1/length3 (as makes sense
since it is the product of two single particle wavefunctions, and single
particle wavefunctions have units 1/(length)3/2.

• Ground state energy:

(H1 +H2)ψ = E0ψ.

Each term gives a contribution −13.6 eVZ2, which for Z = 2 gives a
total ground state energy

E0 = −108.8 eV.



• Looking at the Hamiltonian and assuming that 1/(r2 − r1) ∼ 1/ri on
average, the interaction term is 1/4 of the sum of H1 and H2. So the
correction should be about 20% of the total energy. The interaction
term is positive because the electrons repel each other. A guess for
the true ground state energy is therefore

E0 ≈ −108.8 eV × 0.8 ≈ −87 eV.

The electron interaction term is a significant correction. This guess is
not too far from the actual value of ≈ −79 eV.

Excited states.

• Write down all possible wavefunctions for the first excited state.

• Write down the first order perturbation theory estimate of the cor-
rection to the first excited state energy due to the electron-electron
interaction. Just write down the integral that you would need to do,
no need to evaluate it. Does the energy depend on the choice of excited
state wavefunction? Explain what is happening physically.

• The first excited state corresponds to having one electron in n = 1
and the other in n = 2. Because the spatial wavefunctions are now
different, it is possible to write down an antisymmetric spatial wave-
function, so the spin triplet state is now an option. The two possible
wavefunctions are

ψs(r1, r2) =
1√
2
[ψ100(r1)ψ2ℓm(r2) + ψ2ℓm(r1)ψ100(r2)]

with the electrons in a spin singlet state, or

ψt(r1, r2) =
1√
2
[ψ100(r1)ψ2ℓm(r2)− ψ2ℓm(r1)ψ100(r2)]

with the electrons in a spin triplet state.

• With the four possible combinations (ℓ,m) = (0, 0), (1,−1), (1, 0), (1, 1)
and the four possible spin states (one singlet, three triplet), we end up
with 16 possible wavefunctions.



• The first order correction to the energy is

∆E =

!
d3r1

!
d3r2 ψ∗(r1, r2)

e2

4πε0|r2 − r1|
ψ(r1, r2).

If you substitute ψs, there are four terms

∆E =
1

2

!
d3r1

!
d3r2 ψ∗

100(r1)ψ
∗
2ℓm(r2)

e2

4πε0|r2 − r1|
ψ100(r1)ψ2ℓm(r2)

+
1

2

!
d3r1

!
d3r2 ψ∗

100(r1)ψ
∗
2ℓm(r2)

e2

4πε0|r2 − r1|
ψ2ℓm(r1)ψ100(r2)

+
1

2

!
d3r1

!
d3r2 ψ∗

2ℓm(r1)ψ
∗
100(r2)

e2

4πε0|r2 − r1|
ψ100(r1)ψ2ℓm(r2)

+
1

2

!
d3r1

!
d3r2 ψ∗

2ℓm(r1)ψ
∗
100(r2)

e2

4πε0|r2 − r1|
ψ2ℓm(r1)ψ100(r2)

We can write this as ∆E = I + J with

I =

!
d3r1

!
d3r2 |ψ100(r1)|2|ψ2ℓm(r2)|2

e2

4πε0|r2 − r1|

and

J =

!
d3r1

!
d3r2 ψ∗

100(r1)ψ
∗
2ℓm(r2)

e2

4πε0|r2 − r1|
ψ2ℓm(r1)ψ100(r2).

• If we instead use ψt, corresponding to the spin triplet state, the energy
shift is ∆E = I − J . The spin triplet state has a lower energy
than the spin singlet state, even though there is no spin term
in the Hamiltonian. The symmetry of the spin state introduces
(anti) correlations in the positions of the two electrons. When the
spin state is symmetric, the spatial wavefunction is antisymmetric,
giving a low probability that the electrons will be found close together.
This leads to less repulsion between the electrons, lowering the overall
energy.

• On the next page I’ve included the energy level diagram for helium,
taken from Sakurai and Napolitano:



The terms “para” and “ortho” helium refer to whether the electrons
are in a spin singlet or triplet state respectively. Notice that the overall
shift depends on the choice of ℓ for the second electron, but not on m
– can you see why looking at the integrals?

A more accurate ground state energy

• Try to make a more accurate estimate of the ground state energy
using either perturbation theory or the variational method (or both
if you have time). Compare your answer with the measured value
−78.975 eV. (For the variational method, one example of a trial wave-
function is to replace the charge Z in the hydrogen ground state ψ100

with an effective charge Zeff – the argument is that the electron feels
a smaller force from the nucleus because of screening from the other
electron. The energy can then be minimized with respect to the pa-
rameter Zeff . But you can try any trial wavefunction you like.)

To help you avoid doing a lot of integrals, here are some useful formulae.
For a wavefunction ψ(r) ∝ e−β(r1+r2)/a0 ,

"
∂2

∂r2i

#
=

β2

a20
,

"
1

ri

#
=

β

a0
,

"
1

r12

#
=

5β

8a0
.



You can prove the first two very quickly using the integral
! ∞

0
dr rne−2βr/a0 = n!

$
a0
2β

%n+1

(positive integer n).

The last one is straightforward but a bit more involved – I included the
proof on the next page so you can see it.

• Let’s use perturbation theory first. As before, the energy shift is

∆E =

!
d3r1

!
d3r2 ψ∗(r1, r2)

e2

4πε0|r2 − r1|
ψ(r1, r2),

where the wavefunction is ψ(r1, r2) ∝ e−(r1+r2)/aZ (using the expres-
sion for ψ100 from the beginning of these notes). We can use the
integral given above to evaluate this:

∆E =
e2

4πε0

5

8

1

aZ
=

5

8
Z
αh̄c

a0
=

5

4
Z
1

2
α2mec

2 =
5

2
× 13.6 eV = 34 eV.

This gives the ground state energy as

E0 = (−108.8 + 34) eV = −74.8 eV.

• For the variational principle, we evaluate the expectation value of the
full Hamiltonian with a trial wavefunction. If we use the ground state
wavefunction above but with Z → Zeff as the trial wavefunction, the
energy will be

E = 2
h̄2

2me

"
∂2

∂r2i

#
− 2

Ze2

4πε0

"
1

ri

#
+

e2

4πε0

"
1

r12

#

=
h̄2

mea20
Z2
eff − 2

Ze2

4πε0

Zeff

a0
+

e2

4πε0

5Zeff

8a0

=
e2

4πε0a0

&
Z2
eff − 2ZeffZ +

5

8
Zeff

'
.

Minimizing with respect to Zeff , ie. setting dE/dZeff = 0 gives

Zeff = 2− 5

16
= 1.6875

and

E = 2× 13.6 eV×Zeff

&
Zeff − 4 +

5

8

'
= −2Z2

eff × 13.6 eV = −77.5 eV.

This is closer to the correct answer than perturbation theory.



Calculation of electron interaction term
We want

I =

!
d3r1

!
d3r2 e−2β(r1+r2)/a0 1

|r2 − r1|

Choose coordinates such that the z-axis lies along r1. Then r1 · r2 =
r1r2 cos θ and we can write the integral as

I =

!
d3r1

!
2πr22dr2 e−2β(r1+r2)/a0

!
sin θdθ

1(
r21 + r22 − 2r1r2 cos θ

The angular part is

! 1

−1
dµ

1(
r21 + r22 − 2r1r2µ

=
r1 + r2 − |r2 − r1|

r1r2

giving

I =

! ∞

0
4πr21dr1

&! r1

0
2πr22dr2 e−2β(r1+r2)/a0 2

r1
+

! ∞

r1

2πr22dr2 e−2β(r1+r2)/a0 2

r2

'

= 16π2

! ∞

0
r1dr1e

−2βr1/a0

&! r1

0
r22dr2 e−2βr2/a0 +

! ∞

r1

r1r2 dr2 e−2βr2/a0

'

= 16π2 a30
4β3

! ∞

0
r1dr1e

−4βr1/a0

$
e2βr1/a0 − 1− βr1

a0

%

= 16π2 a30
4β3

&
a20
4β2

− a20
16β2

− β

a0

2a30
64β3

'

= 16π2 a50
16β5

&
1− 1

4
− 1

8

'

= 16π2 a50
16β5

5

8
.

The normalization factor is
!

d3r1

!
d3r2 e

−2β(r1+r2)/a0 = 16π2

!
r21dr1r

2
2dr2e

−2β(r1+r2)/a0 = 16π2 a60
16β6

.

Therefore "
1

r12

#
=

5

8

β

a0
,

which is the result given on the previous page.



Second quantization

These notes are an introduction to the formalism of second quantization,
which is a useful way to deal with systems of multiple, interacting particles.

Part 1 – The harmonic oscillator as a multiply-occupied single
state

The significance of [a, a†] = 1 in the harmonic oscillator. We are
going to start with a reminder of how we treated the harmonic oscillator in
terms of ladder operators. The Hamiltonian for the harmonic oscillator can
be written

H = h̄ω

!
a†a+

1

2

"
= h̄ω(N +

1

2
)

where a and a† are particular linear combinations of x and p, and N = a†a
is the number operator. The stationary states are also eigenstates of the
number operator, and we can label them by the eigenvalue of N :

N |n〉 = n |n〉 .

• Show that a† |n〉 is an eigenstate of the number operator with eigen-
value n+1, provided that the ladder operators obey [a, a†] = 1. (Sim-
ilarly you can show that a |n〉 is an eigenstate of N with eigenvalue
n− 1).

• To show this, act on a† |n〉 with the number operator and see what
you get:

Na† |n〉 = a†aa† |n〉 = a†a†a |n〉 − a†[a†, a] |n〉

= na† |n〉+ a†[a, a†] |n〉 .

We see that if the commutator [a, a†] = 1, then Na† |n〉 = (n+1)a† |n〉

This gives us the spectrum of states of the harmonic oscillator. The ground
state |0〉 is the state that obeys a |0〉 = 0 and then the excited states are
constructed by repeatedly operating with a†.

A single state occupied by multiple bosons. Now imagine that we are
dealing with a system of bosons that we are putting into the same single



particle state. We can use the machinery of ladder operators to describe
this situation. If there are n bosons in the system, we write the state as
|n〉 which is an eigenstate of the number operator N = a†a. We view a
and a† as annihilation and creation operators that subtract or add particles
to the system. The state |0〉 is the “vacuum” state that has no particles.
[Note that we are using N , a and a† here without assuming a particular
Hamiltonian, we will discuss later how to write down the Hamiltonian for
the multiparticle system.]

• If the single particle state we are dealing with here is |φ〉, write down
the state |n〉 in terms of products of |φ〉 (you just have to make sure
it has the appropriate exchange symmetry for bosons, and that it is
normalized).

• This is straightforward, the idea here is just to emphasize the difference
between the new notation |n〉 which describes the multiparticle state
with a single ket, and the state as written as a symmetrized product
of single particle states: |n〉 =

#n
i=1 |φ〉.

Fermions and the anti-commutator. Now think about putting a fermion
into the single particle state. We are only allowed zero or one particles
because of the requirement that the state be antisymmetric.

• Show that we can still define a number operator N = a†a and creation
and annihilation operators a† and a if we take a and a† to obey the
anti-commutation relation

{a, a†} = aa† + a†a = 1.

[Hint: follow the first question above and look at the eigenvalue of the
state a† |n〉 when acted on by the number operator. The difference is
that now {a, a†} = 1 instead of [a, a†] = 1.] What are the allowed
states?

• Repeat the argument from before. Act on a† |n〉 with the number
operator, but this time when we commute the operators, we write it
in terms of the anticommutator:

Na† |n〉 = a†aa† |n〉 = −a†a†a |n〉+ a†{a†, a} |n〉 .



Now if the anticommutator is equal to 1, we have

Na† |n〉 = (1− n)a† |n〉 .

We then see that a† |0〉 ∝ |1〉, so we can put one fermion into the
system. But we are not able to add another: a† |1〉 = 0.

Part 2 – Multi-particle system

In part 1, we were putting particles into a single state (i.e. constructing
the multi-particle state from products of a single one-particle state). Now
consider the more general case where we have a spectrum of single particle
states |ki〉 available (with i = 1...N , where N is the dimension of the Hilbert
space). We build the state by distributing the particles among the different
states |ki〉. In what we have been doing so far, we would write the state
of the system as appropriately symmetrized products of the single particle
states.

The idea in second quantization is to write the state of the system instead
in terms of how many particles are in each of the single particle states, ie.

|n1, n2, ...ni, ...nN 〉 . (1)

• As an example of these two ways of writing down the state of the sys-
tem, consider a two level system with single particle states |+〉 and |−〉.
What are the possible states for (1) two bosons, or (2) two fermions
in this system? Write your answers in two ways: as symmetrized
products of two states, and in our new notation of equation (1).

• How would you write down a single particle state |ki〉 in this new
notation?

• For fermions, we are only allowed one particle in each state, so the
only possible state is the singlet states

|11〉 = 1
√
2 (|+〉 |−〉 − |−〉 |+〉) .

For bosons, there are three possible configurations (triplet states)

|20〉 = |−〉 |−〉 ; |11〉 = 1
√
2 (|+〉 |−〉+ |−〉 |+〉) ; |02〉 = |+〉 |+〉 .



• The single particle state |ki〉 has ni = 1 and all other values of n zero,
i.e.

|ki〉 = |0, 0, 0, ...0, 1, 0, ...0〉 .

We move between these states by using particle creation and annihilation
operators a†i and ai which add or subtract one particle from the i-th state
|ki〉, ie.

ai |n1, n2, ...ni, ...nN 〉 ∝ |n1, n2, ...ni − 1, ...nN 〉

a†i |n1, n2, ...ni, ...nN 〉 ∝ |n1, n2, ...ni + 1, ...nN 〉 .

If we are dealing with bosons, we set

[ai, a
†
i ] = 1,

in which case ni can take any (positive) integer value, or for fermions we set

{ai, a†i} = 1

in which case we are only allowed ni = 0 or 1.

• Start with the vacuum state |0, 0, 0, ..0〉 and use the particle creation
operators to add a particle to each of states i and j. Does it matter
which order you do this in? Show that for bosons or fermions, the
particle creation operators for different states must commute or anti-
commute respectively (i.e. either [a†i , a

†
j ] = 0 or {a†i , a

†
j} = 0).

• If we add particle 1 to state i and particle 2 to state j with a†ja
†
i |0〉

this should be the same as adding particle 1 to state j and particle 2
to state i with a†ia

†
j |0〉, except for a minus sign in the case of fermions

because the wavefunction is antisymmetric to particle exchange. So
therefore a†ja

†
i = a†ia

†
j for bosons and a†ja

†
i = −a†ia

†
j for fermions.

Here is a table from Sakurai and Napolitano that summarizes all of the
(anti)commutation relations:



Make sure these all make sense to you.



Operators. Now we need to think about how to write down operators that
act on the states |n1, n2, ...ni, ...nN 〉. The simplest case is the single particle
operator K whose eigenstates |ki〉 are those that we are using to construct
the multi-particle states. If the eigenvalues are ki, that is

K |ki〉 = ki |ki〉 ,

we can write a corresponding operator K for the multi-particle states

K |n1, n2, ...ni, ...nN 〉 =
$

i

kiNi |n1, n2, ...ni, ...nN 〉

=
$

i

kia
†
iai |n1, n2, ...ni, ...nN 〉 ,

ie.
K =

$

i

kia
†
iai.

• Now consider a different single particle operator M with eigenstates
|mi〉. We could define creation and annihilation operators b†i and bi
that add or subtract particles to the state |mi〉. Argue that these

operators are related to a†i and ai by

b†i =
$

j

a†j 〈kj |mi〉 , bi =
$

j

〈mi|kj〉 aj .

[Hint: You can use the fact that single particle states can be generated
by acting on the vacuum with the creation operator, and use the usual
formula for expanding a state in a different basis. ]

• Show that the multi-particle version of M can therefore be written

M =
$

ij

a†iaj 〈ki|M |kj〉 .

• We can expand |mi〉 as

|mi〉 =
$

j

〈kj |mi〉 |kj〉 .

If we then write |mi〉 = b†i |0〉 and |kj〉 = a†j |0〉, the first result follows.
Taking the complex conjugate gives the second.



• If we work with the creation and annihilation operators for states |mi〉,
we have

M =
$

i

mib
†
ibi

=
$

i

mi

$

j

a†j 〈kj |mi〉
$

ℓ

〈mi|kℓ〉 aℓ

=
$

j,ℓ

a†jaℓ 〈kj |
%
$

i

mi |mi〉 〈mi|
&
|kℓ〉

=
$

j,ℓ

a†jaℓ 〈kj |M |kℓ〉 .

So we can write the operator M in any basis by computing its ma-
trix elements in that basis and using the creation and annihilation
operators corresponding to that basis.

• As a specific example, write down the kinetic energy operator for a
multiparticle state. Do this for both position representation and mo-
mentum representation. (This example is using a basis with a contin-
uous eigenvalue spectrum, so the sums above will become integrals)

Interactions between particles. If we have pair-wise interactions be-
tween particles, we can represent that as a matrix Vij = Vji, where i and j
refer to an interaction between particles in states |ki〉 and |kj〉.

The multiparticle version of this operator is

V =
1

2

$

ij

Vija
†
ia

†
jajai.

• It is important to note that the specific ordering of the operators is im-
portant here. The operator V does not correspond to (1/2)

'
ij VijNiNj

which you might have guessed would be the correct form. Why not?

• If i and j are different, then we can reorder the operators to read
a†iaia

†
jaj and we do in fact have a sum over NiNj . The factor of 1/2

is there because we overcount the interactions when we sum over all
pairs of particles twice. The subtlety comes in the terms where i = j,



i.e. where we are dealing with an interaction between particles in the
same state. For bosons,

a†ia
†
iaiai = a†iaia

†
iai − a†i [ai, a

†
i ]ai = Ni(Ni − 1).

This is the number of ways of choosing two particles from ni without
replacement. For fermions,

a†ia
†
iaiai = −a†iaia

†
iai + a†i{ai, a

†
i}ai = Ni(1−Ni).

Since ni = 0 or 1 for fermions, we see that the terms with i = j vanish
in this case,. There is no chance for two particles in the same state to
interact, since only one particle can go into each state for fermions.

• As before, we might not be working in the basis in which V is diagonal.
Consider the case where

V =
1

2

$

ij

Vijb
†
ib

†
jbjbi,

where the b operators create or annihilate particles in the |mi〉 states
as above. Show that in terms of the a operators, this is

V =
1

2

$

ijℓn

〈ij|V |ℓn〉 a†ia
†
janaℓ,

where

〈ij|V |ℓn〉 =
$

αβ

Vαβ 〈ki|mα〉 〈mα|kℓ〉 〈kj |mβ〉 〈mβ |kn〉 .

• This is straightforward to show if you use the relations we had earlier
to write the b operators in terms of the a operators. You just have to
keep track of the coefficients and separate out the ones that represent
the incoming and outgoing states and those that enumerate the matrix
elements of V .

• As a specific example, consider a potential V (ri, rj) between particles
at positions ri and rj (this could be a Coulomb interaction for ex-
ample, ∝ 1/|ri − rj |). Write down the operator V using momentum
representation (ie. where a†(p) acts on the vacuum to create momen-
tum eigenstate |p〉).



K E operator

In themomentum basis we can write immediately

f d p at I acqi II2M

Position basis
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Second quantization summary

See notes from last time for solutions

Particle creation and annihilation operators
a at

Fermions Bosons

ai at3 1 I ai at I

ai aj3 0 ai a 0

Singlepartide operator

M E aitaj ki Ml kj
ij

ait adds a particle to this

Pairwiseinteraction

V Iz E Vij atat aj ai



The ordering aitajtajai does the erect
accounting

if j faitat aj ai z aitai ataj

Iz Ni Nj

i j bosons Ni Ni D

fermions z NiCI Ni 0

In a basis where V is not diagonal

V z Een Ellen aitajtanae

Vijen

where

Vijne Vap Kilma malke

X k Imp Cmp kn



cans see last time

K E K fate atcel acyl II
f d x att ace Emp

units of at I aces are perunit volume

Two body potential VC 112 1,1

V z f d p die d E TG
at Ritz

at I 2 all a Ii

eg screened Coulomb V r IM
TCq EE



Cooper pairs

Degenerategas of electrons fill states up to
the fermi level

Y g Fermi surface tf Ep

Ikk KF

Consider two electrons just above the fermi
surface with an attractive interaction

attractive interaction mediated by the positive
ions

Cooper instability the two electrons have a
bound state no matter how weak

the attractive potential

Cooperpairs act as bosons

macroscopicground state Superhidity
superconductivity



More next time

This is not usually true

eg square well has a minimumdepth
required for a bound state to exist
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seeTinkham Introduction to
Cooperpairs Superconductivity

Solve the S E for a pair of electrons near

the fermi surface with an attractive potential
V lez kill

tm of toil y V4 Ey

Take theelectrons to have oppositely directed
momenta since this gives the largest phasespace
for the outgoing state strongest interaction

with V0 we would have

4 K K a e
ik Ceti

a eik
r

f
relative
separation

and E 2x tk LEF

With the interaction turned on write



4 F E E th e
ik E

Plug this into the S E

E Ind
f citi t vEfeet E qq.e.it

Now take F T f e
it t

d e x S E

giving

tf fr t Ey faith E fr

with Pkk f e
Ck k

V r d e

FT of thepotential we also wrote this down
last time eg Tle gag

for screened Coulomb



So we have

ta I Ii

Cooper take Uk Vo

for Ep End Eft AE

eg electron phonon interaction

vcq.ws Ete ftp IE
co for low frequency we we

phonon
frequency

The phonon spectrum cuts off at w we

Debye frequency

so we are limited to DE Tw 15 Ee



With Vh1 Vo 4

Efa Vo EyEy fk
k

I to Item
p

this is Ifg EF de

ÉgÉ
EF

gl Er In 2522,1ft
E ZEE IE e

2 9CEFN

ZEE boundstate ever for

arbitrarily small Vo



BCS theory Bardeen Cooper Schrieffer 19571

The argument above shows that the Fermi

gas is unstable to the formation of pairs near the
Fermi surface Oncepairs condense the system
moves to a new equilibrium We can explore this

using second quantization

H E Eunko t Yak Chi Chi Enoch's
T T

momentum spin

interaction term
kineticenergy of forpairswithoppositemomenta
the electrons singletspin

comparewhat we wroten ka ChoCho last time for the 2 body
potential V

Tpmamations

C ktChr bk C ki cha bk

expectation value
C htCha assume small



Neglecting quadratic terms in the fluctuations

gives the interaction tom as

Uh circa tr t bi en chip bitbn

Defining the gap Ak Urk th

and measuring the energy with respect to the
chemicalpotential p Sk ER M

gives the model Hamiltonian

Hm 5kchocks

Akcat eh Ant cat cha Arbat

Notice that we now have a Hamiltonian that is

quadraticonly in the c operators We should
determine the bp's self consistently such that
by EntCrp



Bogoljubow Valatin transformation

Defiopearsthalminear combinations
of the C's

I unter nicht

ft U CIntt UntCrt
The coefficients satisfy up t up 1

This leads to

Hm 5k EptArbat Ek ftp.trktrr

f Ins
with Ep 5k t ID Sk En p

and up I lurk l Ey



BCS Ground state

14as Th Up t UkCtaCta 107

satisfies Jk 14as 0
Jp 146s 0

Notice that this is a sum of terms

Catch ios

with different numbers of pairs
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Last time we endedupwith the BCS ground state

14g Th un t UkCtaCtn 107

Keysteps were
mean field approximation

ChrEnt I bk t fluctuations

5
self consistently choose by so
that chaEpt bk

Boglimbor transformation

rate uf cat intent

of Utp Ert it can
Choose up and up to diagonalize the Hamiltonian

H Sk Ent Sabat t EnCri rat thtrn



lunt l lur l Eg Sk Er M

Ep Spit Apl Dk Uhh th

The ground state satisfies xp 1467 0

Occupation numbers

eventhough 7 0

it
if

interaction lowering

the total energy

hw hw hern

Mean number of paired particles is NT 2141

ri 441412141 II Ey



The decrease in energy is

g Ee A A condensation

energy

Thepairs overlap with one another

sizeof Cooperpair Ip Ip Ip

K Eg hi EE

ExcitedStates minimum excitation energy is A
there is a gap in theenergyspectrum

g E

Eri É

o Y EM



 

IPart4Relativity
Klein Gordon equation

For a non relativistic freeparticle

Y a e I the i Eth

then the Schrodinger equation

it 0,4 It
it 254

gives
E
In as expected

For a relativistic particle we need

E p ca t m2 4

One option is

it y c it 2 y may



I 1,4 04 444

I o
my 4 0

Klein Gordonequation

Points to note

this is Lorentz covariant because we can
write it in terms of the 4 derivative

on I 12

gi d d drop 02 12 5 o

the Klein Gordon equation is

For E 4 0



A reminder about 4 vectors

contravariant vector eg XM et I

transforms according to X'M AM x

J py o oti

fer r O O

O 0 1 O

o o o p

boost in x direction

if youmultiply this out you'll get the
standard Lorentz transforms for x and t

Covariant vector Xp gyu X

gnu metric tensor

Following Sakurai we will take

guv diag 1 1 1 1



eg Xp Ct x

Transforms with A rather than A

This means that the inner product XMxp
generates a scalar independent of frame

eg energy momentum PM Etc I

pipe gpu pip

EE p me

J
We can write the freeparticleplane wave
as

y a e II h e
i Eth

e
ipry a

If you substitute this into the KG equation
you'll get EZ pact at



The lengthscale Ec is the
Katanga

It is the scale on which the confinement

energy

E
becomes comparable to the rest mass energy

me

potential for particle creation

We can easily incorporate EM fields

Cgs unitspr ph Ect fistwhere AM 4 1 AM

gives E E 9

T
electrostatic energy



and I I Ef
canonical momentum

Furthermore we can write

P E 1

it f it it

it 1 1

it on

So if we define Dr E J t if
AM

then the KG equation is

Didnt CET 4 0
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Last time we wrote down the Klein Gordon

equation in Lorentz covariant form

Didnt Cy 4 0

where
DM Or t

iqAM accounts for EM fields

Freeparticle y a e ip
x

This looks promising as a relativistic version of
Schrodinger's equation but there are a number of
questions it raises

1 Negative energy solutions

For a free particle E I pct me

for a given momentum there are two
solutions one with E 0 one with Eco

Compare E 142m o



2 Conservation of probability

In non relativistic AM

0 2 I
where the probability current

I it 4 24 424

Relativistic version Ijm o

ji it it dry 4 out

check on ji In 4 04 407

Im EH P CET
O

y



The time component gives the probability density

p 5
2 14 4 It

We see that p can be negative

3 The KG equation is secondorder in time

we have an initial value problem
where we have to specify both 4 t o

and Y t o

How to interpret 4 t o



The resolution of these questions is to
interpret the negative energy solutions as
representing antiparticles with oppositecharge

p is charge density

Specifying 4 and if at t o means we

have to specify the charge ie particle or

antiparticle

ie there's an extra degreeof freedom hiding in
theequation that we need to specify

Looking at the KG equation for a charge q

ta it 11 4 fitz get y
t m c 4

We see that if y is a solution for charge q
then y t 11 11 11 q



moresimply D On iggy stays
the same

if we take i s i and a g

It is possible to write the Ka equation as
two first orderequations in fine see Sakurai
whichmakes explicit the idea that there are
two degrees of freedom

Ultimately the limitation of a singleparticle
wave equation in relativity is the possibility of
particle creation for E me

quantum field theory

relativistic version of secondquantization

We are going to move on to the Dirac equation
which came from attempting to find an equation
that is 1st order in time
As we will seen it contains yet another
degree of freedom particle spin



 

Dirac equation

iron my 4 0

What does JM look like

in'd my irion ME 4 0

journo Ey 4 0

looks right if fyrd d Old

W Jd

805 1 812 1 Cmv

joy Jgr Mtv

A way to write this is

81,83 11



Thesimplest objects that obey this are the
set of 4x4 matrices

1 dij o

o 1

ji o i

ai o

o Pauli
matrices

ie ro on 8 1

Y is a 4 component spinor

particle
I

41

I antiparticleo



Free particle Pp it on

The Dirac equation becomes

rip me y 0

Components

j E j p me o

E joy pic t y me

Yi Y
With the x and p matrices the Dirac
Hamiltonian is

H I I c f p me

and we can write
it off y

ed is a
spinor



EM fields

As before we include Em by writing

pm pi gate

eg 1 0

470

H If
a t Emc t a

eg relativisticatoms



Conservation of probability

yt it 8 HY

4 fit It Hot

it qty 4thy y Hy
t

It I it 24 41 itZyt
it 1 Yta 4

This is in the form

E 2 I
with

y qty
positive definite

I yt y

we are back to a

probability density



To write this in covariant form define

T ytyo

y qty yt j joy 484

I 4 8824

T ja y e I 814
So we see that

ji Tory

Orji o



Particle in a magnetic field

This is an interesting examples because it reproduces
the spin term in the NR Hamiltonian

Write thewavefunction as

4 1
With
1 q1 I

theDirac equation is

ma CE I

a I mo
E

lowerpart NR limit

C E I U M C v E V Z MEU

I I U Zinc v



upperpart

Mc u t c I I V E U

Miu
Edu Eu

We can use the identity
E IT T t II INI

Sakurai Chapter 3

The cross product Ix I does not vanish
because I contains a gradient

f it 2 EA x it EA u

itq Ix Au 1 21

iheart u it.EE u



We arrive at

Em I B a CE mi u

I g Ems
p
z

TE e
The non relativistic limit knows about spin



 

Dec 6 2021
Solutions for a free particle

4 settingThe Dirac equation is

mo I Ic
IIc na I

E
Y

First consider a particle at rest 1
0

then me
y E Y

has eigenvalues me me me mi

eigenvectors

III III
For I PÉ

Y mi I p
O pc

nd 4 Ey
p c o



has eigenvalues E tEp Ep Ep Ep

where Ep Cpc 4 mc4

We can see from the structure of the matrix that
the spin up down components are coupled

separately

eg look for y ng
with E Ep

me u t pc u Ep u

pc u mo v Ep U

pen Ep mo u

pc u Ept me u

see u t then u
Epiph Epfme

and 4 a
0

a



The 4 eigenvectors are

E Ep E Ep
helicity
Epl

l

g

tfright handed

left handed

eachhas a normalization factor
Effy

and is a e
imma

Measure spinup spindown withrespect to the
momentum direction

Her E I ai



Dirac's interpretation of negativeenergysolutions

they are occupied by a sea of electrons which

prevents electrons with E 0 from lowering their

energy by moving to Eco

E E with E 0

Positrons are holes left by promoted electrons

4 Y Its
an electronenoughenergy
to move to E 0

OThole left behind behaves as a
positron

This interpretation seems problematic what about
bosons for example



Feynman Stackelberg interpret negative
energy solutions going backwards in time p p
as equivalent to positive energy antiparticles
going forwards in time

E o

w ZE

Fe
Charge conjugation

r ont ight 4 t ing 4
0

if x c c

G
gives

it ret on iq y ing tir't
O



But got yo y't y yet y

y 23

and yr y't p u

222Mt yr g
2

ri on iggy ight time ight
o

ie if y satisfies the Dirac equation for
a charge q then if 24 satisfies
the Dirac equation for q

particles antiparticle

Check the freeparticle solutions

o o l
ofit 1



eg
if t

changes right handed left handed
particle antiparticle

a e
ipman

a etipmast


