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1. Radiative Transfer

These are notes for the first part of PHYS 642 Radiative Processes in Astrophysics. The
idea is to get as far as we can without worrying about the microphysics by which radiation is
emitted, absorbed, or scattered. We will develop a formalism to follow the radiation from its
source to the observer through intervening material, taking into account absorption, emis-
sion, and scattering, and discuss the properties of thermal radiation. Examples covered are
radiative diffusion in stellar interiors and the Rosseland mean opacity, the grey atmosphere
as the simplest example of a stellar atmosphere, the spectrum of an atmosphere and limb
darkening, and the origin of emission and absorption lines.

1.1. The specific intensity and its moments

We describe the radiation propagating in a particular direction in terms of the specific
intensity 7,. The energy crossing per second per unit area perpendicular to the beam is

dE = I, dA dt dQ dv (1.1)

in the frequency interval v to v+ dv and in the cone of solid angle df) about the propagation
direction.

The specific intensity has a simple relation to the phase space density of the photons.
Defining the single particle occupation number f, such that the number of particles with
momentum p and position ¥ is

2
dn =Y fo d°% d&°p (1.2)
a=1

We sum over the two polarizations of the photons, labelled by «. We make the connection
with [, by rewriting the volume element in momentum space in terms of the magnitude and
direction of the momentum,

h3v2dy dQ)
&y = p*dpdQ = —— (1.3)
c
and the spatial volume element in terms of the area element perpendicular to the photon
propagation direction, and a length cdt, which gives the distance travelled by photons in
time dt,

d*% = dA cdt. (1.4)



This gives
dn — B aa gt aa d 1.5
n — Z fa C_Q 1% ( . )
and therefore
_ shv’
L= fah — (1.6)

The energy density of the radiation is

1
U :/ &g fohv = - /Iv dv d§) (1.7)

from which we see that .
U, =1 /Iy 4o, (1.8)
c

We can also write an expression for the energy flux F. In the x-direction, for example,

F, = /d3ﬁz fa Vg hv (1.9)

where we construct the flux by multiplying the number density of particles by the velocity
in the x-direction and the quantity being carried, here energy. If 6 is the angle with respect
to the photon propagation direction, then

I, = /d?’ﬁz fo hve cosf = /L, dv d)cos 0 (1.10)

Similarly, we can derive the pressure of the radiation by calculating the momentum flux
across a unit area. The flux of z-momentum in the x-direction is

1
Po= [ @Dy faovepe= [ EDY fah 29:—/[,,d d cos® 0 1.11
/ p;f Uy P / p;f v cos . v dSQ cos (1.11)

We see that the energy density, pressure, and flux can be expressed in terms of the
zeroth, first, and second moments of the radiation field,

cU, 1 1 [t

Y — = — I,d) == I 1.12

Y= [ nan = / 1, (1.12)
F 1 1 [t
vopg,=— |1 0=z I 1.1
Yon = = [ Leosoa 2/_1duuy(u) (1.13)
cP 1 1 [
N I S 2r 1.14
Tk, M/,,cosed 2/_1duu () (1.14)
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where the integrals over u are for an axially symmetric radiation field, where dQ) = 27 du
with p = cosf. The quantity J, is known as the mean intensity.

Let’s do some simple examples. An isotropic radiation field has I, constant for photons
propagating in all directions. Then

cU, 3cP,
=J,=1,= 1.15
47 47 ( )
or ]
P, = §U”’ (1.16)

The flux vanishes for integration over all solid angles. The flux from a surface is given by
integrating over a hemisphere in solid angle,

F, =, (1.17)

Another example is a unidirectional radiation field, e.g. I, = [4d(p). This gives P, = U, in
contrast to the result for an isotropic radiation field. In an atmosphere as we move towards
the surface, the radiation field becomes more and more outwards directed, and P, /U, goes
from 1/3 — 1. Keeping track of this variation is important in modeling stellar atmospheres.

1.2. Thermal radiation

An important case is when the radiation is in thermal equilibrium at temperature 7.
Then the photon distribution function is given by the Bose-Einstein distribution with zero
chemical potential (1 = 0)

1
3r _
hofa = chv/ksT _ (1.18)
the same for both spin states «, giving
2hv? 1
I, = B,(T) = (1.19)

2 ehw/ksT _ |

which defines the Planck distribution B,(T") or blackbody spectrum. The two limits hv >
kgT and hr < kgT both have names. The Rayleigh-Jeans part of the spectrum at low

frequency is given by
2 2
B, = kyT o 1. (1.20)
c
This formula can be obtained by counting the photon modes and assuming each has kgT of
energy in thermal equilibrium. Taken to large frequency, this predicts infinite energy in the
photon field, the so-called ultraviolet catastrophe. The resolution is in the quantization of
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the photon energy spectrum. At high frequencies, the photon energy becomes much greater
than the thermal energy hv/kgT, and the occupation number is exponentially suppressed,

giving the Wien tail
2hv3 —hv
B, = . 1.21
o (1) (121)
The other point to note about the blackbody spectrum is that 0B, (T")/0T|, > 0, that is the
emissivity increases at every frequency when the temperature increases. In other words, the

blackbody curves all fit inside each other in a plot.

The peak of B, is at hipax = 2.28kpT (the Wien displacement law), or vp.x/7T = 5.88 X
10'° Hz K~!. The peak of B) is given by AmacZ = 0.290 cm K.

Integrating over frequency’ gives B = [ B,dv = acT*/4m where the radiation constant

s i
15 (he)?

a= = 7.5657 x 107" cgs. (1.22)

Since B, is isotropic, we can use our earlier results for the energy density and pressure, which
are

1
U=aTl" P = gaT‘*. (1.23)

The flux from a surface is F,, = 7B, or integrated over frequency,
L 4
F=nB= ZacT =ogpT (1.24)

where the Stefan-Boltzmann constant is ogp = 5.67 x 107° cgs.

1.3. The transfer equation for emission and absorption

Having defined I, and looked at some examples, we now ask how I, changes as photons
propagate through space. First, consider propagation through vacuum so that photons

'Use the result [~ dza3/(e” — 1) = 7*/15.
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are neither created or destroyed. The single particle distribution function f, satisfies the
collisionless Boltzmann equation

10 AN
Ea—l—k-Vfa—O (1.25)

where k is a unit vector giving the photon propagation direction. This is straightforward
to derive. The idea is that photons initially at position (¥, ) in phase space will be at
position (& + Ecdt, p) a time dt later. The photons conserve phase space volume as they
propagate. Setting the number of photons in a phase space volume d*Zd>*p constant implies
that fo (2, p,t) = fo(Z + kedt, p,t + dt). Equation (1.25) follows by a Taylor expansion.

Since [, and f, are related by a constant factor, then

101, - =
- k-VI,=0. 1.2
Tl \Y 0 (1.26)

There are two points to make about this equation. First, the first term is often much smaller

than the second term if the timescale for evolution of the system we’re interested in is
much longer than the light crossing time for that system. Second, in general photons are
not conserved but scattered, absorbed, and emitted and we account for these processes by
adding source and sink terms to the RHS. Define coordinate s along the photon path, we

then have
dl,

ds
In general, we must solve a number of equations for [, at different photon frequencies and

= (sources) — (sinks). (1.27)

propagation directions. Emission and absorption of photons by matter are obvious sources
and sinks that we must include. Also, scattering moves photons from one direction to another
and perhaps from one frequency to another if it is inelastic.

The spontaneous emission coefficient j, is defined as the energy emitted per unit time,
volume, in a given direction and frequency, so that

dl,
ds

Jv (1.28)

with units erg cm™3 s7! Hz ! sterad™!. Often the emission process is isotropic, and it’s
useful to define an emissivity €,, where

. pey

= 1.29
v =" (1.29)

(units of €, are erg g=! s7! Hz™!). We'll calculate j, due to various physical processes later
in the course. Notice that locally where we can treat j, as constant, the specific intensity
increases linearly due to emission.
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Now consider absorption of photons. Draw a cylinder around the direction of photon
propagation, with length ds and cross-section dA.

If the absorbers have number density n, and each has a cross-section for photon absorption
of o, the absorption cross-section looking along the cylinder is ondAds. The probability
that a ray is absorbed on traversing the cylinder is therefore onds = ds/l, where | = 1/no
is the photon mean free path?.

Therefore, as the beam passes through the material,

1
d[V = —nods = —#. (1.30)

Rather than writing [ in terms of n and o, in astrophysics it is usual to write

l— — — — — = (1.31)
noe  Kp o«
where p is the mass density, x is the opacity (units cm? g=!) and « is the opacity coefficient
(units cm™!), giving
dl, I I (1.32)
— = —prl, = —a,1,. :
ds P
The absorption results in exponential decrease in I, as the photons propagate (one e-folding
per photon mean free path).
The final result is
dl,
ds
which describes radiative transfer with emission and absorption.

ju - auly (133)

2To see that this is the photon mean free path, construct a cylinder of cross-section o and length ! along

= \‘~ —

—_——

the direction of the photon. = We are guaranteed an absorption on average if there is one

absorber in the cylinder nol = 1. This defines the mean free path .
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1.4. Optical depth, source function, and Kirchoff’s theorem

We define the optical depth 7 by d7 = ads = kpds = ds/I, or

S

7(s) — 7(s0) = / a(s)ds (1.34)
S0

If 7 > 1 when integrated along a typical path in a medium, the medium is said to be optically

thick (most photons absorbed), whereas if 7 < 1 along a typical path, the medium is said

to be optically thin (most photons escape).

To get a sense of the size of the mfp as a function of density, we can estimate ¢ ~ o
where o = 87r2/3 = 6.63 x 1072 cm? is the Thomson cross-section and ry = €*/m.c?

is the classical electron radius®

. This cross-section is for Thomson scattering rather than
absorption, but gives a starting point for an estimate of an interaction cross-section. For a

gas of protons, the cross-section per gram is then

or

k=— =040 cm® g~ . (1.35)
mp
The photon mfp is
1 0.5 M
= — = 2P (1.36)
no  (n/cm=3)
or
1 2.
= Lo b (1.37)

pr (p/g cm=?)
The first case is a typical interstellar medium (ISM) density, the second case is for the mean
density of the Sun. For the Sun, the mean free path is a factor ~ 10! smaller than the
radius of the star, so that the solar interior is extremely optically thick. For the ISM, the
mean free path we estimate is larger than the size of the Galaxy. Of course, we haven’t
included the correct opacity sources for optical photons travelling through the ISM, but still
this estimate makes the point that at ISM densities the mfp can be large.

In terms of optical depth, the transfer equation is

dl, ]_,,
dr, «,

—1,=8,-1, (1.38)

where we define the source function S, = j, /.

3Note that in cgs, the electron charge is e = 4.8032 x 10710 cgs.
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The general solution of the transfer equation is*

I(1,) =L,(0)e ™ + / e~ TS, (7)) dr. (1.39)
0

Each term has a simple physical interpretation. The first term describes absorption of the
incident radiation 7,(0). The second term is an integral over the emitted photons given by
the source function, and a factor to include absorption of those emitted photons as they
propagate to optical depth 7,.

As a simplified case, consider S =constant. Then the solution is
L(r,)=1L(0)e™+58,(1—e™)=8,+e ™ (L(0)—5,) (1.40)

which shows that for large optical depths, I, — S,. If initially I, > S,, then photons are
absorbed from the beam until 7, = S,. Similarly, if I, < .S, initially, then photons are added
to the beam until I, = S,. For small optical depth, I,(7,) =~ I,(0)(1 — 7,) + 7,5,.

An extremely important result is Kirchoff’s law, which states that a material in ther-
modynamic equilibrium at temperature 7" has

j, = a,B,(T) (1.41)

or

S, = B,(T). (1.42)

One way to see that this must be the case is to consider an object placed inside a thermal
cavity and allowed to come into equilibrium with it. It must replace any radiation it absorbs,
frequency by frequency.

A true blackbody has «, constant, independent of frequency (a “perfect absorber”
absorbs all frequencies equally), and so has j, o< B,. But this is not true for real materials,
which have an emissivity weighted by a non-constant absorption coefficient. At frequencies
which are readily absorbed, the emissivity is high, and vice versa. An example of this is
emission lines from thermal optically thin gas (e.g. in the chromosphere of the Sun). The
absorption coefficient x, is larger at the frequencies of line transitions, and therefore so is
the emissivity.

4To see this, first take out the expected e~ behavior by defining f = Ie7, and g = Se”. Then df /dT = g
can be integrated to give eq. [1.39].
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1.5. Examples
1.5.1. Stellar interiors

Let’s consider optically thick regions such as stellar interiors. A good assumption is often
local thermodynamic equilibrium (LTE), in which the degrees of freedom associated with the
particles (e.g. atomic energy levels) are characterized by their values in thermodynamic
equilibrium (TE) at temperature 7. In this case, S, = B,(T'). The difference from full TE is
that the radiation field in general does not have a Planck distribution, I, = B, (T"). However,
our solution for the radiative transfer equation tells us that I, — B, for optically thick LTE
material.

We first write ds in terms of the radial coordinate r, as ds = dr cos = udr for a photon
propagating at angle 6 to the radial direction. Then

dl,
A e 1.43
e (1.43)
Since the optical depth increases inwards, it makes sense to define the radial optical depth
as dr, = —a,dr, and so
dl,
1 ==-S,+1, (1.44)
dr,

where the factor of p on the LHS accounts for the fact that 7, is the radial optical depth.

Next, we take the moments of equation (1.44). Integrating over solid angle gives

1 dF,
—— Y —_5,+J, 1.45
47 dT, * ( )
and multiplying by p and integrating gives
dp,
=F,. 1.46
¢ dr, ( )

We have assumed S, is isotropic so that f dQ2uS, = 0.

In a stellar interior, we already mentioned the fact that 7 > 1, and therefore we expect
I, =~ B,. However, there must be some anisotropy in the radiation field since the photons
transport heat outwards. Therefore

I, = B,(T') + (small anisotropic part) (1.47)
Now look at equation (1.46). The flux F, must come from the anisotropic part of I,, but

the pressure is mostly set by the isotropic part, P, =~ 4w B, /3c. Therefore

dm dB, dT

F,=- —.
3pk, dT dr

(1.48)
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Integrating over frequency gives the total flux

4 dT 1 dB
md dd,,

3p dr Vli_l, dr’

(1.49)

Next, we define the Rosseland mean opacity

dB, | 1 1 dB,
— - ) 1.
{/dydT}FaR [/du Ky dT} (1.50)
The factor on the LHS is

dB, d d [acT*

and therefore we arrive at

3
g tacl”dl (1.52)
3kpp dr

the radiative diffusion equation.

We see that radiation diffuses down the temperature gradient, as would be expected.
We can rewrite equation (1.52) as

ol d
F=—zcl— (aT*) (1.53)

exactly what we would have guessed from a kinetic theory approach. The 1/3 factor is the
usual factor from integration over angles, and the transported quantity is the photon energy
density aT?. At a given location, the photons coming from deeper in the star are hotter (by
an amount =& [dT'/dr) than those coming from cooler regions above.

We can use equation (1.52) to understand the solar luminosity. We expect

Lo =~ 4wR*F
1 aT?
~ 4nR =cl—<
TRYTR

(4”;%3 aTj> (%) . (1.54)

In the second line, we approximate d(aT?)/dr ~ aT}/R, where T. is the central temperature.
In the last line, the first term is the total energy content in radiation in the solar interior.
In the second term, we are dividing by the time for a photon to random walk out of the
Sun. Recall that for a random walk, the total distance travelled is R = v/ NI where N is the
number of steps. Therefore the time to escape is Nl/c = R?/lc = t 4., and

s (1.55)
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Let’s plug in some numbers: the central density of the Sun is p ~ 150 g cm~3 which gives
[/R ~ 10713 (see eq. [1.37]). The light travel time is R/c & 2 s, and therefore t.s. ~ 10° years.
The luminosity of the Sun L, = 4 x 1033 erg s™!. Putting this together gives T, ~ 9 x 10° K.
Not bad, the actual value is 1.5 x 107 K.

1.5.2.  Grey atmosphere: temperature profile, limb darkening

Next, we consider the solution of the radiative transfer equation in the stellar atmo-
sphere, in which the optical depth drops from 7 > 1 to 7 < 1. The simplest case is a grey
atmosphere, in which “grey” refers to a frequency-independent opacity x, = k. Equation
(1.45) integrated over frequency is

1 dF
—_— =-S5+ J 1.56
47 dt + ( )

which for a constant flux F' implies that we must have S = J. Similarly, the frequency-
integrated equation (1.46),

- _F 1.
e (1.57)

gives the simple result P = (F'/c)(T + 79). To close these equations, we make the Eddington
approximation that U = 3P or 3P = 47.J/c. Then,

3cP 3F
S=J="2 " (745, (1.58)
A 47
To find the constant 7y, we solve the radiative transfer equation for I(7) and then use it
to find the flux F' at the surface. Only for the correct choice of 7y is the solution self-consistent

in this way. The specific intensity is
dr’

I(T,pu) = / e~ =Tk gG (1) e (1.59)

Substituting our expression for S gives 1(0) = (3F/4m)(79 + p) for u > 0 and I(0) = 0 for
i < 0. The flux at the surface can be found from

1
/ 27 dp 1(0), (1.60)
0
which is equal to F only if 7 = 2/3.

If we assume LTE, then S = B, and therefore

3F 2
p_g_ St 2 1.61
S o (T+3> (1.61)
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but F' = 0T and B = oT*/m, giving

3 2
T = 1Tjﬂr (T + g) : (1.62)
the temperature profile of the grey atmosphere in the Eddington approximation. Note that

T = Tex at 7 = 2/3. This optical depth is often taken as the photosphere.

The specific intensity for arbitrary depth is (for outgoing rays, u > 0)

3F 2 3Fu
I = — - =B+ —. 1.63
) = (w5 +7) =B+ 7 (1.63)
This shows that at large optical depth, the anisotropic part of the specific intensity is ~ 1/7

of the isotropic part.

We can also estimate the amount of limb darkening we expect. This is the effect that
when we look at the edge of the Sun, we see to cooler layers for a given optical depth. The
limb therefore appears darker than the face of the Sun. In our solution,

I(T=0,p=0) 2

I(7=0,u=1) 5 (1.64)

A full solution to the grey atmosphere (without the Eddington approximation) gives 0.35 (see
Appendix which summarizes the exact solution to the grey atmosphere from Chandrasekhar’s
book). Here is a comparison of the observed limb-darkening of the Sun compared to the
Eddington approximation result, taken from Carroll and Ostlie.

0.9 °

08¢ .
i .
€ 07
= . |
S |
06| . ;
= . 4 . b
0.5 Eddington approximation
¢ Observed limb darkening e !
; {
e - o
0 10 20 30 40 50 60 70 80 90
Angle 8 (deg)

It may seem surprising that the Eddington approximation P = U/3 gives such good re-
sults given that it holds for an isotropic photon distribution, whereas the photon distribution
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is anisotropic in the stellar atmosphere. In fact, the Eddington approximation holds for more
general angular distributions of the photons. For example, if the photons are isotropic in
the outgoing and ingoing hemispheres, but with different intensities, the Eddington approx-
imation holds. Similarly, the Eddington approximation holds for the anisotropic intensity
I = a+ by (or with additional terms as long as only odd powers of y are included).

1.5.3.  Spectrum of a grey atmosphere

Having calculated the temperature profile of the grey atmosphere, we can now go back
and calculate its spectrum if we assume LTE so that the source function is B, (T") at each
depth. Then the outgoing specific intensity at the surface is

dr

" (1.65)

1,(0, 1) = / " B, (T())

where we can take T'(7) as previously calculated using the Eddington approximation. The
emergent flux is

1
RO = [ duzme o (1.66)
1 e
= / d,u27ru/ e_T/“Bl,(T)d—T (1.67)
0 0 K
0o 1
= or / drB,(T) / dy e~ ™/" (1.68)
0 0
= 27r/ dTBl,(T)/ d—fe_m (1.69)
0 1 X
- / dr B, (T) Es(7) (1.70)
0

where we have made the substitution x = 1/u, and E,(7) is an exponential integral®.

°Defined as E, (1) = floo x~"e~ " dx. These functions occur often in analytic solutions to the radiative
transfer problem. Some properties (which are straightforward to prove) are: E,(r) — e */x for © — oo,
Ei(x) - In(l/z) as z —» 0, E,(z) - 1/(n—1) asz = 0 (n > 1), (n—1DE,(z) = ¢ % —zFE,_1(x),
dE,/dx = —E,_1(x), and [;° dzE,(x) = 1/n. This last result can be used to show that eq. [1.70] gives the
correct result for an isothermal atmosphere, F,, = 7B, (T).
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1.00

VF /T
o
o
N
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The first question in the homework 1 is about calculating the spectrum using equation
(1.70). The plot above compares the grey atmosphere spectrum with a blackbody spectrum.
The grey atmosphere spectrum is harder than a blackbody at the effective temperature, i.e.
it has enhanced emission at higher photon energies. This is due to the increasing temperature
profile with depth.

1.5.4. Emission and absorption lines

Of course, the spectrum of the Sun is not smooth and featureless like a blackbody or
grey atmosphere spectrum, but has many absorption lines. The figure below is taken from
Carroll and Ostlie. We can use the general solution to the equation of radiative transfer to
get a feeling for when to expect absorption and emission lines.

Before we do this, it is interesting to note that the smooth part of the Sun’s spectrum
differs from a blackbody in the opposite way to a grey atmosphere — i.e. higher frequencies
are suppressed slightly and lower frequencies enhanced. As discussed in chapter 4 of Shu’s
book, this difference was used to infer that the opacity in the solar atmosphere must increase
with frequency (so that lower frequency photons come from deeper in the atmosphere, where
the temperature is greater). This frequency variation was explained in the 1930s/40s when
it was realized that H™ dominates the opacity in the atmosphere.
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Figure 9.5 The spectrum of the Sun. The dashed line is the curve of
an ideal blackbody having the Sun’s effective temperature. (Figure from
Aller, Atoms, Stars, and Nebulae,

Revised Edition, Harvard University
Press, Cambridge, MA, 1971.)

We already briefly mentioned optically thin, thermal gas, for which if we assume that
the source function does not depend on position,

I, = / S, (e ™dr, = S,(1—e ™)~ 1,8, =1,B,. (1.71)
0

At the frequencies associated with line transitions, the absorption coefficient is large, and
therefore so is the emissivity, 7, = «a, B,. The spectrum looks like this:
A&

v

)

1 [ L‘ | |

Cophyousa st T 'E'u (:TJ

27

Note that since 1 —e™" < 1 the brightness of the emission lines can never exceed the Planck
spectrum at the temperature of the gas (dashed line in the Figure).

A stellar atmosphere produces an absorption line spectrum. In this case, the object
we're looking at is optically thick. At the frequencies of the absorption lines, a given optical

depth corresponds to a much smaller physical depth, and therefore the photons come from
a lower temperature region, giving a lower intensity than the continuum.
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To get some intuition for this, a simple problem is a background source viewed through
a layer of gas in LTE at temperature T

The solution is
I, =1,0e™+B,(T)(1—e™). (1.72)

Now, if 1,(0) > B,(T) then
I, = [Iu(()) - BV(T>] e+ BV(T) (173>

is smaller at larger 7, and so would give absorption lines at frequencies where a,, is larger
than the continuum absorption coefficient. (See also problem 1.9 in Rybicki and Lightman).
If 1,(0) < B,(T) on the other hand (e.g. the source is cooler than the layer of gas), then
the brightness will be larger at frequencies with a higher optical depth, and an emission line
spectrum would be seen.

1.6. Scattering

So far, we have not included scattering processes. The reason is that in general including
scattering introduces significant complexity in solving the equation of radiative transfer.
Scattering abruptly changes the direction and possibly frequency of the scattered photon,
resulting in an integro-differential equation as we will see below.

1.6.1. Scattering only

Start by considering a medium with no emission or absorption, scattering only. We will
assume that the scattering is monochromatic, coherent, elastic — i.e. no change in photon
frequency occurs on scattering, only direction. In general, we can write

dI:liE) = —0,L(F) + 0, / o (B ) 1, (') ae (1.74)
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where o, is the scattering coefficient, the first term on the RHS describes photons removed
from the beam by scattering, and the second term describes photons added to the beam by
scattering from other directions. The function ¢ gives the probability of scattering from ini-
tial direction & into direction k, and is normalized such that [ dQe¢(k, k') = [dQé(k, k') = 1.

For simplicity, we will assume isotropic scattering, for which ¢ = 1/4r is a constant, i.e.
all scattering angles are equally likely. In that case,

dl,
E == _0'1,_[1/ + Usz/~ (]‘75>

If we define an optical depth dr, = o,ds, then

dl,
dr,

=—I,+5, (1.76)

with the source function for scattering S, = J,.

The number of scatterings required to escape a medium depends on whether it is opti-
cally thick or optically thin. In the optically thick case, 7 > 1, the scattering photon executes
a random walk, and the number of scatterings is given by L = /NI, or N = (L/l)? = 72
In the optically thin case, 7 < 1, the chance of scattering is [/L which gives N ~ 7.

1.6.2. Scattering and absorption

Putting scattering and absorption terms into the radiative transfer equation gives

dl,

= —o, 0, +0,J,+ j, —a,l,. (1.77)
If the gas is in LTE, then j, = o, B,, and
dl,
= a, (B, —1,)+o,(J, — 1) (1.78)
s
= —(w+o0,)(l, =S (1.79)

where we have defined a source function for absorption and scattering,

. al/BV + O-Z/JI/

Sy
o, + o0,

(1.80)
If we define the total optical depth dr1, = (v, + 0,)ds, then we recover the same form of the
transfer equation as earlier

dl,
dr,

=—I,+85,. (1.81)
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We can check the limits of this expression: if J, =~ B, then S, ~ B,; if J, ~ 0 then
S, ~ B,a, /(aw, +0,) < B,.

Another way to write the source function is to define the absorption probability €, =
a,/(a, + 0,). The source function is then S, = €¢,B, + (1 —€,)J,.

Now think about the random walk of a photon in a gas with scattering and absorption.
The number of steps before being absorbed is 1/¢,, giving the mean free path to absorption
l,=VNl=1/\/e,. Butl =1/(a, +0,), and so

1

Vo (a, +0,)

This length is known as the diffusion length, thermalization length, or the effective mean free

I, = (1.82)

path. The effective optical thicknessis 1, = L/l, = y/er. When 7, < 1, most photons escape
without being absorbed (but they might scatter multiple times depending on the value of
7). This implies a luminosity L = 47a, B,V where V is the volume. For 7, > 1, we expect
I, — B, and S, — B,, giving a luminosity L =~ 4w, B, (Al,) where Al, is the volume from
which photons can escape, or since a,l, = /€, we get L ~ 4m,/e,B,A. For ¢, = 1, we
should get L = wB, A, so this estimate is off by a factor of 4, but the important point is
that we see that when scattering is included, the emissivity is reduced by a factor of /e,.
There are two competing effects. First, the emitting volume near the surface is increased by
scattering, since the depth from which photons escape is [/1/e. However, the mean free path
[ is shorter by a factor of €, so the overall emitting volume is actually smaller by /e.

Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

e Specific intensity [, and its moments F,, P,, U, = 4xnJ,/c. Source function, S, =
Jv/a,. Outwards flux F,, = wl, for isotropic I,. Closure relations: P, = U,/3,
P,=U,.

e Mean free path [ = 1/a = 1/no = 1/pk. Optical depth.
e Radiative transfer equation
dl, . 7
=Jv —udy
ds J

e General solution. For constant source function,

I, = L(0)e™ + 8, (1—e™),
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giving I, — S, for 7> 1 and I, = I,(0) + 75, for 7 < 1.

e Thermal radiation. U = aT*, P = (1/3)aT*. Properties of Planck spectrum. Apax =
0.29 cm/T. Kirchoft’s Law j, = a, B,.

e Local thermodynamic equilibrium (LTE). Radiative diffusion equation. Rosseland
mean opacity.

e Stellar atmospheres. The Eddington approximation and the source function and tem-
perature profile of a grey atmosphere. 7 = 2/3 as the photosphere. Limb darkening.

e Emission lines from optically thin thermal gas. Conditions for forming absorption lines.

e Scattering as a random walk. Number of scatterings to escape max(7,72). Source
function Bt
al/ 12 UV 12
Sy=————=6B,+(1—¢,)J,.
o, + 0,

Thermalization depth. Emissivity of a scattering atmosphere F, = /e, 7B,.
Reading

e Rybicki and Lightman, chapter 1.

e Chandrasekhar, S. “Radiative Transfer” Dover 1960. Classic treatise on radiative trans-
fer. Analytic solution for grey atmosphere.

e Mihalas, D. “Stellar atmospheres” W.H. Freeman & Co. 1978. Now unfortunately out
of print. Detailed treatment of the physics of atmospheres and also it tells you how to
calculate a “real” stellar atmosphere.

Appendix: Chandra’s exact solution for a grey atmosphere

In his book Radiative Transfer, Chandrasekhar presents a beautiful analytic solution
to the grey atmosphere. We summarize it here, and compare the results with our solution
derived using the Eddington approximation.

For a grey atmosphere, S = J regardless of the degree of scattering or absorption. The

transfer equation is
dl 1 ! / /
po () =1(rp) =5 [ dil(r,y) (1.83)

-1
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an integral equation for (7, u).

If we follow only a finite set of pu values, the integral can be written as a sum,
dl; 1
Hi - = I; — B) Zaj[j (1.84)
for i = +£1,£2,...4n. Gaussian quadrature is used to choose the appropriate u;’s and the
corresponding a;’s. For

1 m
Fwdp = a;f(ny) (1.85)
the appropriate choice is to choose the p; to be the zeroes of P, (1), and
1 Y duPp,,
4 = — / 1 (1) (1.86)
Ph(u) Jo m—wy

(where 377" | a; = 1) (e.g. see Chandra’s book or numerical recipes). This choice gives an
exact solution for f(p) a polynomial with order < 2m. For integrals of the form [ e™* f(z)dz,
the Laguerre polynomials are used instead. For any weight function (e~ in this case), a set of
i; and a; can be constructed that solves the integral exactly for f(z) a polynomial of degree
< 2m. This is therefore a good technique for numerically integrating smooth functions. Note
that Chandra uses the terminology “nth approximation” for m = 2n, i.e. we use the roots
of Py, (p) for which a; = a_; and p_; = —p;.

Chandra derived an analytic solution for equation (1.84). First, we look for a solution
with exponential dependence on 7, I; = g;e "7, i = +1,...4n. Substituting this into equation

(1.84) gives

constant
;= —— 1.87
9= Tk (1.87)

where k is determined by

a;
1 ; rTER (1.88)
There are 2n — 2 roots t£k,, for « = 1,...n—1. We keep only the k£ > 0 roots, since we want [
finite at large optical depth. There is also a solution linear in 7, I; = b(7 + ¢;), i = £1,...%n.
Substituting into equation (1.84) gives ¢; = @ + p; where @ is a constant. Therefore, the

solution is
n—1

Lye FaT
Zl+uika+7+“ +Q (1.89)

which has n constants () and L, to be determined. To fix their values, we set I_; = 0 at

a=1

7 = 0 (no ingoing radiation at the surface) which gives

n—1

L, ,
—_— — U = =1,.. 1.
Zl— it R=0 i=1,..n (1.90)

ivay
a=1
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Given the analytic expression for [I;, the flux, pressure and mean intensity can be cal-

culated
F = QWZWZJ,. (1.91)
% =K = Z a1 (T +Q) (1.92)
J = % mbz%§h+qﬁﬂ (1.93)
where -
¢(7) =Q+ >  Lae™*. (1.94)
po

Putting S = J, we can then solve for I(u) for all values of p,

n—1
3F Loe ket
T = 1.95
(1) = £ﬂ1+%M+T+M+Q (1.95)
and at the surface
n—1
3F H(p)
= 7 1.96
I v (1:90)

The tables in Chandra’s book give Q, L., and k. for different n’s. At all orders, the Hopf-
Bronstein relation holds at 7 = 0, J(0) = v/3F /4.

To make a connection with our Eddington approximation solution, let’s look at the first
approximation (n = 1). Then looking at Chandra’s table VIII we find Q = 1/4/3, and we
have two photon directions p+ = +1/4/3 which are the roots of Py(p) (there are no L,’s
to consider for n = 1). This gives another way to understand the discussion in Rybicki
and Lightman section 1.10, where they introduce a “two stream approximation” using these
angles, motivating them by saying that this choice gives moments that satisfy the Eddington
approximation. Another point to note is that this solution is very similar to the Eddington
approximation solution, but with @ = 1/4/3 = 0.58 rather than Q = 2/3 = 0.67. The
different approximations made in each case are that in Chandra’s solution, the ratio 3P/U
is not assumed to be constant, but only two photon directions are followed, whereas in the
Eddington approximation the ratio 3P/U is fixed to be unity, but all photon angles are
followed.

Let’s check the limb darkening ratio. For the Eddington approximation, this was I(u =
0)/I(u=1) = 2/5. In the first approximation I (g = 0)/I(x = 1) = Q/(1+Q) = 0.37. In the
second approximation n = 2, we have () = 0.694, k; = 1.97, and L, = —0.117. The angles are



97
pe1 = £0.340 and pyo = £0.861. Then I(p=0)/I(n=1) = (Q+L1)/(14+Q+L1/(1+k1)) =
0.35.

Next, look at the temperature profile which is given by equation (1.93) with J = S = B.
Then

T = 3T (r + (7). (1.97)

In the Eddington approximation, ¢(7) = 2/3. In the first approximation n = 1, we have
q(1) = 1/4/3. In the second approximation,

q(1) = Q+ Lye™™" (1.98)

which changes from @ + L; = 0.577 at 7 = 0 to @ = 0.694 at large 7.
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2. Radiation from Accelerating Charges

These are notes for part two of PHYS 642 Radiative Processes in Astrophysics. The
basic physics underlying the radiation that we see is that accelerating charges radiate. The
power radiated from a single charged particle ¢ moving non-relativistically (u < ¢) is given
by Larmor’s formula

2q°1>
P = 2.1

where % is the magnitude of the acceleration. In this section, we derive this equation, and

use it to understand the emission from a thermal plasma due to scattering of electrons from
ions, bremstrahlung radiation. Next , we consider emission from collections of particles using
the multipole expansion. Applications include: X-ray emission from galaxy clusters, free-free
opacity in stars, the spectra of compact HII regions, emission from spinning dust, and the
spin down of radio pulsars.

2.1. Derivation of the radiation field of an accelerated charge

Here we go through the derivation of the radiation fields of an accelerating charge
starting with Maxwell’s equations. We’ll skip a lot of the algebra and focus on the physical
ideas.

In cgs units, Maxwell’s equations are

-

V-E = 4mp (2.2)
. 4rJ  10FE
B = —+4+-— 2.3
VX c + c Ot (23)
> 10B
EFE = —— 24
VX c Ot (24)
V-B =0 (2.5)
together with charge conservation
Jdp = =
ZF J = 2
5 +V.-J=0 (2.6)

In these units, the Lorentz force is
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It is convenient to work with potentials

A=B E=-Vé¢--— 2.
V x Vo . (2.8)

(recall that the B field is always divergence free, but E can have both divergence and curl if
0B/0t is non-zero).

Substituting these potentials into Maxwell’s equations gives

20 _ i_C? A — _4_ ] o le A }_&i
VA 2 c +V IV A+ ot (2.9)
2 Ot? 4 c ot cot|’ (2'10)

I've written the equations this way to emphasize that ¢ and A satisfy the inhomogeneous
wave equation

2 (40) - L (r ) a7
(1) - 125 (1) = (. e
if we choose 1 06
V- AL 2" . 2.12
\Y +Cat 0 ( )

In fact we are free to choose V- A (only the curl of A which gives B is the physical quantity)
in this way — this choice is the Lorenz gauge.

The solutions to equations (2.11) are the retarded potentials

o(ryt) = /M (2.13)

Ay = 1 / (re)er (2.14)

where the integrand is evaluated at the retarded time

—
/

r—r

t=1t-—

- (2.15)

=

The physics of this makes sense — the relevant value of the source (p or J) is the value a light
travel time ago. Electromagnetic disturbances propagate at the speed of light. In electro- or
magnetostatics, ¢ — ¢, and the expressions for the potentials should be familiar.
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For a point charge moving with velocity @ along a path 74(t), we can write

p(rit) = qd(F—ro(t)) (2.16)
J(Ft) = qid(F—r5(t)). (2.17)

e CoNeak F-:s;ew'o.1

. (Q f’_ﬁvb" 2 f

Substituting these expressions into the potential integrals, and evaluating gives the Lienard-
Wiechart potentials for a point charge,

=[] A= . 218
¢ [/{R [cnR] (2.18)
where the notation [...] means that the quantity inside the brackets should be evaluated at
the retarded time,
- U L.
k=1——— R = |r—7ri(t)| (2.19)
c

and 77 = ¢, = R/ ’é . This is the same idea as before — evaluate the source p or J at the

retarded time, but now p and J are non-zero only on a particular track through space 74(t).
For u < ¢, we see that ¢ = [¢/R] is the Coulomb potential.

The factor x has a simple interpretation as the effect of the finite velocity on the apparent
size of the volume element. The basic point is illustrated by the thought experiment where
one measures the length of a moving train.

¥ 7 Z. Ghsenses
ST FE ToWa W ST
(I? s
L



- 31 -

Photon 1 is emitted from the far side of the train at t = 0. It is straightforward to show that
photon 2 from the front of the train should be emitted at position x = L’ if it is to arrive at
the observer at the same time as photon 1, where

L

L = .
1—v/c

(2.20)

The length L' is the apparent length of the train. The volume element 37 in the integral
undergoes the same distortion

/pd3ﬁ S — (2.21)

1—1i-u/c
We think the charge is spread out over a larger volume than it actually is.

Once we know the potentials, we can differentiate to find the fields. This is where we

Y
ﬁ;%cﬁ x {(ﬁ - @) x a—f}] (2.22)

B(Ft) = [ﬁxﬁ] (2.23)

skip some algebra, and give the result,

B0 = [ (i-5) 0- )]+

where 5 = @/c.

Let’s take a closer look at each term and see if they make sense. The first term is known
as the wvelocity field,

By = | (7= 8) (1-87)]. (2.24)

For B < 1, By = [q7i/ R?] which is Coulomb’s law, and B is smaller by 3 than E. The vector
1 — [ points to the current position of the particle:

Remarkably, for a particle moving at constant velocity, the electric field Ey points in the
direction of the current position of the particle even though the electric field is determined
by its position at the retarded time!
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The second term, which involves 85’ /0t, is called the acceleration field or radiation field,

—

Erad =

s { (5-7) < ]

(2.25)

This is the term that gives rise to radiation. Since F,,q « 1/R, the Poynting flux is oc 1/R?,
giving a constant energy per unit area at large distance since the area of constant solid angle
increases oc R?. The velocity field decreases as 1/R? (as for the static Coulomb field), and

does not therefore contribute at large R.

2.2. Radiation from non-relativistic particles: Larmor’s formula

We will need the relativistic version of Erad later for emission by relativistic particles,
but for now we assume § < 1, and therefore kK = 1, and we need not distinguish between

the current time and the retarded time. Our aim is to calculate the Poynting flux

— C - —
S=—Fx B.
47 %
Sinceézﬁxﬁ, then
§= 2 (Bx (ix E)) 5|8l
= — n = —N
47 47

where we use the fact that 7 - £ = 0.

Now substitute

gives
S=i i x (7 x )
43 R?
The vector 7 X (7 X ﬁ) is the piece of @ that is perpendicular to the direction of 7.
. I—
P ‘Z /./’f H‘\\
7 ; /Z \
rS r'.’-fﬂ:’\ h k\_ ’ /._/,_ i \‘-_,\‘H‘
P B N
:/l E'r‘m l ..,i! (IJ AV ff“b{dr‘b"i
-.6 -l— to ACCed 2" o

5 T
cMre C,E\"ﬁ 2

(2.26)

(2.27)

(2.28)

(2.29)
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Therefore we see that the radiation electric field is perpendicular to the radial direction,
which is why it leads to a radial Poynting flux.

P
Defining the angle © so that ’ﬁ x (i x 4)| = sin® O, we arrive at the final result

. q2u2 o
S =n m S1n @, (230)
which is the flux at distance R and angle ©. Now since the area element is dA = R?dS), then
we can rewrite this as aw 55
qgu- . 9

— = ) 2.31

dtdQ ~ A T (2:31)
which is the power radiated per unit solid angle at angle ©.

The total power radiated is given by integrating over all solid angles

_ dW _ (qU)2 . 2
P = — =3 /Sln@ dQ (2.32)
or .
q°u
P=="—"— 2.
a (2:39

which is Larmor’s formula.

There is a nice graphical argument which can be used to obtain Fy and therefore Lar-
mor’s formula, due to J. J. Thomson and presented in Longair’s book High Energy Astro-
physics. The idea is to consider accelerating a particle for time At by an amount Av. In a
frame moving at the original velocity of the particle, the particle now begins to move. The
idea is that a time ¢ later, there is a sphere at radius ¢t within which the electric field lines
point to the current location of the particle, and outside which the electric field lines point
back to the original location (the field doesn’t “know” yet that the charge has moved).
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The Figures you need are above, taken from Longair. The graphical argument gives

Ey  (Av)tsinf

—_ =" 2.34

E. cAt ( )
but E, = q/r* = q/(ct)?, and so Ey = qusin/c?r, exactly as we found earlier. This shows

very nicely that Ey/FE, grows with time ¢ o< 7, and so Ey o< 1/r.

2.3. The spectrum of the emitted radiation

Next, we consider the frequency spectrum of the radiation. As might be expected, the
frequency spectrum is related to the time history of the acceleration of the particle. To see
this, we write the power radiated per unit solid angle as

2

2

dW c

—

dtdQ) — 4rw Alt)

(2.35)

(note that A is not the vector potential, but a temporary definition for this section; we are
following the notation and argument of Jackson 14.5). The argument is to integrate over all
time to get the total energy emitted per unit solid angle,

aw o

2
a0 ’

- 12 <o
A ar = / A (2.36)
where Parseval’s theorem has been used to rewrite the integral in terms of the Fourier

transform of /Y(t) We write the Fourier transforms as®

—

At) = \/% /_ T Awe e Aw) = \/% /_ T AWt (2.37)

If A(t) is real, then A(—w) = A*(w), and so we can integrate over positive frequencies over
and multiply by two. The energy radiated per unit solid angle per unit frequency interval is

therefore
aw

dod 2

Aw)

‘2 (2.38)

6 As usual, beware of different normalizations used by different authors. I prefer the symmetry of putting
1/4/2m in front of each integral in the pair; Rybicki and Lightman put the full 1/27 in front of the integral
for A(w).
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2.4. Thermal Bremsstrahlung

An important emission mechanism arises from Coulomb collisions between electrons and
ions in a plasma. Consider an electron scattering from an ion, with impact parameter b. For
the purposes of calculating the radiation, we assume that the path is undeviated (dashed
line in the Figure), which is a good approximation since we are generally in the limit where
small angle scattering dominates.

.-___4—— - —_— = N

o [
b

This gives us a chance to apply our formula for the frequency spectrum (eq. [2.38]) Since we
assume the particle travels in a straight line, the angle to the observer ©® does not change
with time. Therefore

AW 2 L /00 ewdtL sin © 2 _ ¢ |i(w)|” sin? © (2.39)
dwdQ " |V2r ) o (4mc3)1/2 213 ' '

The angle of the incoming electron with respect to the line of sight is random, and so
averaging over incoming angles is equivalent to integrating over the outgoing solid angle,
giving the frequency spectrum of the radiation

d_W_4_c]2 it )’2_4_‘12
do 36 "W T35

where we write down the two components of the acceleration, perpendicular to the motion

(uﬁ(w) + 47 (w)) (2.40)

and parallel to the motion.

We parametrize the particle path so that at ¢ = 0 the particle is at closest approach, dis-
tance b away from the ion. The perpendicular acceleration is then given by the perpendicular
component of the Coulomb force,

Ze? 1 b
m b + u?t? /02 + w22

where the last factor gives the perpendicular component of the force. The total change in

iy = (2.41)

velocity perpendicular to the path is given by

Ze? [ bdt 27 ¢?
Aut — _ 2.42
- (b + u?t?)3/2  mbu (242)

—00
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It is straightforward to see that this is much larger than the acceleration parallel to the
path. Energy conservation gives before and after scattering u* = (u — Auj)* + Au?, or
Auy/Au, ~ Ze? /bmu® which is small for small angle collisions.

Therefore,
) _ 1 OO iwt Z€2 b
u(w) = G /_ooe dt m (b2 + u2(2)3/2 (2.43)
1 Z62 ) dl.eiwa/u \/§Z€2
Y 172292 N zmap? ™ 2.44
2m mub /OO (1+ x2)3/2 Wmuby 1(y) ( )

where y = wb/u and K;(y) is a modified Bessel function. The limits are yK;(y) ~ 1 for
low frequencies w < v/b, and yK,(y) ~ (ym/2)"/?e™¥ for w > v/b. That is the frequency
spectrum is constant below w = wu/b, and falls to zero for higher frequencies. This makes
sense because since b is the distance of closest approach, b/v is the shortest timescale in the
problem, and we might expect no higher frequency components. On the other hand, at low
frequencies, the ¢! term is approximately unity, and (w) ~ Au/+/27. Another way to look
at it is that the interaction is strongly peaked around ¢ = 0 when the particle is at closest
approach, and therefore the frequency spectrum is very broad.

Substituting 4, (w) into equation (2.40) gives the spectrum for a single particle collision
averaged over angles for a particle value of impact parameter b. The total emission rate per
unit volume is

dt dw dV dw

VAL bmax i [/ wh wh\ 12
— 73m2c3uneni/b‘ ? |:<E> Kl (;>:| (246)

min

bmaX
W = nnu / 27b db M(b) (2.45)
bmin

An approximate way to write this is

dw 1622 /bmax db
b

p— N 2-4
dt dw dV 3m203unenl b (2:47)

min

for wb/u < 1, and zero for wb/u > 1. The integral over impact parameters gives the Coulomb

- 4t

min

logarithm

which indicates a logarithmic divergence for large b, that arises because the Coulomb force
is a long range force.

How do we choose by,.c? To be consistent with our approximation for the integral, we
should choose by, = u/w, that is only consider values of b that give a contribution to the
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spectrum at frequency w. For by, there are two possibilities. The “classical” approach is to
choose by, as the impact parameter where Au, = wu, that is the impact parameter where
a large angle scatter occurs, giving by, = 2Z¢?/mu?. (This is also the distance of closest
approach for a repulsive interaction.) However, if by, = A/meu is larger, then we should
choose that instead. Then quantum mechanics sets by,;,. You can think of this as the impact
parameter of a particle with one quantum of angular momentum. The changeover occurs
when 2Z¢? /mu® = h/mu or

1 2\?
Smu? = 2° <%> mc = Z*a*me? = Z2(13.6 eV) (2.49)

(where o = €2 /Ric is the fine structure constant). We see that the classical calculation is no
longer appropriate when the electron energy exceeds Z2Ry.

In general, the emissivity is written as

dWw B 16€8
dt dw dV — 3m2cu

nen; 2 [%gff] (2.50)
where g7s(w, ) is the Gaunt factor. As our classical calculation indicated, the Gaunt factor
is typically a slowly varying function of w and wu, so that the prefactor gives the major
dependence. A classic paper which presents calculations of gss is Karzas and Latter (1961).
The Gaunt factor is also plotted in Rybicki and Lightman’s book. You’ll see the parameter
v = Z*Ry/kgT which measures the transition between the classical and quantum regimes.

For a gas with a thermal distribution of velocities,

3/2 2
flu)du = (27TZBT) exp (— QW;:T) 4rutdu (2.51)

we can average over the velocity distribution to obtain the total emissivity due to ther-
mal bremsstrahlung. However, we must be careful to cut off the velocity distribution at a
minimum velocity Uy, where hw = mu2; /2. This accounts for photon discreteness, that
is the incoming electron must have enough energy to produce the photon of frequency w.
Combining equations (2.50) and (2.51), we can see that the answer will look like

dw <, mu? '\ grr(w)
— d — 2.52
dtdVdw /um o eXp( 2kBT> u (2.52)
o9 2
_ ) mu
— 2.
X Gff g d(u®) exp( 2kBT) (2.53)

min

hew
X Gfyexp <_I€B—T> (2.54)
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for a suitably averaged Gaunt factor gsr. Keeping the prefactors, the result is

aw 257e’ o \ /2
= 22T Py pew/keTy 2.55
dtdVdw — 3mc® (3k3m> Hefti€ 911 (2.55)
or
eff =6.8x 107 erg s7' cm™® Hz ™! Z2neniT_1/2e_h”/kBT§ff (2.56)

where gyss is the thermally-averaged Gaunt factor, €, is the emissivity (where j, = €,/4m).
We write “ff” for “free-free” which refers to the fact that we can think of the electron as
making a transition between states in the continuum.

We see from equation (2.56) that the thermal bremsstrahlung spectrum is approximately
flat at low frequencies, with a cutoff at hv ~ kgT.

Y, CahnlF ate fum kT

\;'5:

The spectrum is not completely flat at low frequencies, there is a small slope set by the
frequency dependence of the Gaunt factor.

The total power per unit volume is [ dv e//, which gives

AW orkpT\"? 257eS
dtdv :< 3m ) Shm B (2.57)
or
7 =14 %1077 erg s em™3 TY?n.n; 2%G3, (2.58)

where gg(T') is the thermally-averaged and frequency-averaged Gaunt factor.

The classical example of gas emitting thermal bremsstrahlung is hot gas in Galaxy
cliusters. There is a question on this in HW2 in which you can work out the details. The
turnover in the spectrum gives a measure of the temperature of the gas, as a function of
position in the cluster, and the total luminosity tells you about the gas mass.

2.5. Free-free absorption opacity

By Kirchoft’s law, we know that there must be an absorption process corresponding to
bremsstrahlung or free-free emission, which is known as free-free absorption. The absorption
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coefficient is given by

i1f 1 aw

VA 2.59

G BT) ~ 4B, (T) dtdVdy (2.59)
4 2T 1/2

_ T71/222 T -3 1 — —hv/kgTY\ = 2.60

3mch <3k3m> neniv ™ (1 —e ) 915 (2.60)

= 3.7x10% em™ T2 Z%n =3 (1 — e ™/k5T) gp ). (2.61)

In the Rayleigh-Jeans limit, hv < kgT, o/ = 0.018 cm™! T—3/22%n n,w=2g;;.

In optically thick regions, the Rosseland mean opacity is the relevant quantity. Recall
that the Rosseland mean is defined by

jula-Yort] s

off = 1.7 x 107 777220, g, (2.63)

The result is

where the prefactor comes from Rybicki and Lightman. The T-7/2 factor comes from the
T-12y=3 dependence of the frequency-dependent opacity, since the averaging replaces hv
with a multiple of kgT'. For use in stellar interiors, it is more convenient to write down an
expression for the opacity kg = agr/p. To do so, we write n. = pY./m,, where Y, is the
number fraction of electrons, and n;, = pY¥;/m, where Y; is the number fraction of nuclei.
The opacity is then

Y. X 7Z?
Héf =6.1 x 10* cm® g~* 57/2 Z 5 (2.64)

where the sum is over the charges Z;, masses A;, and mass fractions X; of nuclei. In terms of
the nuclear charges and masses, Y, = >, X;Z;/A; and Y; = Y. X;/A;. **The prefactor here
doesn’t agree with Clayton or Itoh who have 7.53 x 102%**_ The result x oc pT~"/? is known
as Kramer’s law. A rough rule is that free-free absorption is important in stars less massive
than the Sun, and Thomson scattering in stars more massive than the Sun. This is shown
in HW2, where you will see that it results in a change in the slope of the luminosity-mass
relation for main sequence stars at around 1 M.

Another application to mention is to compact HII regions, which can be optically thick

to free-free absorption at low frequencies (aff oc v=2

at low frequencies). They are said to
be self-absorbed and this gives a falling spectrum at low frequencies, as you will see in HW

2.
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2.6. Multipole radiation

So far we have dicussed radiation resulting from acceleration of a single particle. We
now turn to a collection of particles, and use the multipole expansion to evaluate the radiated
power.

First, a reminder of the multipole expansion in electrostatics or magnetostatics. The
electrostatic potential at a large distance from a charge distribution can be expanded as

3 &7 & Qg-é
Mﬁz/ﬂﬁjﬁzg+ Ly % + o (2.65)
7 r r r
where
Q= [ p(rd* (2.66)
is the total charge,
ﬁ:/pmyww (2.67)
is the electric dipole moment, and
(Q2)ij = /,0(7“7) [37”%- — 1%0,4] d>r (2.68)

is the electric quadrupole moment tensor. Similarly, for a current distribution, the vector
potential can be expanded

- L [T o< e,
mm:—/(”ﬁrzm2€+m (2.69)
c ‘F— 7 r
where .
n=— [ x Jr)d 2.70
i = oo [ 7% T (2.70)
is the magnetic dipole moment. To derive these results, expand
1 1 . (A
— &~ = (1 + + ( ; + > . (2.71)
7 r r r

The idea is to now do something similar for the time-dependent case, in particular to
expand the retarded potentials (eqs. [2.13] and [2.14]) and therefore radiation fields as a
sum of multipole components. In the time-dependent case, there is a new lengthscale in the
problem, which is the wavelength of the emitted radiation A. We will assume that the size of
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the emitting region d < A\ < r, and that the particles are non-relativistic. (In other words,
the light-crossing time d/c is much smaller than the wave period 27 /w = 27 /ck = \/c.)

We start by looking at an individual Fourier components J(7,¢) = J(7)e~* etc. The
spatial part of the vector potential is then, from equation (2.14),

. 1 L 3_)ezk|77—r7‘
A(T) = —/J(r’)d r - (2.72)
C 7—,’_ r!
since the integrand is evaluated at the retarded time (¢ =t — |7 — 77| /¢). Our approach will
be to calculate A(7) and then obtain the fields from
B=Vx A Ez%ﬁxg (2.73)

(this is simpler than expanding ¢ and using that to obtain E). The relation between E and
B holds since outside the source there are no currents and 0FE /0t = ¢V x B.

2.6.1. Electric dipole

~ r. This means that we

We start with the electric dipole term by writing ‘F —
ignore variations in the retarded time across the source. Then

. 1. I
A(F) ~ Ee’kr/J(r’)dgr’. (2.74)

=

To simplify this term, integrate by parts using V - (riJ) = NV J+J -V = wpr; + J;.
The surface term vanishes, giving

N ko RN e ikr
Ay = — e / p(yrdir = — P (2.75)
r r
The radiation fields are therefore
. k2 ikr
B = Y% qaxp (2.76)
r
. . k?eikzr
E=Bxini = nx (px ) (2.77)
T
The power radiated is
dP -
0= 8%Re [TQﬁ - E X B*} = 8%/4:4 1% sin? 0 (2.78)
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where in the first step we have included a factor of 1/2 to give the time-average value, and
in the second step, we assume that all components of p have the same phase.

L. Vg oh £ 'Imf. / L";‘“m (cn e =X

Ny

Integrating over angles gives the total power
2
_wtp]
3c3

(Note that we would get the same answer by applying Larmor’s formula, since the dipole

(2.79)

moment for a set of charges is p'=>_ ¢;7.)

2.6.2.  Magnetic dipole and electric quadrupole

Now take the next term in the expansion. We only need to expand the exponent

k|7 — 77| because this is (kr)~! times larger than the term in the expansion of 1/ )F— .
The expansion is k |7 — r/| = kr — k€, - 7 + ..., which gives
T L B N
A(F)=——ce J(r)i - r'dor. (2.80)
re

We again evaluate this by integrating by parts. First, evaluate the surface term 2 (rir; J ) =
rl-er . J"— (J Vri)rj + (J VT']')TZ' = rl-er . J"‘ JZ’T]‘ + eri or

1 1 .
5 (Jﬂ“j — eri) = _eri - 57}-er - J. (281)
Now dot this with 7,
1 > 1 > > 1 - S
3 (F(ﬁ ) = I ﬁ)) = 57 X (Fx J) = —J(7 i) = G- AV - . (2.82)

The first term on the RHS is the one we want, since it appears in the integral equation
(2.80). Therefore,

i s L | o A\ e
/J (T’) i - rld3r = —ig /r’ (T’ . ﬁ) p(rd*r" + 5 /ﬁ X ( () x 7“’) d3r! (2.83)
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The two terms on the RHS represent electric quadrupole radiation and magnetic dipole
radiation respectively.

Let’s take the magnetic dipole term first. Its contribution to Ais

A(r) = —;—06””577 X /J(r’) x r'd3r = Z?elkrﬁ X 1M (2.84)
which gives the radiation fields
. eikr eikr
E = —kK*(il x m) B =k (it x m) x 7 (2.85)
r r
and radiated power
P Wl 2 . o w!
dQ  8nc? 7" sin 3c3 (2.86)

the (time-averaged) power radiated by an oscillating magnetic dipole. Since the magnetic
dipole moment is of order v/c compared to the electric dipole moment, we see that the power
emitted in this term is ~ (v/c)? times the electric dipole emission.

The electric quadrupole contribution to Ais

= _ﬁeikr (_E) /ﬁ(ﬁ i) p(r)dPr. (2.87)

rc 2
The integral in this expression is the first term of (Q2);n; = Cj(ﬁ) The remaining term
o 0;; vanishes when we take the cross product of A with k = 77 to find the magnetic field.
Therefore
R Lo (2.88)
=———mn ). :
6 r

The radiated power is

dpP c - 2 ck’

arr 15 | (7 7)) x 7 P=__ i|? oc Wb 2.89

The power emitted is a factor of ~ (kd)? smaller than the electric dipole emission.

2.7. Applications of multipole emission
2.7.1. Spinning dust emission

For example, see Draine and Lazarian (1998). In the interstellar medium, dust grains
become charged due to photoionization and collisions. In general, the charge distribution
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has a different center than the mass distribution, which implies a net dipole moment. Small
molecules also have intrinsic dipole moments. If the rotation axis and dipole axis are mis-
aligned by angle 6, the radiated power is P = (2/3)(w*p?sin®6/c?) (this is a factor of 2 larger
than eq. [2.79] since for rotation you can think of two components of 7 perpendicular to the
rotation axis that vary).

To estimate the rotation frequency and therefore frequency of the emitted radiation,
we note that for thermal equilibrium we expect (1/2)Iw? = (3/2)kgT, and the simplest
estimate is to assume I = (2/5)Ma*® where M = 4mwa®p/3. Draine and Lazarian (1998)
assume p = 2 g cm 2. The result is

—5/2 T 1/2
a0 () () .
v =>5.6x 10" Hz 10~ om 00K (2.90)

Therefore, we expect radiation in the GHz range (wavelengths of ~ 10 cm). For estimates of
the dipole moment, see Draine and Lazarian (1998). There are two contributions: intrinsic
dipole moments and grain charging. A typical value is a Debye.

This emission mechanism is used to explain the 1590 GHz anomalous emission which
was correlated with 100 pm from dust. An important question is whether the emission is
polarized, which could arise if the grains align with the local B field for example (Lazarian
and Draine 2000).

2.7.2.  Radio pulsar spin down

The standard way to estimate the magnetic field of radio pulsars is to assume that the
star spins down due to magnetic dipole radiation, that is

4,2
d (110.;2) = 291 Gn2e, (2.91)

dt \ 2 T3 3

The magnetic moment of the star is u = BR?® where B is the surface magnetic field strength
at the equator. For a neutron star, I ~ M R?/5 (Lattimer and Schutz 2005; this is 1/2 the
value for a constant density sphere). The magnetic field can then be written in terms of the
spin period of the star, P = 27 /w, and the spin period derivative P,

. 1/2 1/2 -2
3 PP Mc : M R 1
B=|—-‘"X>——" =24x10Y G (PP)"/? . (2.92
<1O4W2R4sin29> X107 G (PP) <1.4 M@) <10km> sin @ (2:92)

Since w o< w3, the braking inder n = dw/w? is predicted to have the value 3. The measured

values are all less than 3, although only a few have been measured so far. If the initial period
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is much smaller than the current period, the age of the pulsar is

P 6 P\°( B \°

In fact, the spin down of the pulsar is not as a vacuum dipole because the magnetosphere
is filled with plasma! Even an aligned rotator (sinf = 0) spins down, by driving a wind
through the light cylinder. This is a complex theoretical problem that has begun to be
solved only recently. Numerical simulations by Spitkovsky (2006) find

B =26 x 10" G (PP)"?(1 4 sin* )~/ (2.94)

amazingly close to the vacuum dipole spin down value.

Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

e Radiation from an accelerated charge. Retarded time and potentials. Velocity and
radiation fields for a point charge. The velocity field always points to the current
position of the charge.

e Poynting flux S=cExB /4. Larmor’s formula

dP  ¢*i? ., 2q%1?
— = in° © P =
dQ)  4rncd St 3c3

e Bremsstrahlung. Flat spectrum with cutoff at w = v/b. Below the cutoff,

dW B 1666 TLTL-Z2 Tgrs
dtdVdw — 3c3m2v < V3

The Gaunt factor gsf ~ In(bmax/bmin). The physics setting by, and byax.

e Thermal bremsstrahlung:
eff =6.8x 107 Z2neniT*1/267h”/kBT§ff ergs ' cm® Hz !

el =14%x107% Tl/QneniZng» erg s~tem™3.

Application to cluster gas.
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Free-free absorption:

Z*nen;
— 8 et —hv/kgT\ =
k) =37 %10 PRl (1— e ™/8T) gpy

Rosseland mean free-free opacity:

7Z%n.n;
25 e zgR cm? g—l x pT_3‘5.

ff_ -
kp = 1.7 x10 ST

Self-absorption at low frequencies giving €// oc 2. Example: compact HII regions.

Multipole radiation. Physics of the electric dipole approximation. Power radiated by
oscillating electric and magnetic dipoles, and polarization of the radiation. dP/d) =
(p?/4mc®)sin® 6, P = 2p*/3c®. Application to spinning charged dust grains and radio
pulsars.

Reading

Rybicki and Lightman, chapters 3 and 5. Longair p64 gives a nice pictorial argument
for Larmor’s formula. See also of course Jackson.

Karzas & Latter 1961, ApJS 6, 167 calculate the free-free Gaunt factor.

Draine & Lazarian 1998, and Lazarian & Draine 2000 calculate spinning dust emission.
See Dickinson et al. 2006 ApJL for recent observations.
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3. Compton Scattering

These are notes for part three of PHYS 642 Radiative Processes in Astrophysics. We
cover Compton scattering and its applications. An excellent reference is the review article
by Blumenthal and Gould (1970 Rev Mod Phys).

3.1. Thomson scattering

We mentioned earlier in the course that the cross-section for scattering of a photon by
an electron is the Thomson cross-section or = 8wri/3 where ry = €?/m.c* is the classical

electron radius.

Rybick and Lightman give a simple derivation of the cross-section in section 3.4, that we
go through here. We consider the response of a free electron to an incident electromagnetic
wave. The force on the electron is F = eE sinwt = m;‘, and therefore the time-averaged
acceleration is given by 7 = (e£/m)?/2. Substituting this into Larmor’s formula gives the
power radiated , o

AP prgnrg po CE (3.1)
dQ)  8mm?2c3 3m?2c3
where the angle 6 is measured relative to the electric field (and therefore acceleration) direc-
tion. The radiation is polarized in the plane of the incident wave:

- 1 L
S M & s R

_.;;_,

8 T |

-

We can obtain the cross-section by dividing the radiated power by the incident flux.
The incident flux is given by the time-average Poynting vector for the wave, (S) = cE? /8,
and therefore the differential cross-section and total cross-sections are

do 1 dP ) 81
0= S = rgsin® o= ?rg. (3.2)
The numerical value is o7 = 6.63 x 1072% cm?.
An unpolarized beam can be thought of as a superposition of two uncorrelated orthog-
onal waves.



If we consider scattering at an angle a as shown in the diagram, one of the beams is always
at angle 7/2 compared to the incoming radiation, and so the differential cross-section is

do 1 (do do B e 9
w3 (0 (3) =5 (e 33

Note that the scattering is symmetric with respect to the forward and backward directions.

The time-averaged energy density in the incident wave is £? /8, so that the total power

in equation (3.1) can be written as
P = UTCUrad (34)

where U,,q4 is the radiation energy density. This is a general result, since the total Thomson
cross-section does not depend on the direction or the polarization of the incoming radiation.

The Thomson cross-section is appropriate for photon energies € < m.c? (that is ¢ <
511 keV). As the photon energy approaches and exceeds m.c?, there are two effects to worry
about: a suppression of the cross-section and a change in photon energy on scattering due
to electron recoil.

The first of these requires a quantum-mechanical calculation of the cross-section (look in
any introductory book on quantum field theory), which gives the Klein-Nishina cross-section

do 12€; (& € 9
A A A , 3.5
d) 2 €2 €f * €; S (3:5)

K3

It reduces to equation (3.3) when the scattering is elastic (final photon energy €y is equal to
the initial photon energy ;).
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The final photon energy ¢ is given by a consideration of the kinematics of the scattering,
which we look at in the next section. The resulting total cross-section is given by Rybicki
and Lightman equation (7.5). The limits are

o~ op(l—2x+..) r<1 (3.6)
3 1 1 MeC?
= QT <1n 2x + 5) ~ oT ( ; > x> 1 (3.7)

where o = €;/m.c?.

at high photon energies.

The cross-section is Thomson for low photon energies and suppressed

3.2. Kinematics of Compton scattering

We first consider scattering of a photon from an electron at rest.
‘r\‘ ; // N f
AT h Ce e Tl é (2570 o Ta)
n; )4 A

=~
- \
e | N
l'A"""'{f’/'Vt_ ﬁ‘_’w,/
F’Lw ton

We write the initial and final 4-momenta of the photon as P; and Pf and for the electron as
Q; and Q #. Then energy and momentum conservation is written as P, + Q; = Pf +Q 7. By
expanding Qf = (P, + Q; — Py)? and using Q% = —m,c? and P? = 0, we find

- Pr = Qi(P — Py) (3:8)

or
GZEf

2 ( 141 - nf) (—Gi—i-Ef). (39)

In the last term we use the fact that Qi only has an energy component since the electron is
initially at rest. Writing 7; - 17y = cos o, we find

€
= 3.10
Ty (€;/mec?) (1 — cos ) (3.10)
or in terms of photon wavelength we obtain the famous formula
Af— XA = Ac(l —cosa) (3.11)

where A\c = h/m.c is the Compton wavelength. Note that Ay > \; for all angles o, in other
words the photon always loses energy in the collision.
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3.3. Inverse Compton scattering

If the electron is moving with velocity v, energy can be transferred from the electron
to the photon, which is known as wnverse Compton scattering. In the electron rest frame,
our previous result holds, but now written in terms of rest-frame variables which we indicate
with a prime:

/
6/ — €
P14 (€ /mec?) (1 — cos o)

The angle o/ = 0 — 0; is the scattering angle in the rest frame.

(3.12)

We just need to transform back into the lab frame. The angle 6; is the initial angle
between the electron and photon propagation directions, so that

P = i(1,cos.91-,sin«9i,0). (3.13)
c
The Lorentz transform is
i v =By 0
Pl=| -8y v 0|PB (3.14)
0 0 1
giving .
P/ = 2 (y(1 = Bcosb;), —yf + ~cos 0, sin 6;, 0) (3.15)
c
and
€. = ey(1 — B cosh,). (3.16)

The limits of this expression are (1) for 6; ~ 7 (head on collision) €; = ¢;v(1 + /3) or for large
v, € & 2ve;, and (2) for 6; &~ 0 (photon approaches from behind) we get €, = ¢v(1 — 3) =
€:/(v(1+ B)) or for large v, €; ~ ¢;/2y. Similarly, the reverse transform gives

ey = €py(1 + Beosty). (3.17)
We see that the maximum energy we can expect is therefore € max = 472¢;.

The general rule is that the photon energies before scattering, in the electron rest frame,
and after scattering are roughly in the ratios 1 : v : 42. A photon scattering from a relativistic
electron can therefore undergo a tremendous increase in frequency, scattering radio photons
into the optical to X-ray range for example, depending on the value of ~.

As well as being boosted in energy, the photon distribution is strongly beamed in the rest
frame. Writing P/ = (¢}/c)(1,cos,sin 6}, 0), we see that cosbie./c = (e;/c)(—y8 + 7 cos b;)
which gives the standard aberration formula (e.g. RL 4.86)

cos; — 3

0= ————.
o= — [ cosb;

(3.18)
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(The same expression gives 0% in terms of ¢ 7.) Consider an isotropic distribution of photons
in the lab frame. Half the photons have 6; between 7 (head on collision) and 7/2. In the
rest frame, equation (3.18) gives cosf, = —f for §; = /2, or writing § = 7 — ¢, we find
that these same photons lie in a cone of half angle § given by sind = 1/v. Therefore for
relativistic electrons most of the photons are close to head on in the rest frame.

™
t_} h ] ,-/
v o .
3 L~ \a
s — ” s <& \'1 e e
& —~— | e
r v S J
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If the rest frame photon energy satisfies €, < m.c?, equivalent to ve; < m.c? in the lab
frame, we can simplify the calculations by assuming elastic (Thomson) scattering in the rest
frame. Then €} = ¢, giving

(1 — B cosb;)
(1 —pBcosby)

For a head-on scattering with 6, = 7 and 6y = 0, i.e. the photon turns around after
scattering, we get e7/e; = (14 8)/(1 — B) = ¥*(1 + 8)? =~ 4%

er =7e(1+ Beosby) (1 — Beosb;) = ¢ (3.19)

3.4. Power radiated in inverse Compton scattering

As a moving electron scatters photons, its energy decreases. Let’s calculate the energy
loss rate.

We assume that the scattering in the rest-frame of the electron is elastic (yhv < m.c?).
Then in the rest frame of the electron, the power radiated is given by equation (3.4),

(3.20)

but since dF/dt is a Lorentz invariant, this is also the power radiated in the lab frame.

Following Blumenthal and Gould (1970), RL use the fact that dn/e is a Lorentz invari-
ant” to write U/ ; in terms of the lab frame energy density Uy,q. The argument is

! / / / dn/ / dn dn
rad:/Edn :/627 2/62? :/6272(1—/5#)2?- (3.21)

"This is related to the fact that the phase space density dN/d3pd>F is invariant; see RL 7.2.
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Averaging over angles gives (assume isotropic radiation field)

1 1 /82
—/ du(1l — 5#)2 =14+ — (3.22)
and
52
U'.q = Uraa?? (1 + 3) : (3.23)

There is another way to find U4, which is to transform the incident electric field
into the rest frame. For an EM wave/photon travelling at angle 6 relative to the electron,
E, = —FEsinf, E, = Ecosf, and B, = —F (since B = fi x E). Now transform these
fields into the rest frame: E!, = E, = —Esinf, E! = v(E, + fB) = vE(cos — 3). The
time-averaged energy density is

2 2 2
g—w - ;E—W (L= p*+9% (= B)?) = %72(1 — pB)? (3.24)

which is the same as previously.

Equation (3.20) gives the power in scattered photons which are added to the radiation
field, but the scattering also removes energy from the radiation field at a rate opcU,,q for an
isotropic photon distribution®. The difference between these two rates must be supplied by
the energy of the electron. Therefore the rate of energy loss of the electrons is given by

dFE,
——f = 01 (Ul = Unaa) (3.25)
or dE 2 4
— dte = UTCUrad |:’)/2 (1 + ?) — 1:| = gf}’zﬁzaTCUrad; (326>

where we use 42 — 1 = 4232, This result is independent of the photon spectrum; applies for
an isotropic distribution and Thomson scattering in the rest frame. The average fractional
increase in photon energy is (4/3)v%3%.

When the energy transfer in the electron rest frame becomes significant, Blumenthal
and Gould (1970) showed that

dE, 4 o , 63 v (€
_ 28 _ 2 i |1 — 2 ) 2
at 3 Frorcla [ 10 mec? (e) (3:27)

8You might wonder whether this formula would apply to an electron not at rest. Blumenthal and Gould
1970 show that the rate of scatterings for photons moving at angle 6 with respect to the electron is dn(6)or(c—
vcos#). The cos term drops out when averaging over angles for an isotropic photon distribution.
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where the averages () are over the photon spectrum (so now we do care about the photon
spectrum; the reason is that the amount of recoil depends on the photon energy).

For a power law distribution of electron energies, the total power is given by summing
over the distribution of ~

dE
Py = / — (MN(v)dy (3.28)
and if N(v) = Cvy 7P between Ypin < v < Ymax then
4 C
Pt = 5 ra B — o : 2
tot 3UTCU d3 —p (/}/max /ymln) <3 9)

For a thermal distribution of non-relativistic electrons, the total power is

€

AkpT
Py = (%) corneUsaq (3.30)
meC

(which you can see since for a thermal gas (%) = 3kgT /m.c? and for non-relativistic particles
v ).

3.5. The inverse Compton spectrum for single scattering of monochromatic
photons

Previously, we derived the total power from inverse Compton across all frequencies. Now
we turn to the spectrum of the scattered photons. For an isotropic monoenergetic photon
distribution, Blumenthal and Gould (1970) calculate the spectrum in the ultrarelativistic
limit v > 1. In this limit, it is a good approximation to take the photons in the electron rest
frame as having 6; = m because of relativistic beaming. This means that there is only one
angle to consider, the scattering angle in the rest frame o’. Each value of scattering angle
maps onto a different final photon energy.

Using the distribution of scattering angles for Thomson scattering, and transforming
back into the lab frame gives

dN 3f(z)
dide; = oren(e;)de;

e (3.31)
where f(z) = 2zlnz +x + 1 — 22% and = = €;/47%¢;. The function f(z) is plotted in RL
Figure 7.3b: it decreases smoothly from unity at z = 0 to zero at x = 1. This makes sense:
we saw previously that the maximum photon energy is e; = 4v%,. Note that [ f(z)dx =1/3
and [z f(z)dx = 1/9, so that we recover the correct expressions for the scattering rate dN/d¢
and power dE/dt on integrating over €.
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The spectrum of the scattered photon is therefore flat at low photon energies €; < 4v%¢;,
with a cutoff at e; = 4v%¢; (z = 1). (The spectrum for arbitrary v, Klein-Nishina cross-
section, and including the energy loss in the rest frame is given by Jones 1968).

If the electrons have a power law energy distribution, N(v) oc v Pdr, the spectrum of
the scattered photons is given at each final photon energy e; by summing the contributions
from each ~

dN
dtde f

s [t s G (3.32)
“Ymin

where we use the fact that only electrons with v > i, = (€/4€;)"/? have enough energy
to contribute scattered photons with energy e;. The photon number spectrum is therefore a
power law spectrum with index (p+1)/2. The energy spectrum is then F, oc v~®~1/2 or an
index (p —1)/2. We'll see later that the same result applies to synchrotron emission from a
power law distribution of electrons.

3.6. Multiple scatterings

If multiple scatterings occur, the photon energy spectrum can be significantly affected.

This is known as Comptonization. An important parameter is the Compton y parameter

1 era< (‘: 3

f""‘ A \refe )f %/_l'/_ f’)br-\ I!f P2an Wess J:?_.ej___ \

f’ = Lo, ¥
e , ) |: S e PR

k_ S {:—t':'L:W-G.'} / N Y Sce > j S /

which measures whether a photon will significantly change its energy when traversing a
medium.
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Let’s look at each term separately. We saw previously that the average fractional change
in photon energy on scattering is (4/3)7?/3%. For a thermal gas of non-relativistic electrons,
this is 4kgT /m.c* (since m.(v?)/2 = 3kgT/2). However, this ignores electron recoil (we
assumed elastic scattering in the rest frame). We can estimate this from our earlier result

/ !
/ € . €; ,
Ty (e;/mec?)(1 — cosa’) K (1 - mecz(1 T eosa )> ' (3.33)
Averaging over angles gives Ae/e = —¢ /meCQ. Therefore,
Ae 4]€BT €
- (mecz - mec2) : (3.34)

In the ultra-relativistic limit (v > 1), Ae/e &~ (4/3)7* (the recoil term is negligible in this
limit).

The number of scatterings depends on the optical depth. We found in the section on
radiative transfer that the number of scatterings is max (7, 72), where T ~ pr.sR =~ n.orR.
Therefore for a thermal gas of non-relativistic electrons

4kpT
= S max(T, 7). (3.35)

Y
MeC

How do multiple scatterings change the photon energy? If we start with a photon with
initial energy ¢y < kgT', then after N scatterings,

AkpT\" AkpT
e:eo<1+ 32) %exp< BQN)zexp(y). (3.36)

MeC MeC

When the photon energy reaches e = 4kgT, equation (3.34) shows that the photon energy
will no longer increase, that is we reach an equilibrium. By setting 72 = N and € = 4kgT in
equation (3.36), we find the optical depth required to reach equilibrium is

MeC> 4kgT 1/2
= 1 . .
; LkBT n< - )] (3.37)

Because we are dealing with a fixed number of photons (scattering conserves photon
number), we expect the equilibrium distribution of photons to be a Bose-Einstein distribution
with a non-zero chemical potential i, that is with energy density

8rhy? hv -
U,dv = > {exp (kB—T + ,u) - 1} dv. (3.38)
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The equivalent expression for a Planck distribution is U, = 4w B, /¢, identical except u = 0
in that case. In a blackbody enclosure for example, photons can be created or destroyed as
needed (e.g. by interaction at the walls) in order to reach thermal equilibrium, which gives

w=0.
The photon distribution is shown in the following plot. Except for small values of 1 close

to zero, the exponential term dominates, giving an overall suppression of the distribution by
a factor e™#, and a different scaling o< % at low frequency instead of o< /2.

T._./ l = S }r\ =0
| \/
t e\ 1 : : 0
| yd y i \-\ | InfreasSia ? !,-.'\,Jifj"\ )k}-\ "{D{/.AC/_})L
2 v\ = 0 J
w 7 o Nlade A [ ot \
| o~ o \'WY S =
2 7 Y Z ,,/' //4\.‘\
| 0\ 1 v / / // ./' \‘~ }/ﬂ :‘_)

—,
Hea P \

N

il %

—</k8T in which case it is straightforward

For non-zero p, the photon distribution is then o< %e
to show that (€) = 3kpT and (€?) = 12(kgT)?. The average change in photon energy on
scattering is (Ae) = (4kgT/mcc?){€) — (€*)/m.c®* = 0, showing that this is indeed the

equilibrium distribution.

Another case mentioned by RL (§7.5) that is interesting is multiple scattering by rel-
ativistic electrons with low optical depth, which is a way to produce a power law spec-
trum from a non-power law electron distribution! The energy amplification per scattering is
A = (4/3)7* = 16(kpT /m.c?) for a relativistic thermal gas. After k scatterings, €, = €y AF.
For 7 < 1, the probability of having k scatterings is 7%. Therefore the emergent spectrum
is I(e,) = I(eo)T" = I(eg)(ex/€0) ™%, where the power law index is @ = —In7/In A.

3.7. The Kompaneets equation

We discussed the expected equilibrium photon distribution for scattering in a thermal
gas. Let’s think about the approach to equilibrium. Write the number of photons with
energy between € and € + de as N(€). Now ask, how does this distribution evolve with time
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as the scatterings occur? For each scattering, we can write down a probability distribution
for a change in the photon energy ¢ — e+ A, i.e. P(e, A)dA is the probability that a photon
with energy e changes its energy by an amount A. The normalization is [ dAP(e, A) = 1
(the photon must change its energy by some amount).

Then the evolution of the photon distribution is given by

N(e,t + 6t) — N(e, t) = /dA [N(e — A t)P(e — A, A) — N(¢,t)P(e, A)] (3.39)
where the timescale dt is a scattering timescale 6t = t, = 1/n.orc. For small A, we can
expand

ON  A29°N
oP A?Q%P
P(E—A,A)~P<E,A)—AE+7¥+... (341)
which gives
N(et+£,) — N( t)——ﬁ/dANPA+la—2/dANPA2 (3.42)
“ ° “Y = T he 2 De? ' '

Using this result and expanding N(t + t5) =~ N(t) 4+ t;ON/0t, we obtain the Fokker-Planck
equation

L2 Oy + L 0 (viay). (3.43)

This is an advection-diffusion equation in energy space.

For a thermal distribution of electrons,

(A>—e(4kBT— ‘ > (A2) = ¢ (%BT). (3.44)

MeC? MeC? MeC?

The second result is computed in RL §7.6 (compare RL eq. 7.54). Substituting these in and
simplifying gives

LON_ 9 K%N— eQa—N) (kBT) - EQN} (3.45)

ot D¢ Oe MeC? MeC?

Now to agree with RL, we switch notation to n(w) where w?n(w) o< N(€), and define
x = hw/kgT. The result is

on  (kgT\ 1 0 | ,(On
tsa = (—mec2) ﬁa_gj |:Q§' (% +7’L):| . (346)
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The equilibrium solution (9n/0t = 0) is n oc €™ or N oc €2e~/*#T. This is the relativistic

Maxwell-Boltzmann distribution we discussed earlier.

Why didn’t we find the equilibrium distribution to be the Bose-Einstein distribution
n = (et — 1)71? We should have included extra (1 + n) factors to account for the fact
that photons tend to mutual occupation of the same state (see RL eq. 7.48), i.e. the RHS
of equation (3.39) should be

/dA IN(e — A, t)P(e — A, A)(1+ N(e, 1)) — N(e,t)P(e, A)(1 + N(e — A, 1)) (3.47)

As we discussed earlier the extra terms are only important for pu approaching zero, which
indicates that multiple occupation of states is important. For non-zero p the occupation
number is small and the extra 1+ n terms are no longer important. The particles then have
a Maxwell-Boltzmann distribution of energies.

With the extra terms, the analysis follows as before, but now the result is

8n . kBT ig 4 8_7’& 2
tsa = (m602> 2. {:c <8x +n+n )] : (3.48)

This is the Kompaneets equation, which has the equilibrium solution n = (e*™* — 1)~

3.8. Example: Sunyaev-Zeldovich effect

The Sunyaev-Zeldovich or SZ effect is a small distortion of the spectrum of the cosmic
microwave background (CMB) radiation due to inverse Compton scattering of CMB photons

by hot electrons in Galaxy clusters (for a review see Carlstrom, Holder, and Reese 2002
ARAA).

We can calculate the effect by using the Kompaneets equation. Because Tgas > Trad,
the On/0x term dominates on the RHS. To see this, note that © = hv/kgT < 1, and then
you can show that On/dz ~ n/x for a Planck spectrum n = (e — 1)~!. The Kompaneets
equation we need to solve is therefore

10n . ]i'BT 1 0 4871
Ea = (neUT@> ?% (37 %) . (349)

Following the path of a photon, dl = cdt, and so in terms of the Compton y parameter,

on 1 0 on
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For cluster gas y = [ n.or(kgT/mec?)dl < 1, so we can calculate dn by inserting a Planck
spectrum on the RHS and writing dn =~ ydn/dy, giving

Yoot (o (L) = (F5) (e (5) -1). ey

which is Zeldovich and Sunyaev’s original result. In the Rayleigh-Jeans part z < 1, dn/n ~

—2y, or
AT
AT _ yorks /nerl. (3.52)

T MeC2

For a path length of 1 Mpc and a density n, = 1072 cm ™3, I get a Thomson depth ~ 1072,
The kT /m.c* factor is 1/50 for kT = 10 keV. Therefore AT /T ~ 3 x 107% or AT ~ 1073
for T' = 3K. The expected temperature decrement is therefore AT ~ mK. The integral in
equation (3.52) is proportional to the integrated gas pressure of the cluster. The redshift
independence of this signal makes it an important way to look for high redshift clusters. The
Carlstrom et al. ARAA article has references to calculations of relativistic corrections to our
formula, and also describes the “kinetic SZ” effect that is a temperature shift due to the
peculiar velocity of the cluster (the spectrum remains Planckian but with AT /T ~ —71v/c).

3.9. The spectrum of thermal gas

We next discuss the spectrum of thermal gas in which both free-free and scattering
processes operate. See RL 7.7, Felten and Rees (1972), and Illarionov and Sunyaev (1972).

Recall that a finite region of gas emitting thermal Bremsstrahlung has a spectrum

At low frequencies, the region becomes optically thick (k7 o 1/v?) and the spectrum is
Rayleigh-Jeans. At higher frequencies, the spectrum corresponds to optically thin bremsstrahlung,
i.e. roughly flat with an exponential cutoff determined by the temperature of the gas.

What happens to this spectrum when we include electron scattering? We already men-
tioned the idea of thermalization depth at the end of Part I of these notes. Let’s quickly
review what we discussed there. With scattering and absorption included, the mean free path
is l, = 1/(ay, + 0,), but only a fraction €, = «,,/(, + 0,,) of encounters result in absorption
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of a photon. The mean free path to absorption is I} = /N, I, =1,/ /e, = 1/\/a(a, + 0,).
If 7, < 1, where 7, = L/I, is the effective optical thickness, we expect the luminosity to
be L, ~ 4w B,«a,V (all photons escape). If 7, > 1 (optically thick to absorption) then the
photons come from a volume [, A where A is the emitting area, and the resulting flux is
F, = wB,,/€,, suppressed by a factor /€, compared to the flux from a blackbody.

How does this apply in this case? We start by assuming the electron scattering is elastic
(no change in photon energy). At low frequencies, we expect Ky >> Kes SiNCE Kpf/Kes X
1/v?), implying a Rayleigh-Jeans spectrum at low frequencies. However, for frequencies for
which k.5 > Kkff, we expect the emissivity to be reduced by a factor

ffff 1/2 I‘iff 1/2 1
= () & (2 - 3.53
ver ('fes+'fff) (F&es) >y (3.53)

where the last step is for the limit k.5 > r¢s. Therefore, as long as the material is optically
thick (7, > 1), we expect to see

A
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(see Felten and Rees Fig 3a). This is known as a modified blackbody spectrum. Defining 1

to be the frequency where ksf(1y) = Kes, and writing [, = 2B, /(1 + 651/2), we get I, ~ B,

for v < v and I, = IMBB = 2B, (ks /Kes)/? for v >> 145, The frequency dependence is

3 —z\ 1/2 —x/2
MBB z l—e € 3/2
I)P% <€x — 1) ( p > x CENEE 1)1/290 (3.54)

with 2 = hv/kgT. The limits are IMB8 oc x for ¥ < 1 and IMPB o 23/2 exp(—z) for z >> 1.

If the medium has a finite optical thickness then at high enough photon frequency it
will be optically thin to absorption. We define another frequency v; at which this transition
occurs, i.e. where I, = L, or 7,7.s = 1 (actually 7,(7, + 7es) = 1 but we are assuming that we
are already in the regime where kes > K, at v = 1;). Since K7f(1y) = Kes DUt Ksp(14) = 1/Kes,
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then (v;/1y)? = 72, or

es)

Vp & VoTes- (3.55)
Above this frequency, the source is optically thin, and the overall spectrum is

PN
\

(Felten and Rees Fig 3c).

Now let’s consider the possibility of non-elastic scattering, so the photons change fre-
quency as they scatter. This will be important when y > 1 or N(4kgT/m.c*) > 1 for
N scatterings. Between absorptions, the number of scatterings is €, = (ks; + Kes)/Kpp &
? (assuming x < 1 so that sy oc v=2). Therefore at high

enough frequency, non-elastic scattering will become important. Since kff(1y) = Kes then
(Veon/10)?(4kgT /mec?) = 1 defines

Kes/Kff, Which increases o« v

meCQ 1/2
Veoh = Vo 4]€BT (356)

above which photon energy changes are significant. Another way to say this is that for
V > Veon, the thermalization depth [, becomes larger than the lengthscale that makes y > 1.
(Note that if the y parameter for the whole medium 72 (4kpT/m.c*) < 1 then incoherent
scattering is never important at any frequency).

For v > veon, the spectrum will saturate, and will take the Wien form I, = [,YV =
(2h13 /2 e e~ /R8T for o > 1. The spectrum looks like:
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(mec?/4kpT)"/?, and on the
right part of the spectrum from deeper regions with 7.5 2 (mec2 J4kgT )1/ 2. The total flux in

The photons on the left part of the spectrum come from 7., <

~

the Wien spectrum is
12me=*(kpT)*
wo_ W
which is (90e=%/m*)oT*. Roughly we can think of this as shifting all the bremsstrahlung
emitted photons to energies ~ kT or FV = I,kgT [(e/?/hv)dv which allows the overall
normalization to be calculated.

(3.57)

The spectrum saturates as a Wien spectrum for y > 1 and xcop, = hveon/kpT < 1. For
Zeon > 1, inverse Compton effects are not important since all photons elastically scatter. In
the intermediate range x.., ~ 1, the Comptonization does not saturate to a Wien spectrum
when y > 1. RL have an argument for this case, as follows. We write down a steady state
Kompaneets equation

kgT'\ 1 0 , n
0= —— [2°(n +n)| +Q(z) - —————. 3.58
(me@) x? 0z [ )+ Q) max (72, Tes) (3:58)
In the first term, we neglect n? compared to n for o > 1. The second term represents a
source of photons with energy z, and the third term allows for escape of photons. For x > 1,
n'+mn =0 gives n x e”*. For z < 1, n’ > n, and by balancing the first and third terms,

4dn 10
— =T (z*n). (3.59)
A power law solution n oc 2™ works with
3 9 4
m=——=24/-+—. 3.60
> EV1ty (3.60)
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For y > 1 m = 0,—3 which gives either I, o< 3 or constant. For y < 1, I, oc 3™,

See Pozdniakov, Sobol, and Sunyaev (1983) for Monte Carlo calculations of spectra in this
regime. I've included a Figure from their paper below. It shows the change in the spectrum
with increasing y. I've also included a cartoon from that paper that shows astrophysical
environments where Comptonization is likely to be important.
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Figure 21 Comptonization of low-frequency photons in a spherical plasma cloud having
kT, = 25 keV. Solid curves, the analytic expression (4.5) with spectral index « given by
Eq. (4.8); dashed curves, the analytic solution with a taken to agree with the low-frequency
portion of the corresponding Monte Carlo spectrum. Central photon source.

263
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Figure5 The principal astrophysical objects in which the Comptonization mechanism should
operate efficiently.
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Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

e Thomson scattering cross-section. or = 8wrs/3, where ro = e*/m.c* is the clas-
sical electron radius. Differential cross-section for an unpolarized beam dor/d) =
(1/2)r2(1 + cos® @), where « is the scattering angle. Radiated power P = opcUpaq.

Klein-Nishina cross-section o ~ op(m.c?/¢;) for initial photon energy €; > m.c?.

e Thomson scattering opacity k., = or(1 + X)/2m, = 0.2(1 + X) cm? g1

e Kinematics of Compton scattering

-1

€ (1 —cosa)

€r=¢ 1+

MeC?
or Ay — A = A¢(1 — cos ) with Compton wavelength A\. = h/mec.

e Inverse Compton scattering

¢ = €7(1 — Beost;), €5 =epy(1+ Bcosty).
Maximum photon energy € max = 47%€;. For €; < m.c? or ve; < m.c* can take o = or.
Power radiated per electron

4
pP= gVQBQJTch,

or for thermal non-relativistic electrons P = (4kgT /m.c*)corU,.

e Inverse Compton spectrum. For a single electron number spectrum is

dtde; ‘ & 42

where f(z) =2xlnz + x+ 1 — 22%, & = €;/47%¢;. Flat number spectrum with cutoff
at * ~ 1. Mean photon energy (4/3)y?¢;. For a power law distribution of electrons
N(7) oc 7P, (dN/dVdtdes) oc ;7"

e Multiple scatterings. Compton y parameter, y = (Ae¢/e) max(r,7%). Mean energy
change on scattering: Ae/e = (4kgT — €) (non-relativistic) or (4/3)7? (relativistic).
For ¢ < 4kgT, photon energy grows by exp(y). Equilibrium distribution is Bose-
Einstein with finite . Kompaneets equation

ta—n— kel ) 10 ! a—n+n—|—n2
ot \mec?) 220z ox '
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Applications. Sunyaev-Zeldovich effect: AT/T = —2 [ n.or(kgT/mc*)dl. Spectrum
of thermal gas including free-free and scattering processes. Modified blackbody spec-
trum.

Reading

RL chapter 7. Longair.
Kinematic of Compton: see Blumenthal & Gould 1970, Rev Mod Phys, 42, 237
Inverse Compton spectrum: Jones (1968) Phys Rev 167, 1159

Sunyaev (1980) Sv A Lett, 6, 213 one of the original papers on SZ effect. See also the
ARAA article by Carlstrom, Holder, & Reese (2002).

Felten & Rees (1972), Illarionov & Sunyaev (1972) spectrum of thermal gas includ-
ing free-free and electron scattering. Unsaturated Compton spectra are calculated by
Pozdniakov, Sobol, & Sunyaev (1983).
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4. Synchrotron Radiation

These are notes for part four of PHYS 642 Radiative Processes in Astrophysics. Syn-
chrotron radiation is radiation from particles accelerated by magnetic fields. For non-
relativistic electrons, the radiation is at the gyration frequency w = eB/m.c and is known
as cyclotron radiation. However, for relativistic particles, the emission extends to higher
frequencies, and we then describe the radiation as synchrotron radiation. We also include
a discussion of Fermi acceleration of high energy particles, and the evolution of the energy
spectrum.

4.1. Power radiated by a relativistic particle

First, we want to extend Larmor’s formula to relativistic electrons. To do this, recall
the “four-acceleration” a = d/dr where @ = (¢, @) is the four-velocity, and dr is the interval
of proper time, dr = ds/c, ds* = 2dt? — |di|* = Adt? /2.

Let’s evaluate a in the rest frame of the particle, where dr = dt’. First note that
d~'/dt" = 0 since

dy _ 4 (1_17'6/)1/2: 7° d (*’.17):73*/.&‘7

-4 My 41
av  dr 2 2y (4.1)

since @ = 0 in the rest frame. Therefore @’ = du'/dt’ = (0,d’), and so Larmor’s formula
gives the power radiated in the rest frame
_2
- 3c3

The norm of a four vector is Lorentz invariant (the same in all reference frames), meaning

2q2 -

—»/2_
|a| —@CL

a. (4.2)

that we can write the general form of Larmor’s formula as
2¢°
= @a - a (43)

where a is the four-acceleration in the frame of interest.

= - (CWZ—Z)Q + (% (717))2. (4.4)

P

In the lab frame,

Q
IS )

Using dvy/dt = ~3id - @/c?, this is

Y
<Y
Il

)
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Dividing the acceleration vector into components parallel and perpendicular to the velocity
dy =u(d-u)/u* and @, =d—dj =u x (d x @)/u?, Larmor’s formula in the rest frame is

_ 2

= §74 (a + VQaﬁ) . (4.6)

4.2. Total synchrotron power

Now consider a particle with charge ¢ moving in a magnetic field B. The equations of

motion are o=

< (mit) = g2 (A7)
and p )

- (yme®) = qi - E. (4.8)

If the electric field is E = 0, usually the case in astrophysical applications, then the energy of
the particle is constant (v is a constant) (recall that the magnetic field does no work on the
particle because the force is always perpendicular to the velocity). The solution to equation
(4.7) is helical motion: a constant velocity parallel to the magnetic field, uj = - B/B, and
uniform circular motion in a plane perpendicular to B , with gyration frequency

qB
wp = —

= (4.9)

The angle « is known as the pitch angle. The velocity perpendicular to the magnetic field is
u; = usina, so that o = /2 for pure circular motion (u) = 0).

The acceleration is a; = u wpg, so that the total power is

2¢” 4 2 2 2 59 9.9
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where 79 = (€2/mc?) is the classical electron radius. For a uniform distribution of pitch
angles, the total power is

2 ds?
P = §r30725232/51n2 a . (4.11)
The integral is 2/3, and the Thomson cross-section is 87r2/3, giving the famous result
4 2.2
P = gaTcﬁ v Up (4.12)
where Up = B?/8m is the magnetic energy density. Note the similarity to the inverse

Compton power; the only difference is that the equation for inverse Compton power has U,
rather than Ug. One way to think about synchrotron radiation that explains this similarity
is as inverse Compton scattering of virtual photons in the magnetic field (see Blumenthal et

al.).

4.3. Angular distribution of received radiation

Before we can calculate the synchrotron spectrum, we have to think a little about what
the angular distribution of radiation from a relativistic particle looks like. As you might
expect, we’ll find that the radiation is strongly focussed or beamed in the forwards direction.

In the electron rest frame, the power radiated is

dP"  e*a?
0 = 1o S o (4.13)

where ©' is the angle between the acceleration vector and the emitted radiation, cos ©' = @' 7.
How does this transform back into the lab frame?

Photons emitted into angle 6" in the rest frame travel at angle 6 in the lab frame, where the
angles are related by the aberration formula we used for Compton scattering,

W+ B dy’
1+ B H Y21+ Bu')?

(4.14)
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The energies are related by dW = v(dW’' + cdp!,) = v(1 + Bu')dW’. Therefore,

aw _aw’ o
and dP  dP' [dt
—_ = JR— 3 / 3

We need to relate the time interval in the lab frame dt to the time interval in the
rest frame dt’. This is actually a subtle point. One way to do this would be to use time
dilation: ydt’ = dt (the radiation is emitted over a longer time interval as viewed in the lab
frame). The resulting dP/dS) is then known as the emitted power. However, because the
particle is moving, a stationary observer in the lab frame actually measures a time interval
dty = y(1—pu)dt'. This is the same argument as led us to the x factor in Compton scattering
(recall the argument about measurements of a moving train). This choice gives the received
power and is the one we’ll use here.

Substituting dt’/dt 4 into equation (4.16) and using @' -@ = &' - @’ = a - a gives
dP ¢ al+7’q]

- 2 0/
00 dnd (1= gy sin”“ ©". (4.17)

What is © in the lab frame? It helps to consider limiting cases. For acceleration parallel to
the velocity, sin®? © = sin® §' = sin? 6/v(1 — Su)?, and so

dP e2 aﬁ sin? 6
- . (4.18)
dQ  Arc3 (1 — )’
For acceleration perpendicular to the velocity, cos ©®' = sin 6’ cos ¢’, and
dP,  €*af 1 sin? 0 cos? ¢ (4.19)
A dred (1=t | (1= Bu)?]’ '

For large 7, these expressions can be rewritten using u ~ 1 — 6%/2, 8 ~ 1 — 1/272,
Y1 = Bp) = (1+ (49)%)/27, as

2.2
dpy _16e7ay ,  (10)?

4.2
10 3 Y (1+(70)2)6 ( 0)
2 2 _ 2 4
U awgl 2(70)” cos 2¢ + (70) (4.21)
dQ wed (14 (0)?)8
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The important point is that these expressions depend on 6 only through the combination
~v0 and drop rapidly to zero for v8 > 1. The radiation is beamed into a cone of half angle

~1/7.

For parallel and perpendicular acceleration the emission pattern looks like:

4.4. Simple treatment of synchrotron spectrum

We now use some simple arguments to get the basic form of the synchrotron spectrum
from a relativistic electron with energy . The basic point is that the beaming gives rise to
a broad frequency spectrum because we see only a short pulse of radiation each orbit when
the beam is pointing at us.

/N

S / pv\ 7

4 \ \ 0
T ———— = % =
\%’ B e W W[5 S

— e
.‘\_‘_‘_'___/ S~
Il“
P ) <l $ P = ol
blo o A= olors ¥ A =
[ L K '.{_ ' AVad r

To calculate the duration of the pulse, we first need to find the radius of curvature a of the
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orbit. Then the distance travelled by the particle while the line of sight lies in the cone of
emission is As = aAf = 2a/~. To find a, we go back to the equation of motion. The velocity
change is |Au| = uAf during a time At = As/u. Therefore,

ymulA0  euB

e C . sin av. (4.22)
But Af/As = 1/a giving
a=_—" (4.23)
wp sin «
and therefore 5
At=—" . (4.24)
Ywp sin a

The observed time for a stationary observer is Atgs = (1 — B)At = At/2+?, giving

1

Atobs = T3 i -
Y3wp sin a

(4.25)

Note the observed duration of the pulse is shorter than the orbital time by a factor of ~3:
one power of v from the beaming angle, and another two powers of v from the train effect
(duration of observed pulse).

The fact that the pulse has a short duration much smaller than the gyration time means
that we can expect a broad frequency spectrum. The pulse looks like

and the spectrum is a function of z = w/w, where

We = 573003 sin o oc 2. (4.26)
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The low and high frequency behavior is shown in the figure.

Often, the electrons emitting the synchrotron radiation have a power-law distribution
of energies, N(E)dE «x E~PdE or N(v)dy x v Pdy (we’ll discuss the origin of such non-
thermal distributions later). In this case, the spectrum is given by an integral over the

P(w) / dyy PF (i) . (4.27)

electron energy distribution

We

- &

Integrals like this come up a lot, and the way to deal with them is to change variables from
v to r = w/w. o< y~2. The integral then becomes a dimensionless integral over z, i.e. just a
number. If we do that here, we find

P(w) oc w172, (4.28)

The slope of the spectrum is the same as for inverse Compton scattering from a power-law
distribution of electrons.
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4.5. Detailed treatment of synchrotron spectrum

If you’ve looked in the books at the derivation of the synchrotron spectrum, you may
be a little nervous. Shu warns “The formal manipulations required for synchrotron theory
can get formidable” and Longair states "I am not aware of any particularly simple way
of deriving [the synchrotron spectrum]..”.
outline the detailed derivation of the synchrotron spectrum, focussing on the methodology

and skipping a lot of the algebra. Here I follow the derivation given in Rybicki and Lightman

In fact it’s not that bad: in this section, we

6.4, which in turn follows Jackson 14.6. Longair (volume 2) goes through it filling in more
of the steps. The classic paper is Westfold (1959) ApJ.

We start with the expressions for the radiation fields we derived earlier,

s _a|ix(@=B)xp s o
Erad = E [ I€3R Brad =n X Erad (429)
where the notation |...] means evaluate at the retarded time ¢t = ¢’ + R/cand K = 1 —7i - @/c.
Then oW ,
— C —
A 32*.5} _ [RE} 4.30
d92 b = ! (4.30)

and the Fourier component at frequency w is

2

aw ¢
dwd)  4n2e

/ [(" X (1 — 5) X 5)%‘3} e™tdt (4.31)

Previously, we worked in the limit f < 1, but now we need to keep the relativistic factors.

A standard trick is to integrate by parts. First, change variables in the integral to
t' =t—R(t')/c. Since the source is very far from the observer, we can write R ~ Ry—1i-7(t').

=,

Then dt = dt'(1 — 71 - B) = kdt’, and the integral is

2

-

A @ | [ AX G =B) % B) s
= b qt 4.32
dwdQ)  4r2c / K2 ¢ ( )
Now we can integrate by parts using
d (fix(@@xF)\ _iix((i-p) xp) (433)
"\ 1-48-7 (1—G-i)?
to get
aw ¢ o S |2
_ dt/ w(t'—ri/c) = = 4.34
dwd)  4m3c / ¢ 7 x (7 x B) ( )
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which depends only on 3(t) and not B (t). This equation is the starting point for RL section
6.4.

Now we need to understand the particle path and can plug 3 (t) into equation (4.34) to
evaluate the spectrum. The diagram is

The orbital plane of the particle is instantaneously (at ¢ = 0) in the z-y plane in this
diagram, the acceleration is in the y direction at this moment, and the vector 7 points to
the observer. We have defined a set of orthogonal axes € = 7 x €. We will discuss the
polarization in terms of these directions. The projected direction of the B field is along €.

The vector product 7 x (5’ X i1) is the component of 3 perpendicular to 7, which for
B =11is

> t t
X (6 x 1) =€ sin (u_) — €] cos (u_) sin 6 (4.35)
a a

This formula is non-intuitive: for example if we take § = 0 (observer in the plane of the
orbit) it vanishes (and therefore there is no contribution to the integral) when the particle
is pointing directly at the observer (¢ = 0).

The next step is to expand the angular factors since the cone of emission is very small

for a relativistic particle. For example,
n -7t t 1 242413
t— ) # — L cosfsin (u_> ~— {(1 +(v0)%) ' + 7

c c a 272 3a?

(4.36)

Except for § < 1/v and ct’ < a/~, this factor in the exponent oscillates rapidly and its
contribution to the integral vanishes. Therefore, we can integrate over the full particle path
and only the contribution from small angles is included. Equation (4.35) can be expanded
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similarly, and the result is
aw dW aw

= 4.
dd) ~ dwdS " ded) (4.37)
where - ) s )
aw,  qw ct/ iw [ 5 oyt
dwdQ ~ 4dr2c|) @ O {2_72 (0725/ + 3a? at (4.38)
AW 2202 iw ) 223 2
Todl = e /exp 2—72 0t + 302 dt’ (4.39)

and we define the notation 62 = 1 4 (7).

These results can be put into the form of standard functions if the integration limits go
to +o00, which is okay because the integrand dies away quickly for ¢ > a/yc. The result is

AW,  ¢Pw? [ab? .

= — | K 4.4
dwdS)  3m%c \ cy? 2/371) (4.40)
AW ¢*w? 5 (ab] i 2
dwdQ 37r260 c_'; K573(n) (441)

where 7 = waf? /3cy®.

Now integrate over the solid angle. The emission is in a cone

The solid angle integral is therefore [ dQ — ffooo 27 sin adf), where once again we take
the integration limits to be 00 on #. This gives the total energy per orbit; the power is the
energy per orbit multiplied by the orbital frequency wg/27. This gives the power in each
polarization
_ V3¢*Bsina

o [F(2) + G(o)] (4.42)

PJ_((.U)



— 78 —

V3¢ Bsina
P(w) = S [F(z) — G(x)] (4.43)
where © = w/w., F(z) = x [ d{Ks53(E) and G(x) = 2Ky3(x). The total power in both
polarizations is

B V3¢*Bsin o

2mrmc?

P(w) F(x). (4.44)

The following integrals of F'(x) and G(z) are useful

oo ontl 1 7 1 2
FE(z)dx = =+ |I'{=+< 4.4
/o ! F(x)dx 1o (2+3> (2+3> (4.45)

/OOO PG (2)dx — 2T (g + %) r (g + ;) | (4.46)

For a power-law distribution of electron energies N(v) = N(v;)(7v/7)F, the frequency

dP 2 dP
Vo /71 N(y)dfy%. (4.47)

spectrum is given by

For 75 > v, and p > 1, the number density of electrons is n, = N(v1)y1/(p — 1), giving

dP _ V/3¢*Bsina(p—)n. / (7 )_pF(m)dv' (4.48)

dV dw 2mmc? 0] %

Now as we discussed earlier, changing integration variable from ~ to

w _g 2wme
=2 = —— 4.49
v We 7 (3eBsina) (4.49)
gives
dP
Yo o BWP+1/2, ,=(r=1)/2 (4.50)

4.6. Important features of synchrotron radiation and some applications

Let’s briefly highlight here some important aspects of synchrotron radiation. These are
worked out in more detail in HW4.

e Polarization. One of the distinguishing features of synchrotron radiation is that it
is strongly-polarized. For cyclotron emission, this is straightforward to see from the
following diagram
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For synchrotron, since we only see the radiation when the particle is moving within
1/~ of towards us, we see linear polarization with the dominant component being the
polarization perpendicular to B. For a single electron, 7 times more power is radiation
in the perpendicular than in the parallel polarization. For a power law electron energy
distribution, the degree of polarization is Il = (P, — Pj/P.+ P) = (p+1)/(p+7/3).

An application of this is to map out the magnetic fields of spiral galaxies.

Energetics. Radio galaxies show strong synchrotron emission in radio (v < 300 GHz
or A 2 1 mm). Jets from the central AGN terminate in huge radio lobes which have
luminosities L ~ 10%* erg s=!. The total energy implied for a lobe of ~ 50 kpc across
is ~ 10% erg in particles and fields.

An important result is the minimum energy argument of Burbidge (1959). For a given
synchrotron luminosity, you can show that the minimum energy requires corresponds
to the case where the energies of particles and fields are roughly equal, known as
equipartition of energy between particles and fields.

Cooling. The cooling time for the radio lobes in radio galaxies is very short, ~ 107
years, implying that the energy must be continuously replenished. An important com-
petition occurs between synchrotron and inverse Compton, the ratio of the power
emitted from each process is just the ratio of magnetic and photon energy densities
Piynen/Pic = Up/U,. Synchrotron self-Compton is the process in which inverse Comp-
ton scattering of synchrotron photons occurs by the same electrons that radiated the
synchrotron photons. An inverse Compton catastrophe is believed to occur when U,
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exceeds Up, which corresponds to a brightness temperature of ~ 10'2 K (e.g. Readhead
1994; Kelleman and Pading-Toth 1969).

e The transition from cyclotron to synchrotron. We have assumed relativistic
electrons here v > 1 so that the radiation is strongly beamed. As we mentioned
earlier for non-relativistic electrons the emission is at the cyclotron frequency. As v/c
increases, the harmonics of the cyclotron frequency are excited, eventually merging to
produce the synchrotron spectrum we have calculated (see Rybick and Lightman 6.6).

4.7. Synchrotron self-absorption

First, a reminder of Finstein coefficients. Consider a 2-level system

The three Einstein coefficients that describe transitions between the two levels are: A, the
rate (probability per unit time) of spontaneous emission of a photon, BjyJ is the rate of
absorption of a photon, Bs;J is the rate of stimulated emission, where

J = /OOO J,o(v)dv (4.51)

is the integral of the mean intensity over the line profile ¢(v) ([ dvé(v) = 1). Now, in
thermal equilibrium, the rates of downwards transitions (2 to 1) must balance the upwards
transitions (1 to 2) or

nyBiaJ = ny Ay + nyBay J. (4.52)

But in thermal equilibrium, J = B, (the line profile is narrow compared to the scale on which
B, varies) and ny/n; = (go/g1)e"/*sT
Einstein coefficients,

. These three conditions imply relations between the

2hv3

2
Although thermal equilibrium is assumed in deriving these relations, it is not required for
them to hold.

A21 = B21

91812 = g2 Bo;. (4-53)

The absorption coefficient «,, and emission coefficient j, can be written in terms of the
Einstein coefficients. First, the emission coefficient which describes the rate at which photons
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are added to the radiation field independent of the incident radiation we relate to As;

hv

Jv = EnzAm(ﬁ(V)- (4.54)

Since the stimulated emission is proportional to .J, we include it in the absorption coefficient
as a negative absorption term. The net absorption is

- B -
n1BiaJ (1 — @i) =y BipJ (1 — e M/ksT) (4.55)

where in the last step we use the level populations in thermal equilibrium. Note that this
does not require full thermal equilibrium to be valid, but only LTE; we assume that the level
densities are thermally-populated but the matter does not have to be in equilibrium with
the photons. Therefore it is often a good assumption. The term in brackets is referred to
as the correction for stimulated emission. We have seen it previously in the expression for
free-free absorption. The absorption coefficient is then

hv
a, = EnlBuqb(V)(l — e hv/ksT), (4.56)

Now we can apply these ideas to synchrotron absorption. The idea is to use the Einstein
relations to obtain the synchrotron absorption coefficient from the emission coefficient that
we have already calculated. The main difference is that rather than a two-level system,
in this case we must consider transitions between states in the continuum. The emission
coefficient can be written

iv=3 [ @HBPO) (4.57)

where f(p) is the density of states as a function of electron momentum p, and P,(p) is
the power emitted at frequency v by an electron with momentum p (something we have
calculated in previous sections). Then applying the Einstein relations, we get the absorption

coefficient

02

o = s [ EFUE) ~ FB) Po) (4.58)

where p* is the electron momentum corresponding to an energy € + hu.

As a check, we can put in a thermal (Maxwell-Boltzmann) distribution for the electron
distribution, f(p) = Ce=</*8T. Then f(p*) = Ce~</k8Tem/ksT which gives

2 .
_ ¢ ho/ksT 4y L 3. _ v
o = 5 s(e D / a’pf(p)P.(p) B (4.59)

And so we see that we recover Kirchoff’s law j, = «,B,. You may recall that we used
Kirchoft’s law directly to get the free-free absorption coefficient from the free-free emissivity.



— &2 —

For synchrotron, we have to be more careful because the electron population is not necessarily
in thermal equilibrium.

Now let’s evaluate o, for a power law distribution of electron energies, N(F) o< E~P.
We will assume that hv < ymec?, v > 1 and that f(p) is isotropic. First we change variables
in the integral from momentum to energy F = pc, N(E)dE = f(p)4drp3dp,

o= s [ P[5 - 27)

For hv < E, we Taylor expand the first term in the square brackets, to get

? ) d (N

(4.60)

Evaluating this for N(E) = E~P gives

o, = P2 / dEP,,(E)%. (4.62)

8mv?
But j, = [ dEP,(E)N(E), so the source function is

_ Jv 2v2 1 [dEN(E)P,(E)

5= 2 p+2[dEN(E)P,(E)/E

(4.63)

Now put in the expression for P,(E) o« F(z) and change integration variables from E =
ymec® to ¥ = w/w, as we did earlier. This makes the integrals dimensionless, and shows us
the scaling with v,

2% me? ( dtvme )1/2 [ dzzP=3/2F(z) 5/

v= T ; . 4.64
2 p+2\3eBsina [ dxa®=3)/2F(z)z1/? xv (4.64)

The overall synchrotron spectrum therefore looks like
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5

turning over from the optically thin scaling oc v~®~1/2 at high frequency to o v*/? at low

frequencies where the source becomes optically thick to synchrotron self-absorption.

By comparing this with S, = (2v2/c?)kgTy, we see that the brightness temperature is

1/2
kT, w / 1 [ dzzP=2F(z) (4.65)
mee?  \ 38 ging p+2 [dex®=32F (x)2x'/? |~ '

MmecC

If we look at frequency w, that emission is primarily coming from electrons with energy ~,,
such that w = w, = v2(3eB/2m.c) sin a, so we can write

ks, 1 [daaPd2F(2)
mec Y\ p+2 [ doae-32F (x)2l/2 [

(4.66)

This then gives us a way to think of the self-absorbed spectrum. At each frequency, we
calculate the v of the electrons that radiate the peak of their spectrum at that frequency,
i.e. we calculate v,. The brightness temperature at that frequency is then given by kgT =~

2 1/2 5/2

Yomec® X v/< and therefore S, o< v°/#. This is the back of the envelope understanding of

the spectrum that is often given in the books.

Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

e Cyclotron radiation from non-relativistic electrons. Cyclotron frequency w. = eB/m.c =,

or f. =2.8 MHz (B/G).

e Synchrotron. Relativistic gyration frequency wp = eB/ym.c. Power radiated per
electron P = (4/3)y*3%0rcUp. Distinction between “emitted” and “received” power.
Angular distribution of radiation from a relativistic charge — beaming into angle 1/+.
Characteristic frequency of radiation w, = (3/2)v3wp sin a (roughly 1/pulse duration).
Broad spectrum o 2/? (2 = w/w. < 1) or #1/2e7® (2 > 1), peaks at z ~ 0.3. Exact
form

B V3e2Bsin a

4rme.c?

B V3e3Bsin a

4rme.c?

Py(w) [F(z) +G(z)]  Pu(w) [F(z) = G(x)]

e For a power law distribution of electrons, dP/dVdw oc BP+1)/2,=(r=1/2 " Typically,
p~25givinga=(p—1)/2~0.7.
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o Einstein coefficients. Aoy = By (202 /c?), g1 B1a = g2Bay. Correction to absorption co-

efficient for stimulated emission. j, = (hv/4m)nsAs1p(v), ao, = (hv/4m)ng Biagp(v)(1 —
e—hw/ksT),

e Synchrotron self-absorption. S, o< v°/2, kgT, ~ ym.c?® where ~ is such that w, = w.

e Important features of synchrotron radiation. Polarization as a characteristic feature of
synchrotron radiation. Minimum energy argument. Cooling timescales for synchrotron
and inverse Compton. The inverse Compton catastrophe. Application to radio galax-
ies, magnetic fields of spiral galaxies.

Reading

e Synchrotron derivation: RL section 6.4, Jackson 14.6, Longair volume 2. Westfold
(1959) ApJ.

e Minimum energy argument, Burbidge 1959. Inverse Compton catastrophe, Readhead
1994, Kelleman & Pauliny-Toth 1969.
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5. Fermi Acceleration and Plasma Effects

These are notes for part five of PHYS 642 Radiative Processes in Astrophysics. We
discuss two distinct topics: the origin of power-law distributions of particle energy, in partic-
ular Fermi acceleration in strong shocks as a generic origin of power-law distributions, and
propagation of electromagnetic waves through plasma, including the effects of dispersion and
Faraday rotation.

5.1. General way to make a power law spectrum of particle energies

A characteristic spectral index for synchrotron is a &~ 0.7 (F}, < v~%7) which implies

p ~ 2.5 (N(y) oc v*°) (recall that « = (p — 1)/2). This raises the question of why the
electron distribution is a power law and in particular why p has this value.

We already have a clue as to how get a power law from our discussion of Compton
scattering by optically thin relativistic electrons (see also Rybicki and Lightman 7.5). There,
the photon energy increased by the same fractional amount Ae/e on each scattering, but
each subsequent scattering is less likely by a factor of the optical depth 7. The resulting
spectrum is a power law.

Here the idea is similar: imagine a scattering process for particles in which the energy
of the particle changes by Ae/e = B on average, but there is also a probability per collision
that the particles escape P... If the mean time between collisions is t., then the particle
energy obeys de/dt = eB/t. or € = €geBt/*. On the other hand, the number of particles drops
according to dN/dt = — N Py /t, so that N = Nye tee/t Dividing these distributions gives

the energy distribution

AN dNdt — _p i g —(Bt/te)(14 Pesc/B) e\ U/
- = esc (& c c esc - . 5.1
de dt de e ¢ e x €0 (5-1)

A power law distribution of energies is the result, with index p = 1 + Pes./B.

5.2. Second order Fermi acceleration

Originally, Fermi suggested a mechanism in which particles would be accelerated on
colliding from moving clouds of gas. For example, consider the collision of a particle with a
cloud moving with velocity V to the right. The particle travels to the left with velocity v
and makes an angle 6 with respect to the normal to the surface.
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The way to analyze this collision is to move into the frame of the cloud. The cloud
is much more massive than the particle and so in that frame we can think of the particle
reversing it’s momentum but not changing its energy. The incoming energy and momentum
in the rest frame of the cloud are E' = ~y(E + pV cos#) and p, = vy (pcost + VE/c?),
where 7y refers to v calculated using the velocity V of the cloud. In the collision, the energy
is unchanged, but the z-component of momentum reverses. Now transforming back, the
energy of the particle post-collision in the original frame is E” = vy (E' + Vpl) or

s pV V2
E” = E’}/V |:1 + 2f cosf + §:| (52)
or to second order in V/c,
AE 20V 1A%
—_— = — 2 . .
Z 2 Cos 0 + ( ) (5.3)

To average over angles, we note that the rate of encounters of the particle with a cloud
depends on whether the collision is a trailing collision or head-on collision. Specifically, the
rate of encounters is o< 1 + (V/c) cos§). Therefore

AE, [ du(l+ (V/o)u)(2(V/e)* + (2Vu/)p)

BT Ty du1+ (Vo) o0

which for v = c is (AE/E) = (8/3)(V/c)?, second order in V/c.

The fact that the acceleration is only second order makes it inefficient, but perhaps a
more important objection to this mechanism is that the values of P, and B, and therefore
the power law index p, are not expected to be generic. They would presumably depend on
the environment that the particle happens to find itself in.

5.3. First order Fermi acceleration by strong shocks

This is a mechanism in which particles scatter back and forth across a shock. Consider
a strong shock? in gas with v = 5/3. You may recall that in the frame of the shock, the
incoming supersonic matter is slowed by the shock to a speed uy/4, and compressed by a
factor of 4 (ps = 4p1). Here is a picture of the shock in the lab frame and in the frame
moving with the shock:

9These results come from applying conservation of mass, momentum and energy across the shock. Mass
conservation is pju; = paug. For a strong shock, the force balance is Pp =~ plu%.
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The idea is that a relativistic particle which has an isotropic momentum distribution on one
side of the shock (ie. is “at rest” on average relative to the fluid) moves across the shock.
What does it see? If we draw a picture of the shock in a frame moving with the upstream
or with the downstream fluid, we see

The particle that crosses the shock encounters fluid moving towards it with speed 3us/4 no
matter which direction it crosses the shock. This is the key to this mechanism: the particle
always undergoes a head-on collision, and so the resulting acceleration is first order. After
crossing the shock, the particle scatters and becomes isotropic in the new fluid, and in doing
SO gains energy.

To calculate the energy gain, we can use our results for second order Fermi acceleration,
but allowing for the fact that p!, vanishes after the scattering rather than being reversed. The
first order term is therefore AE/E = (Vv/c*)cos @ where here V corresponds to 3us/4, the
velocity of the incoming fluid. We assume the particle is relativistic, and set v = ¢. Averaging
over angles fol dp2p(V/c) = 2V/3c (the factor of 2 in the integral comes from normalizing
the probability over incoming angles). For a round trip crossing from the downstream region
into the upstream region, and back again, the energy gain is B = 0E/E = 4V /3¢ = uy/c.

The escape probability P.. comes from the probability that a particle will be swept
downstream from the shock rather than crossing the shock again. The rate at which particles
cross the shock is (1/2) fol duNep = Nc/4 in either direction. The rate at which particles
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are advected away is Nug/4. Therefore Py, ~ ug/c.

Putting these values of B and P, into our result for the particle spectrum, we predict
N(E)dE < E2dE (5.5)

very close to observed values (which are p &~ 2-3). The importance of this mechanism is that
it provides a generic way to make a power law distribution with about the right index, that
should apply across many astrophysical environments (shocks are ubiquitous). Corrections
to the index p come from changing the shock compressibility (for example a radiative shock
can have py > p;) or from including the effect of the pressure of the accelerated particles on
the shock itself.

5.4. Evolution of the particle spectrum

The evolution of the particle spectrum is described by a diffusion loss equation

INUE) _ 4 B)N(E)] + Q(E,t) + DV?N(E) (5.6)
dt dF

where the particles are injected at a rate Q(FE), cool according to dE/dt = —b(FE), and the

diffusion term represents spatial diffusion, for example diffusion of particles away from a

source. A derivation can be found in Longair (I am using his notation and following his

approach here), it is similar to our derivation of the Kompaneet’s equation earlier.

Now let’s solve this equation and look for a steady-state solution (dN/dt = 0) for a
spatially uniform distribution of sources (so that we can ignore the spatial diffusion term).
We take the injection term to be Q(E) = kE~P. Then d(bN)/dE = —Q(FE) has a solution
(assuming N — 0 for large energies)

k(1)
(p—1b(E)

If synchrotron losses set the cooling rate of particles, b(E) oc E?, and we expect N(FE) o
E~®+1)_ Therefore for particles that have had sufficient time to cool, the energy spectrum of

N(E) = (5.7)

the particles will be steeper than the initial spectrum by one power of E. For lower energy
particles that have not yet had time to cool, the spectrum will correspond to the injection
spectrum. Therefore we expect a break:
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The energy of the break tells you about the lifetime of a given source.

5.5. Propagation of electromagnetic waves in a plasma: dispersion

We now turn to a different topic and consider the propagation of EM waves through
plasma. In other words, we begin to ask what effect does intervening gas have on the radiation
from an astrophysical source as it propagates towards us? First consider an unmagnetized
plasma. In that case, there are two effects: only waves with frequencies larger than the
plasma frequency can propagate, and the group velocity depends on the frequency, leading
to dispersion.

To see what electromagnetic waves look like in a plasma, we must solve Maxwell’s
equations, in particular

— —

oF S - 0B S
— =cV x B—A4nJ — =—cV X E. 5.8
ot ot (58)
For a plasma, we must include the term 47 J in Ampere’s law since the electric field in the
wave drives a current. We will see that this leads to a difference in the speed of the wave
compared to in vacuum. We will look for a solution E = €, E, e~ “te* .

To determine the current density j, we write the equation of motion for the electrons
—iwmev, = —ekE, which gives v, = —ieE,/m.w. We ignore the motion of the ions, which
is valid since Am, > m, and the corresponding velocity is much lower. The current is
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J = —en,v,, or

nee?

J, = i—“—E,. (5.9)

MW

Note that the current and electric field are 7/2 out of phase, and therefore <j . E> = 0: there
is no net work done on the plasma by the wave. Therefore the wave propagates without
dissipation.
The next step is to write Vx BxE using the fact that J o E,
oo 4nd  wE | iw
ikxB="2_ "2 _ "Wp§ (5.10)

C C C

where we have introduced the dielectric constant of the plasma e,

4drnee? 1 w
- -1 (5.11)

€ =

which defines the plasma frequency wg = 4nn.e*/me.

Now we solve for the disperson relation for the wave. Maxwell’s equations are

ikxB=—-"¢E  ikxE="—8 (5.12)
C C
which gives
kx (kx E)=— (—) 5 (5.13)
C

k=—y/w?—w? (5.14)

We see that for w > w,, k is real and the wave propagates, but for w < w,, k is imaginary
and the wave evanesces. Physically, what’s going on is that at high frequency, the electrons
don’t have time to accelerate, and therefore the current is small and has little effect on the
wave. At low frequencies, a significant current can build up during a wave period that acts
to “short out” the wave (recall that there is no static electric field inside a conductor, ie. the
electric field vanishes in the limit w — 0). Putting in numbers, we get a useful formula

Wp

fo= 52 = 9.0 kHz (

™

Te > 1/2
cm—3 )

(5.15)

A terrestrial application is to the Earth’s ionsphere in which n, ~ 10* — 10° cm=3 and radio
waves with frequencies below a few MHz are reflected back towards the Earth’s surface.
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The dispersion relation gives the wave phase speed as w/k = ¢/\/€ = ¢/n > ¢ where the
refractive index n = y/e. The group velocity is dw/0k = cn < ¢, and depends on frequency.
Therefore electromagnetic waves in a plasma are dispersive, and waves of different frequencies
from a source will arrive at different times. This effect is quantified by the dispersion measure
DM, which is defined as follows. First we write down the travel time of a wave from a source

d d
dl dl 1 fwp\2
t=| —~ [ —(1+=(2 5.16
/Ocn /Oc(+2<w>) ( )

where we take w > w,. The delay due to the plasma is

ore? 1 [¢ ome? 1 DM 1 GHz\?
At =T dzne:”—e—DMssmS( )( ¢ Z) (5.17)

mec w? Jy MeC W2 pc cm™3 v

at distance d,

where DM is the dispersion measure, the integrated electron density along the line of sight.
The units of dispersion measure are usually taken to be cm™ pc.

This effect is seen in the arrival times of pulses from radio pulsars, and is often used as
a measure of distance to the pulsar. Given a model to the electron density in the Galaxy,
the distance can be inferred from the measured DM.

5.6. Faraday rotation

Now we include a magnetic field in the plasma. We choose our axes so that the magnetic
field lies in the z-direction, and consider a wave propagating in the z-z plane

The equations of motion for an electron are

evy B . ev, B
— iwmevy = —ell, +
c c

— WMy = —eF, — —iwmev, = —eFE, (5.18)

where E is the electric field in the wave, and B is the magnetic field in the plasma. We
assume that the magnetic field in the wave B’ is much smaller than the field in the plasma.
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We solve for the current as before, and find

W
_ :

J, = wa—uﬂ (—iwE, —w.Ey)
wg 1 ]

J, = Em(—szy—i—chx)
.
w

J, = g (5.19)

0 z
wdm

where w, is the plasma frequency and w. = eB/m.c is the cyclotron frequency.

The effect of the magnetic field is that J is no longer in the same direction as E because
of deflections by the magnetic field. Instead of a scalar dielectric constant, we instead must
introduce a dielectric tensor such that

- o AnJ  iwE W =
hx B =210 W2 _ W (5.20)
C C C
where
S —D 0
e=| +D S 0 (5.21)
0 0 P
with ) ) )
w w-w w
S=1- p D=——?P"° P=1--2 5.22
w? — w? w(w? —w?) w? ( )

(Note that for no magnetic field (w. = 0), S = P and D = 0, reducing to the result we had
earlier.)

What does this mean for wave propagation? Consider an electromagnetic wave prop-
agating along the magnetic field, k = ke,, E, = 0. The dispersion relation is given by

kx (kx E)=—(w?/c)e- E, which in components is
2 w? . 9 w?
KB, = —2(SE,—iDE,)  —KE, =~ (DE, - SE,) (5.23)

or in terms of n = ck/w,

(S —n*)E, =iDE, (S —n*E, = —iDE, (5.24)
giving
(n*-9)?=D*=ni=5+D. (5.25)
There are two different solutions for n. Writing them out in terms of the various frequencies,
w? w2
n=1-—=2 __ p2=1-—r (5.26)

w(w — w,) w(w + we)
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To see what these two modes look like, plug each value of n back into equations (5.24). The
mode with n = ny has E, = —iF, and the mode with n = n_ has F, = +iF,.

We see therefore that the modes are left and right circularly polarized waves travelling
with different speeds. Physically, this is because the electrons “want to” spiral around the
field line in a particular direction. The wave that rotates in the right direction propagates

more easily.

For w > w,,w,, we can expand

1 wg We
As the two polarizations propagate they build up a phase difference
d 2
dl wew
Ap = /dl Ak = /dzfAn - | £ (5.28)
c R,

The effect on a linearly polarized wave is that the angle of polarization rotates by an angle
A¢/2. Tt is easiest to see this geometrically, as in the following diagram:

=2 i e )
_le'f:_-.hw‘v ’,.i;«f; ol "‘%-"-‘-.rf/,“irc] _iJ) SR NS A

A A M A " Jal JJ f 4

" . s pr o

We define the rotation measure RM as a measure of this rotation. The plane of polarization

rotates by
1 [ dlww? 31 ¢
A== [ EF € /dln€B| (5.29)
0

2 ), ¢ w? 2mm2c? v?

where we write B) because although here we have consider only propagation along the
direction of B, the result holds more generally in which case the component of the magnetic
field along the line of sight B appears in the integral. The rotation measure RM is defined so
that A = RM A\2. It gives a measure of the electron-density-weighted line of sight magnetic
field.
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Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

Origin and evolution of electron spectrum. How to generate a power law energy dis-
tribution. Fermi acceleration. Scattering across a strong shock front gives p ~ 2. A
break in the electron spectrum indicates the energy where the cooling time equals the
age of the population.

Electromagnetic waves in a plasma. Plasma frequency wf) = 4dmn.e*/me, or f, =
9 kHz nt/?. Refractive index n? = 1 — w2 /w?. Dispersion At = (2me? /m.c)(DM/w?),
where DM = [ n. di. Faraday rotation. Rotation measure A = RMA\?, RM
fneBH dl.

Reading

Electron spectrum: good discussions are in Longair and Kulsrud 12.7.

Electron model for Galaxy used to interpret DM measurements: Taylor & Cordes 1993



— 95 —

6. Atoms and Molecules

These are notes for part six of PHYS 642 Radiative Processes in Astrophysics. We now
turn to bound electrons in atoms and molecules.

6.1. The Saha equation

We first want to understand the level of ionization of different species in thermal equi-
librium for different temperature and density conditions. Consider the ionization and recom-
bination of hydrogen!’

The ionization potential is xy = 13.6 eV = (m, + m, — my)c® (for now, we ignore levels
other than the ground state and assume that recombination occurs into the ground state
only).

In equilibrium, the chemical potentials satisfy'!

pet + p— = fio. (6.1)

For an ideal gas of particles the chemical potential is

pw=FkgTIn (ﬁ) + mc?, (6.2)
where “n-quantum” is
2mmkpT \ %

10Tt’s worth reminding ourselves of the astronomical notation here: the neutral hydrogen atom H? is
referred to as HI, singly ionized hydrogen H™* is known as HII, etc.

1Tn general for a chemical reaction
aA+bB = cC +dD

in which a particles of species A react with b particles of B to make ¢ particles of C' and d particles of D,
aps +bup = cuc + dup in equilibrium. To see this, start with the Gibbs free energy G = E — TS + PV
which gives dG = —SdT + VdP + pdN. In equilibrium dG = 0 at constant pressure and temperature gives
> pidN; = 0 from which the relation between the chemical potentials follows.
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and ¢ is a degeneracy factor that counts the spin states (or other internal states of the
particles).

Therefore,

(me +my)c® + kpTln { L } = mpyc® +kgTn ( el ) (6.4)
GeNQ.e 9pNQ.p gHNQ.H

or rearranging we find

3/2
NeNyp 9pGe 2rmekpT XH
_ AL 6.5
ny g ( h? P kgT (6.5)

which is the Saha equation. For hydrogen ionization, the spin degeneracy factors cancel,
since g, = 2, g, = 2 and gy = 4 (the hydrogen atom has 4 possible spin states; 3 triplet and
1 singlet state).

The half-ionization point is when the ionization fraction y = ny/n = 1/2. Since the
plasma is neutral n. = n., so that

) 3/2 -9
v _1 (27”72#) oxnfhp _ EX A0 gy 1 gaonr (6.6)
p

For high temperatures kg1 > yy y — 1 and the hydrogen is fully ionized; for low temper-
atures kT < yy y — 0 and the hydrogen is neutral. The plot below taken from Hansen
and Kawaler shows the half-ionization point as a function of p and T

It is important to note that 13.6 eV corresponds to a temperature of T = 1.6 x 10° K.
Typically, the half-ionization point is a factor of ten below that value, T ~ 10* K. The
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reason for this is that there is a large entropy gain in ionizing the atom, since two particles
are created rather than one. Even though there is an energy cost for ionizing the atom, the
free energy of the system E — TS is lowered because of the large entropy increase.

We considered only the ground state here, but in general we must include all the energy
levels of the atom. The chemical potential is then of the same form as equation (6.2) but
the factor g is replaced by the partition function'? summed over all internal energy levels
Z =3, gre PPr where Ej, is the energy and g, the degeneracy of level k. For ionization of
an atom between ionization states ¢ and ¢ 4+ 1, the Saha equation is then

Nig1Me 27211 (27TmekBT)3/2 o~ Xi/ksT

n; n Zz h?

(6.7)

which is the form in which it is usually given. Here y; is the energy required to ionize species
7 and form species 7 + 1 by removing an electron from the ground state of species .

An immediate application of the Saha equation is to understand the sequence of spectral
types. Stars are divided into spectral types based on the species whose absorption lines
appear in their spectra.

{ S = |

[0 & al v A 8T 6
Nl ¢ ; Mo

el
" 1 / He /7 He g Mehals
we | e 15 =

: ,-\.r: _‘_,.l - . . \v il

12T see this, use the fact that the occupation number of a classical gas is e~ (¢=#)/*8T (the classical limit
of the Fermi-Dirac or Bose-Einstein distributions). Then

2
N = Ve“/kBT/ 47Tp3dpe—p2/2kaT Zg_e—Ei/k?BT
h : K3

(2

where the sum over ¢ is over internal energy levels F; with degeneracies g;. This can be integrated and solved
for p.
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6.2. Line profiles and curve of growth

Several different processes determine the shape of spectral lines. An excellent and
detailed discussion is in Mihalas “Stellar Atmospheres” chapter 9. Here we briefly discuss
three contributions.

The first is natural linewidth which arises due to the finite lifetime of a state. One way
to think of it is in terms of the uncertainty principle AE ~ h/At. The line profile is a
Lorentzian profile!

/472
(v — 10)? + (I'/4m)?

where v is the frequency of the line center (the normalization here is [ dvg(v) = 1).

¢(v) = (6.8)

Collisions between particles give rise to collisional broadening. This also has a Lorentzian
profile, in which I' — I' + 2v,. where v.. is the collision frequency, and is only important if the
time between collisions is shorter than the natural lifetime of the state. A simple model is to
assume that collisions lead to abrupt phase changes in the emitted radiation. The emitted
radiation is made up of pieces with finite length 7", which have a Fourier transformed electric

field
exp [i(wy — w)T] — 1

T
E(w,T) = / it — (6.9)
0

i(w — wop)

The idea is then to average over a probability distribution of collision times to get the power,

Plw) o — / E*E Prob(T)dT (6.10)
2m Jo

and with Prob(T)dT oc e~7/7dT this gives a Lorentzian profile with T' = 2/7. More sophis-

ticated theory is discussed in Mihalas’ book. For example, the kind of interactions occurring

(van der Waals, Stark effect etc.) must be included. There is also a line shift which is not

predicted by the Lorentz model but is treated by more sophisticated models.

Doppler broadening occurs because a moving atom absorbs at a slightly different fre-
quency than an atom at rest because of Doppler shifts. We should write

1

. (6.11)
(v(1 = pw/e) = vo)” + (I/4m)?

p(v)

130ne way to get this is to repeat the calculation we did for the Thomson cross-section but for an electron
in a harmonic potential (see Rybicki and Lightman). You may also be familiar with the Lorentzian form of
cross-sections in particle or nuclear physics in which a reaction proceeds via a short-lived excited state that
decays into different channels.
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where the photon frequency seen by the atom is v(1 — pv/c). Averaging this expression over
a Maxwellian velocity distribution gives the Voigt profile. We first simplify by writing

V(l—%>—V0=V—V0<1+%>—(V_VO)% (6.12)
c c c

and drop the last term which is second order in v/c. Effectively, this says that to first order
in v/c we just need to Doppler shift the line center. Then average over the particle velocity
and direction

(TN 1 m N et e~ 2 T2 dydy
¢<”>—(E>¢—z7(m) L o s i (6.13)

(which is a convolution of a Maxwellian and Gaussian). We write the result as

o(v)

1 vV—1

=——~>H —_ 6.14

ﬁAVD <a7 AI/D > ( )

where Avp = vo(2kpT/mc?)'/? ~ 1y(v)/c is the Doppler width, a = I'/47Avp compares the
two widths, and

a [ eV dy
H = — —_— 6.15
=t (6.15)

is the Voigt function. This gives the general shape of spectral lines.

The line shape gives rise to a distinctive curve of growth, which is a plot of the equivalent
width of a spectral line against the column of absorbers. The equivalent width is a measure
of the total absorption or emission in a line, and is calculated as the width of the underlying
continuum that would be needed to make up the emission or absorption in the line.

A Y1 o |'! 1 50 --?,T-‘-"\ n bmy
II )
{
A | e /__-———'—'_'
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g =70 /
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As the number of absorbers increases along the line of sight, measured by the number of
absorbers per unit area N, the absorption increases, as in the following plot:



- 100 —

The curve of growth is a plot of EW against N which has a distinct shape determined by
the Voigt profile.

b

N

The EW at first increases linearly with NV, but then flattens off as the line becomes satu-
rated (EWo In V), later rising again as the Lorentzian wings of the Voigt profile become
important (EWo v/N).

6.3. A reminder of hydrogen-like atoms

Let’s give a few reminders about hydrogen-like atoms that are useful for estimates. The

binding energy is
1
XH = §a222m6c2 =13.6 eV 22, (6.16)
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the Bohr radius is

h 1  053A
— =T 6.17
o MeC L 7 ( )
where ) .
e
=—=— 6.18
he 137 (6.18)
is the fine structure constant. The classical electron radius is rg = a?Zay The spacing
between energy levels is
1 1

Also, now is a good time to remind ourselves of the absorption line series of hydrogen.
The Lyman series corresponds to transitions to n = 1. The Ly limit is 912A, Ly« (n=2
ton = 1) is 1216A, LyS (n = 3 to n = 1) is 1025A. The Balmer series corresponds to
transitions to n = 2. The Balmer limit is 364.6 nm, Ha (n = 3 to n = 2) is 656.3 nm, Hf
(n=4ton=2)is 486.1 nm.

6.4. Calculation of radiative transitions

In this section, we summarize the main steps in calculating radiative transitions in
atoms. We start with Fermi’s Golden Rule from time-dependent perturbation theory in
non-relativistic quantum mechanics. We consider two eigenstates of the Hamiltonian |i) and
If), e.g. Holi) = EVi), and perturb the Hamiltonian H = Hy + H;. The transition rate
from state i to f is

/Hdp’“ (| 1 | )25<E$—E§—2Ek>5(?—p?c—2m> (6.20)

where the product k is over all final state particles, and the delta-functions enforce energy

and momentum conservation. This is often abbreviated as
2T )
Rip = — Myl p(E) (6.21)
where My; is the matrix element connecting the initial and final states, and p(E) represents
the phase space of the outgoing particles.

To write down Hj for radiative transitions, we need the Hamiltonian of a (non-relativistic)
charged particle in an electromagnetic field,
57— qA/c)?
H = M + q¢ (6.22)

2m
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where A and ¢ are the vector and scalar potentials. This Hamiltonian recovers the correct
equations of motion for the charged particle. Expanding the first term, we write

Hy=L2 —ep (6.23)

—e
2m

and .
A . 2 . .
= PAL T g (6.24)

mec 2m.c2

(here we have chosen the Coulomb gauge V- A = 0so that [121, p] = 0). These terms represent
one and two photon processes. Their ratio is (nvao)_l/ 2 where n, is the photon density, so
that the first term dominates as long as the number of photons per atom is small.

The Hamiltonian for the electromagnetic field is

1 1 10AN? /o 2
Hpy = — | &°F(E* + B? :—/d?” ——— A) . 6.25
M 87T/ r( * ) 8 " c Ot +<VX ) ( )
The photon field is quantized by writing
I 2mhe’ 12 N i(kF—w ~t (7 —i(k-F—w
A=Y (P9) fapse (B2) e vl @ (7o) e 0] o0

kX
where a and a' are annilation and creation operators, satisfying [az ,, &2 /\]
k is the photon wavevector and A is the spin. This should be familiar to you if you think back

= 5]2’];‘,5)\)\/. Here,

to the harmonic oscillator. Just as in that case, in terms of these operators, the Hamiltonian
is

. 1
— oot i
H = E fuw (ak«\a/}',,\ + 2) ; (6.27)
and we also have
ney) = /nzy [ng, —1) al ng ) = /ng, +1|ng, +1). (6.28)
IS VARRVALPS N LU i TR kA EA

The idea then is that the annhilation and creation operators inside the A factors in the

ag

perturbing Hamiltonian H; couple the photon states in [i) and |f). For example, (1| (¢, |
Hy |¢m) |0) represents spontaneous emission from state m to n with the emission of a photon.

Now we make a dipole approximation. Substituting our expression for Ainto H 1, We see
that we have to evaluate )
(f | e T p i) (6.29)
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where we drop the prefactor, including the & and a' operators that couple the photon states.
The approximation is to recognize that kr ~ (w/c)ag ~ Za/2 < 1 and so €*™ ~ 1. Just as
in the classical dipole approximation, we ignore phase changes across the source. Secondly,
we write

~ N - dr .
EEIDl) = me(E] I

m A
= e A
m - "l
= By BVt 1)
= imwe- (f|T]i). (6.30)

Now we have everything we need to evaluate the rate. We discuss two aspects: first,
the spatial integrals which give rise to selection rules for the transitions, and then estimate
the rate of bound-bound transitions.

6.5. Selection rules from the spatial integral

If the initial and final states are hydrogen-like states, then we need to evaluate

(o | €-710) = [ B (107 B 1) [ 090V, (0,008 830 00). (631

For the angular integral, it is useful to write

€€ = €ysinfcosg+ e,sinfsing + €, cos o
47 —€, + 1€ € + 1€
= 3 (EzYLo + TZ”YM + NG le,—l) ) (6.32)

which reduces the angular integral to an integral of three Y},,’s,

Selection rules arise because these integrals are non-vanishing only for particular combi-
nations of initial and final quantum numbers. For example, the azimuthal angular integration
is

/d¢ e~ Mt — Or5(m — my + my) (6.34)
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which tells us that my —m; = m = 1,0, or —1. Choosing our z axis to lie along the photon
propagation direction, €, = 0, we see that m = +1 only, or

Am=my—m; = £1 (6.35)

which is our first selection rule. For example a transition to the ground state has m; = 0 and
therefore must have m = —m,;. If m; = 1 then m = —1 and the photon has a polarization
€, + i€, (third term in eq. [6.32]), carrying away the angular momentum of the initial state.

Another selection rule that is simple to see is that the parity must change so that the
radial integral is non-vanishing [ d*7 Y5, Since the parity is (—1)!, we conclude that I
must change, and the angular integral gives the constraint

Al = +1 (6.36)

(e.g. you could check the simple case [y = 0 and use the fact that Yy = 1/v/47 =constant).

Selection rules for multi-electron atoms are more complex; see Rybicki and Lightman
for details. It is important to note that the selection rules we derived here can be violated
by higher order processes, e.g. magnetic dipole or electric quadrupole transitions.

6.6. Bound-bound transitions

We can now use our results so far to estimate a typical bound-bound transition rate:

2
2 orhe\ M/ A7 (hw)?
Rif ~ alll [ ¢ ( T C) amec L (6.37)

h | mec w Ah3

where we use equation (6.26) to estimate the size of A, and p ~ amec for hydrogen, and
ignore the overlap integrals; we're just trying to estimate the magnitude here. The final
factor is the phase space for the outgoing photon. Cancelling factors gives

20%we?

Rif ~ ~ 20%w. (6.38)

c
Now assume a transition to the hydrogen ground state to get the energy scale, i.e. hw ~
(1/2)a*mec?. Therefore
5 MeC?

~at S 1010 5L (6.39)
Qo

If we had kept the Z scalings, we would find R;; oc Z2.

Rifwoz



- 105 —

A concrete example is the 2p — 1s transition in hydrogen (Ly «). The energy is hws; =
(3/8)a*mec?. The radial integral in that case is

/ R}o(r)Roy (r)rdr = % @)5% (6.40)

where we use Rjg(r) = 277/ /ag/2 and Ry = re "/2% /(y/ 24a(5)/2). Averaging over m states
(1/3) 32} | Ry 14(m) gives the final result

2\ mec?
R2p*)18 = Agl = (g) m;ic Oé5 =0.6 x 109 Si1 (641)
(the Einstein A coefficient for the 2p — 1s transition). This is just over an order of magnitude
below our simple estimate.

The Einstein relations allow us to get the cross-section for the reverse process, bound-
bound absorption. Using the results we wrote down relating j, to the Einstein coefficient
A and «, to the Einstein coefficient B (see the section on synchrotron self-absorption), we

have ) ) 2
14 gg C
012 = 4—(25( )312 = o (V) 87TV2A21 = a ( )8 A21 (642)

where we use the Einstein relations to relate By to As;. Substituting in our expression for

Aoy and 1o gives
Te

019 = fmec¢(y) (643)
where the oscillator strength f = (g2/g1)(2'3/310).

We expect the same scalings for A and o for other transitions, but the prefactor will be
different, depending on the overlap of the wavefunctions. For example, for transitions to the
ground state, fi,, oc 1/n?.

6.7. Bound-free transitions: photoelectric effect

Now consider absorption of a photon that excites an electron into the continuum, the
photoelectric effect. Fermi’s Golden Rule for this case is

dpe p:
= — M hw — 44
=2 [ s ) (6.44)

where we integrate over the phase space of the outgoing electron, and x is the ionization
energy. This can be simplified if we write d®p = dQp*dp = dQmp.dE,, and integrate over
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energy using the delta function, giving

2T mp6
R=C
h

where p, = 2my/hw — x. Writing dR/dQ) = cdo /dS), we obtain an expression for the differ-

ential cross-section

\Mﬁ] (6.45)

do 2T mp.
= T |My]? . (6.46)

The matrix element is the same as previously,

21he?\ /?
My = < < e ) /di”w g ey, (6.47)

MeC w

As an example, let’s take the initial state to be the hydrogen ground state,

1 /1\*?
wi:ﬁ(a_o> e/ (6.48)

and we represent the electron part of the final state as a plane wave (Born approximation)

Yy o e, (6.49)
giving .
(£ & e fi) = & Bolf | i), (6.50)
or ,
2he? 1 o
|]sz'|2 = ( ) e -pe)2 B eltk—pe/h)Tmr/ao) (6.51)
w 7T(I0
The integral is
8T
e = —————— 6.52
f e RN (052
which gives (after simplifying)
do PeC\ [ € Pe 2 1
o = 3203 (2 . 6.53
aQ 77 (mec> (1+ agA?)? (6.53)
where
hA = hk — p. (6.54)

is the momentum transfer and recall that energy conservation implies E, = p?/2m, = hw—Y.

A simplification can be made if we assume hw > x or E, &~ hw, then

) T2 sin? @ (6.55)
(1 —vecosf/c)* '

2

E.
=2
dQ V2o'a (mec
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where the photon direction defines the z-axis (§ = 0). Keeping the scaling with Z for
hydrogen-like atoms, we find do/d2 oc Z°. Integrating over angles we find the total cross-
section is o8 T2

ovy = —-aa <ﬂ) (6.56)
(which agrees with Rybicki and Lightman eq. [10.53]). The general integrated cross-section
is written in terms of the semi-classical result derived by Kramers with a multiplying Gaunt

factor (Karzas and Latter 1961)

Opp = gi\/gngbfa (%)2 (%)3 (6.57)

where n is the energy level, iw, = x,, = a®*m.c*Z?/2n? and gy is the bound-free Gaunt fac-
tor. We might have guessed o ~ (7a3)a (geometrical cross-section multiplied by interaction

strength), but there is also an additional correction term

w) v? -3
(w_n> N(_QQZZCQ) (6.58)

which comes from the overlap between the two wavefunctions. The factor inside the brackets
is roughly the velocity of the ejected electron divided by the orbital velocity.

As a function of frequency, the cross-section looks like

Note that the rough scaling between absorption edges is o,y o< 1/v* which is the same as
the free-free cross-section ofy. This means that the thermally-averaged opacity is also a
Kramers’ opacity ryf o< pT~ /2,
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6.8. Bound-free transitions: recombination and the Milne relation

The inverse of the photoelectric effect is recombination. To calculate this we can use
considerations of thermal equilibrium just as we did when deriving the Einstein relations.

We start by deriving the Milne relation,

T hv 20, (6.59)

To see this, first write down the number of recombinations per unit time and volume
nyneo v f(v)dvo (6.60)

and the rate of photoionizations per unit volume

Arl,
21 (1 — e /R8T q 61
N O fC l huc] (1—e ) dv (6.61)

where the factor in square brackets is the photon number density, and we include a correction
for stimulated emission or “stimulated recombination” in this case. In thermal equilibrium,

they must be equal
_ nyneop cvhy f(v) dv

! N, oy 4w 1, dv’ (6.62)
Now we use results for thermal equilibrium, I, = B, (Planck for photons),
F(v) = 4 ( m )3/2 v2e~mv’ /2T (6.63)
2rkgT '

(Maxwell-Boltzmann for the electrons), the Saha equation for n.n./n,, and since mv?/2 =
hv — x, mvdv = hdv and therefore dv/dv = h/muv. Simplifying, we arrive at the Milne
relation, equation (6.59).

We can apply this relation to get o, from o,r. The quantity usually given is the
recombination coefficient (units are cm?® s71)

(vopp) = /Uf(v)afbdv. (6.64)
Using the expression for oy,; and the Milne relation with g, = 2n?, g. = 2, g4 = 1, gives
(vo ) = 3.262 x 107° M (n,T) (6.65)

where

eXn/kBT XTZ
M(n.T) = " Br o (6.66)
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(see Cillié 1932) or summed over levels n,
1
(vop) = 5.197 x 10714 \1/2 (0.4288 + oA+ 0.469)\‘1/3) cm? 57! (6.67)

where A = 13.6 eV/kpT = 1.579 x 10° K/T' (Seaton 1959).

6.9. Summary of bound-bound and bound-free cross-sections

Let’s summarize our results so far in a form that is useful for making simple estimates
of quantities. First, bound-bound transitions. We have

2
Aoy ~ 220w ~ Z%f’% ~ 10074 571, (6.68)

although we saw that the wavefunction overlap makes this an overestimate, for example
2p — 1s in hydrogen is 6 x 10® s7*. The absorption cross-section is
)\2

o= %gb(y)Amg (6.69)

or at the line center,
A Ay
7 Ay
where Av is the width of the line. For example, for Lya (n = 1-2) A = 1216A. If we take
Av & Ay, then o ~ A\?/8m = 6 x 107! cm?.

(6.70)

For bound-free absorption, we have

g~ (20)7 (2n)  THID T ) (6.71)

nds \Z w nd w

3

The recombination coefficient is (vos,) ~ 107 ¢cm?® s7! and the cross-section is

1022 2 (Wn hwn, 1

6.10. Application: stellar opacities

We are now (almost) in a position to understand stellar opacities. Both free-free and
bound-free absorption have k, oc 1/v® which leads to a Kramers type opacity law, x o
pT~7/2. Although not obvious why, bound-bound transitions also have a Kramers type
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opacity law. The one opacity we have not talked about is H™ opacity which is important in
the atmospheres of stars with about a solar mass.

The handouts show the main contributions to opacity as a function of density and
temperature.

6.11. Application: X-ray absorption by the ISM

X-rays are absorbed while travelling through the ISM by the photoelectric effect on
metals. The papers to look at are Morrison and McCammon (1983) and Wilms, Allen, and
McCray (2000). Using our earlier results, we expect

v ) s 3 107% em®—. (6.73)

10 eV\?® 74 74
nd n

oy (1 keV) ~ 10717 cm? (

For carbon, Z* ~ 1000 but its abundance relative to hydrogen by number is ~ 1073, so we
expect ~ 3 x 107 cm? at 1 keV (per hydrogen) which agrees well with Figure 1 of Wilms
et al. (2000). This doesn’t work out so well for iron, which has Z* ~ (26)* ~ 10° and a
number abundance ~ 107*, which gives ~ 3 x 102! at 1 keV. Iron absorption is important
at several keV and above, but the number at 1 keV is the one to compare against the Wilms
et al. plot, again it compares reasonably well.

In X-ray astronomy, the absorption is measured in terms of the hydrogen column (with
assumed metal abundances). We see that o ~ 10722 cm? giving order unity optical depth
for Ny ~ 10?2 cm 2.

Dust also contributes to the absorption — see the discussion in Wilms et al. (2000) who
conclude that it is not a large factor.

6.12. Application: Stromgen sphere; HII regions

Consider a hot star (O or B spectral type) in a region of constant density gas. The
radiation from the star ionizes the surrounding gas to form an HII region.
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To calculate the size of the HII region, first consider the different components of the ionizing
radiation field (v > vy where hiy = xp). The stellar radiation has a flux

 4qr2

F, e (6.74)

where 7, is the optical depth to photoionization,
dr, = (1 — x)ngopedr (6.75)

where x is the ionization fraction and ny is the number density of hydrogen atoms (ionized
or neutral). This flux satisfies

1d
=y (r*Fo) = —(1 — 2)noyscUs,. (6.76)

The diffuse ionizing radiation from captures onto the n = 1 level satisfies

1 d |
7/._2% (rQFdV) - _(1 - x>nHO-beUdy + 47Tjdy- (677)

Now add these two components and integrate f:lo dv/hv

1 d % g G o v sv
(7,2/ —V(de+Fsy>> :47T/ ‘% V—(l—x)an/ dVO’be. (6.78)

——
r?dr . hv . hv ”r hv

On the RHS the first term is xn.nga; where o4 is the recombination rate onto the ground
state. The second term is the photoionization rate. In steady state, the rate of ionizations
must be balanced by the rate of recombinations,

(1-— a:)an/ Ub;;VUV dv = ngrn.a (6.79)

where now we write «, the recombination coefficient for recombination onto all levels, rather
than a;. In other words, the photoionizations that occur in a steady-state HII region are all
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balanced by a recombination, but not all recombinations are to the ground state. The flux
of ionizing photons satisfies

1d [, [Fdv
ﬁ% (7“ \/V1 E(de + Fsy)) = —INHgN O (680)

where as is the recombination coefficient for recombination onto all levels n > 2. If all
recombinations were to the ground state, the number of ionizing photons would be con-
served as the photons were destroyed by photoionization and produced by recombination;
recombinations to levels other than the ground state are the sink of ionizing photons.

The radius of the HII region is the radius at which all of the ionizing photons produced
by the star have been absorbed and converted into diffuse photons. The integral of equation

(6.80) is
41 :
?RgnenHOQ =N, (6.81)

where N7 is the rate at which the central star produces ionizing photons, and we’ve assumed
x =1 and a3 is constant inside the HII region. This gives the radius of the Stromgen sphere

. 1/3 . 1/3
ho_ (3N P e 100\ N, / (6.82)
5 Admagn? ~ (n/100)23 \ ay 5 x 1049 g1 '

where we've used a value of N, appropriate for an O5 main sequence star.

For the photons with v < 14 produced by recombinations into the n = 2 and higher
levels, there are two limiting cases that are usually discussed. The first, case A is when the
HII region is optically thin to line photons. The second, case B is when the HII region is
optically thick to Ly series photons (corresponding to a transition from n = 1 to a higher
level). The other series escape since the populations of levels n = 2,3, ... are tiny compared
to the population of the ground state.

et
]
i
-

.
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6.13. Collisional excitation and deexcitation

If the electron density is high enough, collisions of atoms with electrons can cause
transitions between atomic levels. We write the rate of collision-induced transitions from j

3

to k Rjr = neyjr where v, has units cm® s, Now include these processes in the argument

for the Einstein relations. In steady-state,

n; [Z neYjk + ZBjkj+ ZAjk
i i

k<j

= Z Nk (ne’ykj + Bk]j) + Z nkAkj. (683)
k

k>j

In thermal equilibrium, the terms involving collisions must balance, and since ny/n; =
(gr/g;)eEi/k8T we must have
Jik _ 9k —Ej/kpT (6.84)
Tki 95
The coefficient v, is an average of ov over the velocity distribution of the electrons

3/2 oo
Vik = 4w <27TZL T) / v30jk(v)e’m“2/2kBTdv. (6.85)
B 0

In thermal equilibrium we must have detailed balance

n; f(uj)dujuioi, = ng f(ug)dugugog; (6.86)

where u; is the velocity before the collision and u; < wu; the velocity after the collision,
(1/2)mu;, = (1/2)mu3 — Ejj,, which gives

ng?Ujk = GrULOK; (6.87)
analogous to the Milne relation.

The cross-section is written in terms of the collision strength Q(j, k) as

o= — ( h )29(3', k) (6.88)

g; mety

where Q(j, k) comes from a QM calculation of the cross-section and is typically of order
unity. We can get the scalings from a classical argument which is similar to the idea of
gravitational focusing. Consider an electron approaching an ion with charge Z and radius
ag. The impact parameter b is such that the electron just hits the ion.

T
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Conservation of angular momentum and energy conservation gives

27 ¢?

bu; = avy vf =07 + maeo : (6.89)

The cross-section is 0702
— 7 =l ( 1 ). 6.90
o= 7Ta0( + mogu? ( )
The second term in the brackets dominates: using ay = (h/m.c)(1/Za), we find it is
2720%c v} ~ 10Z%(T/10*K)~!, where we write v; ~ (3kgT/m.)"? = 6.7 km s~'T"/2,

The cross-section is then
27¢? o\’
2

2 — | =2 . 6.91
0= Ty (maov?) ™ <mevi) ( )

Averaging over the electron velocity distribution using fooo udue " =1 /21? gives the
deexcitation rate as

h*Q(j, k) 6 3 120,k)

;= =8.63 x 10~ - . 6.92
Vkj 91 (27 )32 (kgT)1/2 cm- s g T1/2 ( )

The excitation rate coefficient is given by'* g;y;, = gpypje” Fie/ksT.

6.14. Line diagnostics of temperature and density
Consider a two-level system. In equilibrium,

nines + niBiad = naneyor + noAgy 4+ naBay J (6.93)

which gives - ~
ng Nzt B  neyia/As + BiaJ /Ay (6.94)

Ny MNeYor + Bo1J + An 1+ jB21/A21 + n6721/A21.
Now using the Einstein relations Boi/Ag; = ¢?/2hv3, Bia/As = (go/91)(c?/2hv?) and 710 =
Yo1(g2/g1)e F12/F5 T we get

ny  (g2/g1)e P2/RET (novyin ) Agy + eF12/75T 2 ] [2013)
— = - . (6.95)
n1 1 + CQJ/Q}LV:S + ne’le/Azl

14Using the relation in eq. [6.84] that we derived using arguments about thermal equilibrium. You can also
directly average the excitation cross-section over the electron velocity distribution, but be careful - if you do
that you must take into account the fact that a minimum energy (1/2)mv? = Ejj, is required to excite the
transition. Including this as a lower limit on the range of velocities considered gives the factor of e~ Fix/ksT

that we deduced from thermal equlibrium.
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In an HIT region, we expect U, ~ B,(T =~ 10* K)(R,/r)*> where the dilution factor
(Ry/7)? ~ (10 cm/10'® ¢cm)? ~ 10~ ™, which implies that the J terms will be small. Then,

N2 92 _Ey,/kpT 1
— ~ e _ 6.96
ny g 14 Agi/nevar ( )

When collisions dominate, ny/n; — (g2/g1)e12/#87 which is the correct thermal equilib-
rium ratio. However, when the spontaneous emission rate is much greater than the collision
deexcitation rate, Aoy > n.y91, then

@ . @e—Em/kBTnefy21 ] (697)

ny g1 A
For an optical transition (e.g. Lya), As; ~ 108 s7%, and v ~ 107°/TY2 ~ 107% then
NeYo1 /Aoy ~ 107%n, < 1, so ny < ni. The much faster decay rate due to spontaneous
emission compared to the collision rate means that it is an excellent approximation to assume
that the upper levels are not populated.

Next, consider the three level system

and neglect induced radiative transitions and also neglect 3 to 2 transitions. The ratio of
intensities in the 3 — 1 to 2 — 1 transitions is

Isn  naAsihvsi gsAsivar [ 1+ Asi/nevar | _pyumpr
— = = e . (6.98)
I ng Ao hvay GoAo1vo1 |1+ Asi /ey
If n, is large enough, then
E _ g3As1v31 e—EZS/kBT’ (6.99)
I3 ga Ao
so that collisions maintain a thermal population of levels. However, if n. is small, then

Isv _ 93 maghpm Vs Y1 _ Va1 13 (6.100)
I g2 V21 Y21 V21 Y12

or in words every collisional excitation produces a photon.

This gives a method for determining the density of ionized gas. A famous example is
the OII doublet
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For n, < 10? cm™® the expected intensity ratio is I3;/I>; = 2/3 (the ratio of the collision
strengths Q(1,2) and €(1,3)), whereas for n, > 10* ecm™ the expected ratio is 2.9 (an
additional factor of the ratio of A’s). Notice that the A’s for these transitions are very small
~ 10~* s corresponding to lifetimes of hours! This is because these transitions are forbidden
under electric dipole selection rules. They are known as forbidden transitions and the lines
as forbidden lines. It is not possible to see these transitions in the lab because collisional
deexcitation always dominates. Nebulae are very bright in these forbidden lines as they are
the mechanism by which decay to the ground state occurs. Bowen (1928) showed that the
bright emission lines of nebulae, originally attributed to a hypothetical element “nebullium”,
were in fact forbidden transitions of this kind.

In general we can define a critical electron density ne. = >, Ari/ > ; 21, Vki above
which collisional excitation/deexcitation gives rise to a thermal population of energy levels,
and below which radiative deexcitation dominates and the upper levels have a much smaller
population than in LTE.

6.15. Application: The cooling function

Line emission is crucial for understanding the cooling function of gas below ~ 10° K.
For higher temperatures, the gas is ionized and thermal bremsstrahlung is the main cooling
mechanism, for 10 K < T < 10° K, electron collisions excite electronic levels of neutral or
ionized components, while for T < 10* K electron or neutral collisions (depending on the
ionization fraction) excite fine structure levels of the ground state. The general shape of the
cooling function A looks like
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where the quantity A plotted has units erg cm?® s~! so the cooling rate per unit volume is

n% A (see Dalgarno & McCray 1972; Sutherland & Dopita 1993 for detailed calculations).
The cooling rate is set by the collision rate which we saw earlier could be written as v;5 ~
10-% em? 571 Q(1,2)/V/T. For the fine structure lines, we can take an excitation temperature
T, ~ 100 K (or photon energy ~ 1072 eV), giving

104 K\ /2 T, Y
A ~ YiyiokpgT, ~ 107 371 (1,2 - : 6.101

where Y; is the abundance of the metal ion in question. This is about the right order of

magnitude. Above 10* K the important lines are electronic levels which have kg7, ~ 1 eV,
and so we expect a jump in A of order 100 as we cross from below to above 10* K, in good
agreement with the detailed calculations.

The non-monotonic nature of the cooling function means that in general there are
multiple steady-state solutions in which heating balances cooling, which gives rise to different
phases of the ISM, for example stable phases of hot low density gas and cold high density gas
can exist in pressure equilibrium. The classical papers are Field (1965) on thermal stability,
Field, Goldsmith and Habing (1969) on the 2 phase ISM, and McKee and Ostriker (1977) on
the three-phase model of the ISM. To get the basic idea, write the balance between heating
and cooling as H = nA where H is the heating rate per ion from for example cosmic ray
collisions. Because A is non-monotonic, multiple solutions are possible. Field et al. (1969)
plotted the pressure against number density for the stable solutions. At a given pressure,
there are three possible solutions F, G, and H.
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However, phase G is thermally unstable. To see this, perturb the equilibrium 7" — T + 07T,
and let’s assume the heating rate H is a constant. Then the response of the gas will be

— X —néT — (6.102)

which implies that the perturbed gas cools back to the equilibrium state if OA/OT > 0
(stable) but will undergo a thermal runaway if 9A/0T < 0 (unstable). Therefore the phases
F and H are stable, but G is not.

6.16. Absorption and emission by dust

We close with a few words about dust. Dust consists of small particles, ranging from
large molecules to pum size particles. The dominant composition is graphite which shows an
emission feature at 2175A, silicates (e.g. (MgFe),Si04) which are responsible for features
at 9.7 pm and 18 pum due to Si—O bending and stretching modes, and polycyclic aromatic
hydrocarbons (PAHs) such as napthalene (CyoHg with two benzene rings). The typical dust
to gas mass ratio is ~ 1072, The typical linear size distribution is n(a)da o« a=3’da so
that the mass is in the large grains, but the area (important for extinction) is in the small
grains. Typical dust temperatures are a few tens of K, giving thermal emission in the IR.
Dust is extremely important: it is the dominant opacity source for non-ionizing photons,
dust grains lock up a substantial fraction of heavy elements, there is important surface
chemistry e.g. molecule formation on the surface of dust grains, and dust plays an important
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role in energy balance. Here, we focus on how to understand the typical dust absorption
cross-section, and the dust temperature.

The dust optical depth is generally written as

at
T = L/ n(a)da oq(a)Qext(A, a)L (6.103)
where L is the path length, o, = ma? is the geometric cross-section for a sphere, and “ext”
refers to extinction which can be due to absorption or scattering (when the dust lies along
the line of sight to an object scattering removes photons from the beam), so that

Qext( A, a) = Qaps(A, @) + Qsca(N, a). (6.104)

In astronomy, the extinction in magnitudes at a given wavelength Ay, = —2.5log,,(e™) =
1.0867,. Commonly dust extinction will be measured in Ay the visual extinction. This is
related to the hydrogen column,

Ny ~59x 10" cm™ mag™' Eg_y (6.105)

where Eg_y = Ap — Ay is the difference between the B and V band extinctions. The slope
of the extinction curve near V band is Ry = Ay /Ep_y with Ry commonly taken to be 3.1
(can be as large as 5 for lines of sight into dense clouds).

For calculations of the optical properties of grains, cross-sections and dust temperatures
see Draine and Lee (1984). To calculate the absorption and scattering cross-sections from
first principles requires understanding the optical properties of the grains, in other words the
refractive index n or dielectric constant € = n?. The dielectric constant is complex in general,
and the solutions for scattering and absorption by small particles are known as Mie theory.
For spherical particles, and in the long-wavelength limit z = 2ra/A < 1, the cross-sections

are ,
Qsea = g:c“ :; x % (6.106)

(Rayleigh scattering) and
Qabs = 4z Im (E _T_ ;) x % (6.107)

For short wavelength photons x > 1, Qga — 1 and Qs — 1. We've written the wavelength
scalings here for constant e. In fact, e depends on frequency in general which changes the
scaling. The extinction cross-section is usually written

2o\’
Qext = QO (T) (6108)
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with g = 1-2. For graphite and silicates the long wavelength emission has g ~ 2.

We can get the cross-sections in equations (6.106) and (6.107) from a straightforward
calculation along the lines of the classical derivation of the Thomson cross-section. A di-
electric sphere in a uniform electric field has an induced dipole moment p = aﬁ, where
the polarizability o = 4mega®(e — 1/¢ + 2) (SI units). Plugging this into Larmors formula
P = (1/2)(w'p?/6mepc®) and dividing by the incoming flux cegE?/2 gives the scattering
cross-section in equation (6.106). The absorption cross-section is obtained by calculating
the work done .J - E , where J is the polarization current

oP  iwp
—_— = 6.109
ot 4wa?/3 ( )
The power dissipated is
— — 4 —
(J : E) <§7ra3> = iwp - E = iwaE? (6.110)
or taking a time average "
EIm(a)EQ. (6.111)

Again, dividing by the incoming flux in the wave gives the cross-section, which agrees with
equation (6.107).

The equilibrium dust temperature is given by balancing heating with cooling. The
heating rate is

4ra’ / TI\Qans( A, a)dA. (6.112)

For short wavelength UV and optical photons which are responsible for most of the heating,
Qabs ~ 1 in which case we can write the heating rate as 472a®Jyy where Jyy is the mean
intensity of the photons with wavelengths shorter than typical dust sizes. The cooling or the
dust emissivity we can get from Kirchoft’s law, giving

4ma® / 7 BA(Ty) Qans(A, a)dA (6.113)
where T} is the dust temperature. The dust temperature is therefore given by
JUV == /B)\(Td)Qabs(/\,a)d)\. (6114)

For typical dust temperatures T; ~ 20 K, we need the absorption cross-section near A\ =
0.29 cm/T ~ 200 pm. Writing Qaps = Qo(Xo/N)? = (2ma/N)(Ng/N)P~1 gives

Lo [ 2ma (X lomA 1 dv oy AmaXe ' h (ks Ty Pt e
A YR DY 2 eh/ksT —1dX\ " 2B h er —1

(6.115)
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or Ty o< (Jyy /a) @B For 0.1 um size grains, the temperatures are ~ 20K.

An interesting situation arises for small grains (Purcell 1976). A 100A grain at 20 K has
a thermal content of ~ 1 eV. Partly this is due to the (T'/©p)? suppression of the specific
heat at low temperatures, where the Debye temperature Op is typically hundreds of K.
The temperature of these grains is time-dependent since absorption of a photon significantly
changes the thermal energy, followed by rapid cooling. The observed emission of small grains
can therefore be at significantly higher temperature, e.g. 50K (see Purcell 1976).

Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

e Saha equation. Ionization of hydrogen at 7"~ 10* K. Application to stellar spectral
types.

e Line profiles. Natural line width A. Collisional broadening. Doppler broadening
Av/v = (v)/c. Voigt function. Definition of equivalent width. Curve of growth.

e Hydrogen-like atoms. y = (1/2)Z%a?m.c?, ay = (h/mec)a " Z7 By = x(n72—m™2).

e (Calculation of radiative transitions. Fermi’s Golden Rule. Hamiltonian for a charged
particle in an electromagnetic field. Origin of selection rules in the spatial integrals.

e Bound-bound transitions. Einstein A coefficients: A ~ (mc?/h)a’. Lya has A =
0.6 x 10° s7'. Bound-bound absorption cross-section: o5 = f(we?/m.c)p(v) or
(A?/87)(Az1/Av), where Av is the linewidth.

Q

e Bound-free (photoionization) cross-section

w

L Y C L
bf = Qs 373 gvf
Absorption edges. ky; o< pT—>®. Milne relations. Recombination coefficient (o pv) ~

10~ cm?® s7!. Application to HII regions. The Stromgen sphere. Case A and case B.
Application to X-ray absorption by the ISM.

e Collisional excitation and dexcitation. Cross-section oj; = (7/g;)(h/m.v)*Q(j, k).
Averaging over a Maxwell-Boltzmann distribution of velocities gives the deexcitation

rate coefficient
8.6 x 107° Q(4, k) 3
Tki = g T2 cm” s .
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The excitation rate coefficient is then v, = (gr/g;)e Fi#/*2T~,;. The critical density
Ne, = Aa1/721. Application: the use of forbidden line ratios as a probe of density. The
importance of line emission in the cooling function.

Dust. Sizes, composition, dust to gas ratio, temperatures, importance. The basic
idea of scattering and absorption by small particles. For A > a, 0 o 1/\* (Rayleigh
scattering, constant €). Generally, Qug < A7 with § = 1-2.

Reading

RL chapter 10. The calculation of radiative transitions is covered at the end of most
introductory quantum books, e.g. the books by Gasiorowicz and Townsend. Shu also
has a lot of detail on this.

Radial integrals of hydrogen-like wavefunctions: Gordon (1929) Ann Phys 2, 1031.

Osterbrock ” Astrophysical Gaseous Nebulae” is the classic book to look up cross-
sections and transition rates etc. A classic but somewhat dated book on ISM physics
is by Spitzer. Recombination coefficients: Cillié 1932, MNRAS, 92, 820. Seaton 1959,
MNRAS, 119, 81.

X-ray absorption by the ISM: Wilms, Allen, & McCray (2000), Morrison & McCammon
(1983).

Cooling function: Dalgarno & McCray (1972), Sutherland & Dopita (1993). Thermal
stability and multi-phase interstellar medium: Field (1965), Field, Goldsmith & Habing
(1969), McKee & Ostriker (1977).

Dust: Mathis (1990 ARAA), Draine & Lee (1984 AplJ).
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7. Problem Set 1 with Solutions

1. (a) Question. A sphere of material with radius R has constant emissivity j,, absorption
coefficient «,,, and source function S,. Calculate I, at the surface of the sphere and show

that the flux is 5 5
e T
F,=xS, [1- 2 (1—eT : 6.116
T = ( e ) + - ( )

where 7 = 2ay, R. Sketch the angular dependence of I, for different values of 7. Check that
I, and F,, make sense in the limits 7 < 1 and 7 > 1.

Solution: At a given point on the surface, a ray emerging at angle # with respect to
the normal to the surface has traversed a distance 2R cosf = 2R .

Defining the optical depth 7, = 2a,, R, the general solution to the radiative transfer equation
for constant source function S, gives

L) =S, (1—e ™) (6.117)

The flux is given by integrating over outgoing rays F' = 27 fol dp pd, ()

! 2 1+7,
F, = 27?51,/ dpp(l —e™*) =mnS, (1 -+ 26_7—”¥) . (6.118)
0 T Ty

The large and small 7 limits are 7 > 1 F,, — 7S, as expected for an optically thick source.
For 7 < 1, F, — 27S,7,/3. The luminosity is 47 R?F = (47j,) (4w R3/3) as expected for an
optically thin source, since all photons leave.

(b) Question. Now consider a large area slab of the same material with thickness H.
Defining 7 = «,, H for this case, show that the flux at the surface is

F, =7S,[1—2Es(T)], (6.119)

where

E,(1) :/ de x™"e 7. (6.120)
1
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Sketch the angular dependence of I, for different 7. Check that the 7 < 1 and 7 > 1 limits
for I, and F,, make sense.

Solution. This is similar to the previous question, but now the path length of the
emerging ray increases with angle from the normal to the surface, H/cosf = H/pu. Writing
7, = «a,, H, the solution to the radiative transfer equation is

L(p) =8, (1—e™m). (6.121)

The flux is

1
F, = 27rSV/ du p (1 — e_TV/M> = 27r51,/
0 1

> dx —Tyx

= (1—e™) =75,(1—2E53(7,)). (6.122)
When 7 > 1, E3(1) —» ¢ 7 /T — 0 and F, — 75, the correct limit for an optically thick
medium. When 7 <« 1, 2E5(7) ~ 1 — 2z, giving F, = 275,71, = (1/2)(4nj,)H. The factor
of 1/2 comes in because there are two sides to the slab.

The following plots show the angular distributions in the two cases, labelled by log;, 7.
The radiation from the sphere is concentrated in the forward direction, whereas for the slab
the intensity is largest for rays travelling parallel to the surface.

(c¢) Question. In class, we derived the flux at the surface of a grey atmosphere,
F, =27 / B, (7") Ey (7") d7’, (6.123)
0

where B, is a function of 7 through the dependence of temperature on 7. Show that in the
isothermal limit, this result reduces to equation (2).

Solution. This question is poorly worded. What I had in mind was to replace the
upper limit on the integration in equation (6.123) by a finite value 7 instead of integrating
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all the way to oco. For an isothermal atmosphere, B, is a constant and can be taken outside
the integral. Then use the result Ey(z) = —dFE3(z)/dr to do the integral,
dEg (T’)

F, = -2nB, /T TdT/ = —271B, (F3(1) — E5(0)) = 7B,(1 — 2E3(71)) (6.124)

(since E5(0) = 1/2). This answer agrees with part (b).

(d) Question. Plot the normalized flux vF, /o T % against normalized frequency hv/kT,g
for both blackbody and grey atmospheres. For the grey atmosphere, assume a temperature
profile given by the Eddington approximation, T* = T (3/4)(7 + 2/3), and numerically
evaluate the integral in equation (6.123). How do the grey and blackbody spectra differ, and
why?

Solution. First normalize the Planck spectrum as suggested, which gives

vmB, 15 xt
= — 6.125
oTh  mtedTen/T — 17 ( )

where © = hv/kpTer. The normalized grey atmosphere flux is then given by equation (6.123)

VvFE,
7]
ol

30 [ zt
(ZL’) = F/O WEQ(T/)CZT, (6126)

with the temperature profile specified as a function of optical depth. In the Eddington
approximation, we found (T'/T.g)* = (3/4)(T +2/3).

The grey atmosphere spectrum is plotted in the Figure (solid curve), compared with a
blackbody spectrum with 7" = T (dashed curve).
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We can see that the grey atmosphere is harder than the blackbody, in other words it is
brighter at high photon frequencies and fainter at low photon frequencies. As the integral in
equation (6.123) shows, the spectrum is a result of summing blackbody spectra over depth
in the atmosphere, each at a temperature given by the local temperature, and each weighted
by the optical depth, with emission at large optical depth being exponentially suppressed.

One way to try to understand what’s going on is to look at the low and high frequency
limits. For low frequencies below the peak, x < 1, the ratio of grey atmosphere flux to

blackbody flux is
P 0o /3y /4 9\ 1/4
BT z/ <Z> <7”+§) 2Es(7")dr'. (6.127)
v 0

Compared to the isothermal case at T = T,g which would give the blackbody spectrum,

the integrand is weighted towards lower optical depths and therefore smaller temperatures,
which results in less emission at these low frequencies. (The mean brightness temperature
is smaller than Tig.)

The high frequency limit (z > 1) is

jgy ~ /0 " exp (:c {1 - G (;+ Yoo “D 2By (+)dr. (6.128)
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The grey atmosphere becomes increasingly brighter compared to the blackbody as z in-
creases.

[The following properties of E,(x) are useful in this question:
E.(x) — e /x T — 00
Ei(x) — In(1/x) r—0
(n—1E,(x) =" —aE, 1(x)

dE,(x)/dx = —E, ().

If you have time, you might like to try and prove these results.]
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8. Problem Set 2 with solutions

1. More on the bremsstrahlung derivation.

(a) Question. In class, we calculated the radiation spectrum from a single collision
of an electron and ion using only the perpendicular component of the acceleration. Repeat
this calculation for the parallel component. You should find that the spectrum from the
parallel component depends on the modified Bessel function K rather than K;. Plot the
total radiation spectrum and the contribution from the two components.

Solution. We follow the same procedure as in the notes, but now take the parallel
component of the acceleration. The integral is

. 1 [ ... Ze ut
uy(w) = \/—27/006 dt m (b2 + u2t?)3/2 (6.129)
1 Ze2 o q izwb/u
- ¢ / i (6.130)
V2rmub J_ o (14 22)3/2

The trick is to now integrate by parts to get the integral into a form that looks like the
integral representation of a modified Bessel function.

i Ze2wb [ dxeiwb/u
- N dr e 6.131
thy () V27 mub u /Oo (1 + x2)1/2 ( )
2 Ze?
= ——— iy K, 132
ﬂmubzy o(y) (6 3 )

where y = wb/u. This is the same as the perpendicular acceleration, but with yK;(y)
replaced by iy Ky(y). The factor of i indicates that the two components of acceleration are
7/2 out of phase, which makes sense since the perpendicular acceleration is maximum at the
distance of closest approach, but the parallel component of acceleration is zero there.

Again following the notes, the total spectrum is proportional to |i, |*+ }iLH |2 o< y*(Ko(y)*+
Ki(y)?). Here is a plot of each component and the total. Neglecting the parallel acceleration
gives a &~ 20% reduction in the emissivity.
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Show[Plot[ (BesselK[0, x] "2 + BesselK[1, x] "2) x~2, {x, 0, 5}1,
Plot[BesselK[1l, x] “2x"2, {x, 0, 5}], Plot[BesselK[O0, x] "2x"2, {x, O, 5}]]
10k

08l

06

02l

(b) Question. In class we discussed the different choices for by, and byay. Use these
to roughly check the analytic expressions given in Fig. 5.2 of RL (for the lower half of this
figure, or hv < kgT). Approximate the thermal averaging by replacing v with the thermal
velocity. You won’t get the ¢ factor [optional: what is this? Maybe look up the Novikov and
Thorne article]. Longair states (Vol. 1, p77) that for radio wavelengths,

m 1 8(]€BT)3
—gir==|In| ——=—= | — 6.133
\/ggff 9 |: nn (71'27716641/222 ﬁ ( )
is the appropriate Gaunt factor to use, whereas for X-ray wavelengths

™ k?BT
— =1 — . 134
590 H( " ) (6.134)

Does this make sense? (Don’t worry about order unity factors, e.g. ignore the /v factor,
which comes from a more careful derivation of the Gaunt factor. The constant v = 0.577...
is Euler’s constant.)

Solution. The idea here is to write

3 bmax

bmin

and use the different approximations from the notes for bya, and byi,. First bp.x = v/w
(photon discreteness). For by, we noted that there were two possible choices, “classical”
bmin = 2Z¢2 /muv? or “quantum” by, = h/m.v, with the quantum result being applicable at
high electron energies exceeding Z2 Ry and the classical result at lower energies. The final
ingredient we need is to recognize that after the thermal averaging over the electron velocity
distribution, the electron velocity will be replaced by v ~ (3kpT/m.)"/? (I've put a 3 in there
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because the mean value of (1/2)mv? for a classical gas is (3/2)kgT’, but in the Gaunt factor
that 3 will be some other number that depends on the weighting during the averaging, so we
shouldn’t trust the prefactor in our results. Let’s just see if we can get the scalings right.)

Now let’s check the figure. In the lower left, the electron energy ~ kpT is small compared
to Z?Ry so we need the classical by;,. Therefore bpay/bmin = mv®/2Z¢*w. Next replace v
with the thermal velocity and use the result that Ry= a*m.c* where a = 1/137 = €?/hc is
the fine structure constant. I get

(6.136)

~ —1
I8~ T T \ Z2Ry

V3 [33/2 kT ( kT )1/2

which agrees with the Figure apart from the numerical prefactor. Note that the Figure has
a typo compared to the original version in the Novikov and Thorne article: the square root
should be on the last term inside the log, as we have derived here, and not on the whole log.

On the lower right, we use the quantum estimate for b,,;,. This time I get
3—1| . (6.137)

Again we agree up to the prefactor.

Now looking at the Longair formulas, we see that the radio wavelength formula is using
the classical by, whereas the X-ray formula is using the quantum b,,;,. What this seems to
be saying is that if I have gas emitting thermal bremsstrahling in radio, then kg7 < Z?Ry
and the classical result applies. For X-ray gas, kT > Z?Ry putting us in the quantum
regime (X-ray photon energies ~keV’s).

2. Thermal bremsstrahlung from cluster gas. The X-ray emission from hot gas in
galaxy clusters is powered by thermal Bremsstrahlung. Look at the paper by Jeltema et
al. (2001, ApJ 562, 124).

(a) Question. First derive equation (1) in the paper. To do this, assume that kg7 =
GM/R (as we did in class to get the temperature at the center of the Sun). The critical
density today is given by p. = 3HZ/87G, and increases with redshift 2 proportional to
(14 2)3. The parameter h = Hy/100 km s~' Mpc measures the Hubble constant Hy as
measured locally. Use the mass-temperature relation and the fitted temperature for this
cluster to estimate the mass of the cluster in dark matter.

Solution. First, estimate the radius R from kg7 ~ GMm,/R (the formula in the
question has a missing m,). It’s good to check the number that comes out to see if it makes
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sense. | get

M kT \
—45M . 1
ft =45 Mpe (1015 M@> <10 keV) (6.138)

The density is p = 200py which gives n = p/m, = 2.3 x 1073 cm ™ h*(1 + 2).

The simplest estimate is to take a constant density sphere with radius R, which gives a
mass

3 1/2 kT 3/2 kT 3/2
M = =21x 10" M, [ =2 h (1 —3/2, 6.139
(47Tp> <Gmp) 8 © (10 keV) (1+2) ( )

The scalings agree with equation (1) of Jeltema et al, but the prefactor is too low by almost
an order of magnitude.

For the cluster in that paper, z = 0.83 and T' = 10.4 keV. Using the prefactor from the
paper, the mass derived is 6.4 x 10* Moh™L.

(b) Question. Now calculate the total X-ray luminosity expected from the cluster.
Assume that the mass in gas is a fraction f of the total cluster mass. Compare your prediction
with the observed luminosity. What do you deduce about the fraction of mass in gas?

Solution. The thermal bremsstrahlung emissivity is
erp=14%x 107" erg cm ™ 57! (T/K)Y?(n/cm™>)? (6.140)

where for simplicity we set the Gaunt factor to unity, n, = n;, and Z = 1. Using the
number density n and radius R from part (a) gives an emissivity per gram of e;r/p =
0.020 erg g~! s71, which for a mass 6.4 x 10 Myh™! is a total luminosity

2
Lx =26 x 10" erg s7! <0f_1> (

2
h(1 3/2, 141

The observed bolometric luminosity is 1.2 x 10%° erg s='h~2 which requires f ~ 20%.

(¢) Question. What relation do you predict between the X-ray luminosity of a cluster
and its temperature? In fact, the observed correlation is different. What are some of the
ideas to explain the discrepancy? [For example, see Holden et al. (2002, AJ 124, 33) and
other papers in the literature. The simple relation was originally derived by Kaiser (1986).]

Solution. The predicted relation is Lx oc T?. In fact the observed relation is steeper
than this, closer to T°.

3. Free-free absorption.
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(a) Question. Compare the free-free opacity with the Thomson scattering opacity for
conditions at the center of the Sun. Which form of opacity do you expect to dominate in
very massive stars and in low mass stars (compared to the solar mass)? [Assume that radius
R is proportional to mass M for all stars].

Solution. At the center of the Sun, p = 150 g cm ™2 and 7' = 1.5 x 107 K. Using the
expression for ks o< pT~7/? from the notes, and setting the composition factors and Gaunt
factor to unity, I get 7y =~ 0.9 cm? g~!. This is the same order of magnitude as the Thomson
scattering opacity, fes = 0.2(1 + X) ecm? g7! (where X is the hydrogen mass fraction). So
for the Sun, these opacity sources are comparable to each other.

To estimate the scaling with stellar mass, note that hydrostatic balance (or virial the-
orem) suggests kgl ~ GMm,/R or T o< M/R or in other words a roughly constant tem-
perature if M oc R. The density p oc M/R* oc M~? decreases with mass. Therefore, we
predict that s, decreases with mass oc M2, whereas ks remains roughly constant, so that
electron scattering will dominate for M > M, and free-free absorption for M < M. (This
is a very rough argument — given the sensitivity of k¢ to T" one might worry that a better
estimate of the temperature scaling with mass could change the answer. Our conclusion is
however correct and agrees with stellar models.)

You may recall that the Sun is a switching point in mass not only for opacity but also
for the type of nuclear burning. Hydrogen burns by the pp-chain for M < M and by the
CNO cycle for M 2 M. The fact that both opacity and nuclear burning sequence change
at M ~ M, is a coincidence.

(b) Question. Calculate the scaling of luminosity with mass for two cases: (1) a star in
which the opacity is set by Thomson scattering and (2) in which the opacity is from free-free
absorption. [Use the radiative diffusion equation, and approximate all derivatives by ratios
as we did in class. Concentrate on the scaling, not on the prefactor.] Use your results to
plot a prediction for the luminosity-mass relation for main sequence stars.

Solution. This is a classic question in back of the envelope stellar structure. The idea

is to write the thermal diffusion equation
,4acT? dT
3Kp dr
which gives L oc RT*/kp oc M3/ (where we take p oc M/R?* and T < M/R). For constant
opacity, which applies for electron scattering, we find L oc M3, our prediction for stars more

L =—4nr

(6.142)

massive than the Sun.

For free-free,  oc pT~"/% oc (M/R?®)(M/R)~7/? which is oc M2 if we assume M x R.
Therefore, we predict the steeper dependence L oc M?® for M < M.
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4. Thermal bremsstrahlung spectrum including self-absorption. Consider a spher-
ical HII region with radius 0.5 pc, uniform temperature 8000 K, and uniform density
ne = 1000 cm™3. The distance to the HII region is 500 pc. Assume the gas is pure hy-
drogen, and is in LTE.

(a) Question. Show that for radio observations, hv is safely much smaller than kgT.
In this case, we are always in the Rayleigh-Jeans part of the spectrum.

Solution. For 7' = 8000 K, the frequency corresponding to hv = kgT is ~ 10*° Hz.
This is well above radio frequency (~GHz).

(b) Question. A useful quantity, especially when observing in the Rayleigh-Jeans part
of the spectrum, is the brightness temperature Tz, defined by

02

T, =——1I,. 6.143
b 21/2]€B ( )

Show that the general solution of the radiative transfer equation can be written
T, =Ty(0)e ™ + T (1 —e ™). (6.144)
If T,(0) = 0, what are the optically thick and thin limits of equation (6)?

Solution. This is just a straightforward rewrite of the general solution to the radiative
transfer equation, using the fact that I, oc T}, and B, o T' in the Rayleigh-Jeans part of the
spectrum. The limits are 7, — T for 7> 1, and T, = (1 — 7)7,(0) + 77 for 7 < 1.

(c) Question. Calculate the optical depth to free-free absorption across the HII region.
Remember that hv < kgT allowing you to expand the stimulated emission correction factor.
Above what frequency does the HII region become optically thin?

Solution. From the notes, the free-free absorption coefficient in the Rayleigh Jeans
part of the spectrum is aff = 0.018 cm™! (T/K)~%/2Z2%(n.n;/em™0)(v/Hz)~2. The optical
depth is La, where L is the size of the region, here 0.5 pc. This gives unity optical depth
for v = vy = 0.2 GHz.

(d) Question. Calculate the radio spectrum you expect, and plot F, against v. For
F,, use units of Janskys (where 1 Jy = 10723 erg cm~2 s7! Hz™!). Plot also the brightness
temperature as a function of frequency.

Solution. The rough picture is as follows. For v < v, the HII region is optically
thick, the free-free emission is self-absorbed. The spectrum will then be a blackbody in
the Rayleigh-Jeans limit I oc v2. For v > 14 the spectrum will be that of optically thin
free-free emission, that is a roughly flat spectrum in frequency (up to an exponential cutoff

at hv ~ kgT but this is well out of the radio band).
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To calculate this in detail, you can use the result from HW1 question 1(a) which tells
you the flux at the surface of a sphere as a function of 7, which you know from part (c).
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9. Problem Set 3 with solutions

Inverse Compton spectrum for single scattering: Monte Carlo calculation.

Question. A simple way to calculate the spectrum for inverse Compton from a single
electron is to use a Monte Carlo numerical method. Assume that all of the “seed” photons
have the same energy. First, choose a random photon direction in the lab frame. Make sure
you use the correct probability distribution for cos@: note that the incoming flux of photons
at angle 6 to the direction of the electron’s motion is o 1 — S cos 6. Calculate the energy of
this photon in the electron rest frame. Choose a random scattering angle assuming that the
scattering is isotropic and elastic in the rest frame. Transform back into the lab frame to
find the final photon energy. Repeat this calculation many times to build up a distribution
of final photon energies. Check that this distribution agrees with the analytic result given
in RL equation (7.24).

Solution. This part is quite straightforward. The trickiest part is to make sure that you
use the right probability distribution when choosing the direction of the incoming photon.
If the electron was at rest and the photon distribution was isotropic, then p = cos would
be uniformly distributed between —1 and 1. (The probability of being at a particular
and ¢ is dQ2/4m = sinfdfd¢p = dodp). However, for a moving electron, we need to choose
i proportional to the flux of photons in direction u, i.e. we need to choose p from the
probability distribution P(u)dpu = (1 — Su)du. One way to do this is to define the variable
y = —(1 — Bu)?/28 which gives dy = du(1 — Su). Choosing y from a uniform distribution
between (1 — 3)?/28 and (1 + 3)?/2/ and then obtaining p from pu = (1 — /28y)/3 gives p
distributed in the desired way. (You can read more about this “transformation method” in
Numerical Recipes section 7.2).

The procedure is then to first choose a value of = cos 8 for the incoming photon, then
use this to get the energy of the photon in the rest frame €} = ¢ = (1 — Bu) (elastic
scattering).

Because we assume in this part that the scattering is isotropic, the outgoing photon
direction is uniformly distributed on the sky for any incoming photon direction. So we don’t
need to keep track of what the incoming photon direction is in the rest frame, we just need
to pick an outgoing photon direction uniform on the sky, or in other words choose 11’ = cos 6}
uniformly distributed between —1 and 1. Then the final photon energy in the lab frame is

ef = €py(L+ Bu).

You can then compare a histogram of € values with the analytic formulas from equation
(7.24) of Rybicki and Lightman.



- 137 —

Question. Now repeat this calculation using the angular distribution appropriate for
Thomson scattering of an unpolarized beam. Compare your answer with RL equation (7.27)
in the limit v > 1.

Solution. This part is more difficult because we must now keep track of the various
angles in the rest frame. For a scattering angle o, the Thompson cross-section is oc 1+cos? a.
This means that the angle o should be chosen so that y = cos « has a distribution P(y)dy =
(1 + y?)dy. One way to do this is the “rejection method” (Numerical Recipes section 7.3):
choose two uniformly distribution variables x and y where x is in the range 0 to 2 and y is
in the range —1 to 1. If z is smaller than 1 4 %? then use the value of y, otherwise reject
these values and try again.

The outgoing photon lies somewhere on a cone with opening angle o centered on the
incoming photon direction. We must also choose a value of the angle around the cone ¢
(uniformly distributed between 0 and 27).

~ L T 3
— D '
/s e \.‘\\ : <
.,‘ g
N Lo PMvAs Y
4 - AP B A 2_ (Cond_
Then some trigonometry gives
!/ / / : A
p = cos b}y = cos avcos f; — sin 0; sin a cos ¢. (6.145)

Two limits are ¢ = 0 or m means that the outgoing photon is in the same plane as the
incoming photon direction and the electron velocity; in that case 9} =at0.

Then €; = €}y(1+ Bu') as before. A histogram of the e, values agrees well with Rybicki
and Lightman’s formula in the limit v > 1.

I've put my IDL code compton.pro on the website which you can try. To run it type
compton, gamma, n where gamma is the gamma factor of the electron and n is the number
of photons to calculate. The routine compton_iso is the same but for isotropic scattering
(part a). These routines automatically display a histogram and the Rybicki and Lightman
formulas to compare against.
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pro compton, gamma,n

beta=sqrt (1d0-1d0/gamma"2)
print, ’beta=’, beta
seed=120L

; choose the incoming angle at random in the lab frame
; We need to choose mu=cos theta from the probability distribution
; Prob(mu) d mu = (1-beta mu) dmu

; (i.e. incident flux is propto 1-beta mu)

; Use the substitution method
y1=(1d0-beta) "2/ (2d0*beta)

y2=(1d0+beta) "2/ (2d0*beta)

y=y1+(y2-y1) *randomu(seed,n)

cos_theta=(1d0-sqrt (2d0*betaxy) ) /beta

; this is the photon energy in the rest frame

ef _p=gamma* (1d0-beta*cos_theta)

; the photon direction in the rest frame
cos_theta_p=(cos_theta-beta)/(1d0-beta*cos_theta)

; now choose the scattering angle
; 1lsotropic
; cos_alpha_p=-1d0+2d0*randomu(seed,n)
; Thomson Prob(mu) = 1+mu”2 dmu where mu=cos alpha
; use a rejection method to select from the Prob distribution
cos_alpha_p=dindgen(n)
for i=1L,n-1 do begin

x=-1d0+2d0*randomu (seed)

y=2d0*randomu (seed)

while (y ge 1d0+x"2) do begin

x=-1d0+2d0*randomu (seed)
y=2d0*randomu(seed)

endwhile

cos_alpha_pl[il=x
endfor
; phi is uniformly distributed
cos_phi_p=cos(randomu(seed,n)*2d0*!dpi)
; now calculate the outgoing angle
sin_theta_p=sqrt(1d0-cos_theta_p~2)
sin_alpha_p=sqrt(1d0-cos_alpha_p~2)
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; outgoing cos theta
cos_theta_p2=cos_theta_p*cos_alpha_p-sin_alpha_p*sin_theta_p*cos_phi_p

; calculate the photon energy in the lab frame
ef=ef _p*gamma* (1dO+beta*cos_theta_p2)

; and plot the distribution

hist_plot_linear, ef,/normalize

; plot the analytic result from RL for isotropic scattering
y=dindgen(100)*0.01*(1.0-(1.0-beta)/(1.0+beta))+(1.0-beta)/(1.0+beta)
ef=(1+beta)*y-(1-beta)

oplot, y,ef/(2.0%xbeta)

y=dindgen (100)*0.01%4.0*gamma”~2+1.0

ef=(1+beta)-(1-beta)*y

oplot, y,ef/(2.0%beta)

; plot the analytic result for Thomson scattering when gamma>>1
y=(dindgen(100)+1.0)*0.01

ef=2%y*alog(y)+y+1-2xy~2

oplot, y*4.0*gamma"2,ef/ef [0]

end
pro compton_iso, gamma,n

beta=sqrt (1d0-1d0/gamma"2)
print, ’beta=’, beta
seed=120L

; choose the incoming angle at random in the lab frame
y1=(1d0-beta) "2/ (2d0*beta)

y2=(1d0+beta) "2/ (2d0*beta)

y=y1+(y2-y1) *randomu(seed,n)

cos_theta=(1d0-sqrt (2d0*betax*y)) /beta

; this is the photon energy in the rest frame
ef _p=gamma* (1d0-beta*cos_theta)
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; now choose the outgoing angle in the rest frame
cos_theta_p=-1d0+2d0*randomu (seed,n)

; calculate the photon energy in the lab frame
ef=ef_p*gammax (1dO+beta*cos_theta_p)

hist_plot_linear, ef,/normalize

; plot the analytic result from RL
y=dindgen(100)*0.01*(1.0-(1.0-beta)/(1.0+beta))+(1.0-beta)/(1.0+beta)
ef=(1+beta)*y-(1-beta)

oplot, y,ef/(2.0%*beta)

y=dindgen(100)*0.01%*4.0*xgamma~2+1.0

ef=(1+beta)-(1-beta)*y

oplot, y,ef/(2.0%beta)

end

pro hist_plot_linear, data, min=min_value, max=max_value, binsize=binsize, \
normalize=normalize, fill=fill, errstyle=errstyle,errcolor=errcolor,\
errorbars=errorbars, _extra=extra_keywords

if (n_params() ne 1) then message, ’Usage: hist_plot, data’
if (n_elements(data) eq 0) then message, ’data is undefined’

if (n_elements(min_value) eq 0) then min_value=min(data)
if (n_elements(max_value) eq 0) then max_value=max(data)
if (n_elements(binsize) eq 0) then binsize=(max_value-min_value)*0.01

binsize=binsize > ((max_value-min_value)*1.0e-5)

hist=histogram(float(data),binsize=binsize,min=min_value,max=max_value)
hist=[hist,O0L]
nhist=n_elements (hist)

histerr=sqrt(float(hist))
histmax=float (max(hist))

;1f keyword_set (normalize) then hist=hist/float(n_elements(data))
if keyword_set(normalize) then hist=float(hist)/histmax
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if keyword_set(normalize) then histerr=float(histerr)/histmax
bins=1lindgen(nhist)*binsize+min_value

x=fltarr(2*nhist)
x[2#1indgen(nhist)]=bins
x[2*1indgen(nhist)+1]=bins
y=fltarr(2*nhist)
y[2*1lindgen(nhist)]=hist
y[2*lindgen(nhist)+1]=hist
y=shift(y,1)

plot, x,y ,_extra=extra_keywords
if keyword_set(errorbars) then oploterror, bins+0.5*binsize, hist, histerr,/nohat \
psym=3,errstyle=errstyle,errcolor=errcolor

if keyword_set(fill) then polyfill, [x,x[0]],[y,y[0]],_extra=extra_keywords
end
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10. Problem Set 4 with solutions

1. Polarization of synchrotron radiation.

(a) Question. Show that a single electron radiates 7 times as much power polarized
perpendicular to the projected magnetic field direction than parallel to it.

Solution. Taking the ratio of P, (w) and Pj(w) using the expressions from class, inte-
grating each of them over frequency, we get

J de(F(x) + G(z))
[ de(F(x) - G(x))

The integrals are (using the identities in the notes or in Rybicki and Lightman)

/dx F(z)=T (g) r (g) /dx Gla) =T (%) r (g) ,

and using the identity I'(n + 1) = nI'(n), the ratio simplifies to 7 as required.

b) Question. Show that the degree of polarization II = (P, — P))/(P. + Pj) =
l l
(p+1)/(p+7/3) for a power law distribution of electrons N(v)dy = v Pd.

Solution. This time we need to integrate over the electron energy distribution. Since
P, — Py < G(x) and P, 4+ P o< F(z) with the same constant of proportionality, we just
need to integrate

J G(x)yPdy

[F@)rdy
As we do several times in the notes, change variables in the integral from v to  oc v~2. This
gives

[ G(z)x®=3/2dz
[ F(x)x=3)/2dz

which can be evaluated using the identities giving integrals of F'(z) and G(z). The result is

(p+1)/(p+ 7/3) as required. Note that we integrated over v here but not over frequency,
so this result is true frequency by frequency.

2. Synchrotron energetics.

(a) Question. For a power law distribution of electrons N(v)dy = v Pdy between v,
and vy, show that the total energy density in the electrons is approximately

—1
U, = <5%2) VMM, (6.146)
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where n, is the total number density of electrons and we have assumed that v, > 7v; and
p > 2.

Solution. Write N(v) = N(71)(v/71)~?. The normalization N(v;) we can get from

Y2 v -p
ne =/ N(mn) (—) dy
71 2!

N(vy)dy = % (%) N dry.

which gives

Then
p—1
p—2

Y2
U, = / dry ]\f(’y)’ymec2 = NeMeC*

71

(b) Question. Show that for p = 2.5, the cooling time due to synchrotron or inverse
Compton can be written

1 10 —1
tcool ~ 0 Yo u (6147)
vz \1071% erg cm™3

where U = Uy = B?/8r for synchrotron, or U = U, the photon energy density for inverse
Compton.

Solution. The total power radiated is

4 72
P = —O’TCU/ dy N ()72,
3 71

where we assume the electrons are relativistic (8 = 1), and where U = Up for synchrotron
and U = U, for inverse Compton. The integral gives

4 p—1 73 2\ T 4 p—1 1/2_3/2
P=- e = S le ;
371 O’Td/ (3 _p> " " 37L O'TCI/ 3 —, Y M

where we use the fact that p = 2.5 which means that the upper limit dominates the integral.

The cooling time is

b Us 3mec 1 1 1019 yrs U -
=P 4o VU - V7172 \ 10710 erg cm—3 .

(¢) Question. Calculate the cooling time for electrons due to inverse Compton scat-
tering of CMB photons. Show that for large enough redshift, inverse Compton cooling from
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CMB photons is significant even if the electrons are non-relativistic (take Toyp < 1+ 2,
and age of universe ¢ oc (1 4 2)73/2).

Solution. First calculate the energy density in CMB photons. The CMB temperature
is T, = To(1 + z) where Ty = 2.7 K is the temperature today. The energy density is
Uy, =aT} =4.0x107" erg cm™ (1 + 2)*.

For non-relativistic electrons, the energy density is U, = (3/2)n.kgT. and the inverse
Compton power is P = (4kgT,./m.c*)n.orcU,, giving a cooling time

; _Ue 3mec 1
col ™ p T g or U,

Take the age of the universe at redshift z as t,. = to(1 + 2)~%/2 where t, ~ 13 Gyrs is
the current age.

Then setting tcool = tage gives

3 mec T/E)

l4z=|2——
t2 |:8O'Tlfo(lj—’6l

which gives fcoo1 = tage for z &~ 5. At higher redshift the cooling time becomes shorter than
the age of the universe, implying that this is a significant source of cooling for hot electrons.
At lower redshift, the cooling time becomes much longer than the timescale on which the
universe is evolving.

(d) Question. An object is observed to have a total synchrotron luminosity L. Show
that the total energy of the system is minimized when U, ~ Upg, i.e. the electrons and
magnetic field are close to equipartition.

Solution. The synchrotron luminosity is

4
L= §n60T6<72)UB

where (7?) is an average of ¥? over the electron distribution. If we write U? o< (y?) and U =
Utot — U, then L o< U?(Uyoy — U,) which is a maximum for U, = (2/3)U, i.e. approximately
equipartition. The result then follows because if we moved U, away from equipartition, a
greater Uy, would be required to match the observed luminosity.

(e) Question. The radio lobes of the radio galaxy Cyg A are roughly 50 kpc across

and have a total luminosity ~ 10* erg s=! observed at radio frequencies of several GHz.
Assuming a typical magnetic field B ~ 10~ G what else can you deduce about the physical

conditions of the plasma? What is the cooling time of the electrons?
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Solution. Since we know the magnetic field, the first quantity we can calculate is the
v factor of electrons that radiate at several GHz in a 10~* G magnetic field. The non-
relativistic cyclotron frequency is f. = eB/2rm.c = 280 Hz (B/10~* G). We need to boost
this by a factor of 107 to get it to a few GHz, which implies that v ~ v/107 ~ 3000.

With this 7 factor, the power radiated per electron is (4/3)y20pcUp ~ 1071 erg s!

which implies that we're looking at &~ 10%! electrons. The number density is 10! /(50 kpc)? ~
1078 cm™3.

The energy density in the magnetic field is B?/87 = 4 x 107! erg cm™3. Using the
values of n, and 7 that we inferred already, the electron energy density is n.ymec? = 3 x
107" erg cm ™3, about an order of magnitude smaller than Usg.

The total energy in the electrons is ~ (50 kpc)?(3 x 107 erg cm™3) &~ 10% erg. There-

1

fore the cooling time is ~ 10° erg/10%® erg s™! ~ 3 x 10° years. The total energy in the

magnetic field is ten times larger.

(f) Question. Consider a source of synchrotron radiation which is self-absorbed. Write
the luminosity as roughly L = v, L,, where v, is the frequency at which the spectrum peaks.
Also take the brightness temperature in the self-absorbed part of the spectrum to be given
by kgTy, ~ ym.c®. Calculate the value of T} at which the energy density in the synchrotron
photons is equal to Up (you should find T, = 10" K for v, = 1 GHz). What would happen
if the brightness temperature exceeded this value (this is known as the “inverse Compton
catastrophe”; see e.g. Readhead 1994).

Solution. The energy density in the synchrotron photons is roughly U, =~ v,1,, /c ~
2V3kBTb/c3. The radiation at v, comes from electrons with a 7 that satisfies 27y, =
v2eB/me.c = eB(kgT,)?/m3c°. Therefore the magnetic energy density is

B* 7w [ micy, ?
UB = —— = — _
8w 2 6(/€BTb)2

Now set Up = U, and solve for Tj:

1 [(mmbct3 1/5 v, —-1/5
T, = — (T —3 10121{( p ) .
"7 kg (4 e, ) 8 1 GHz

The argument is that if the brightness temperature exceeded this value, U, > Up which
would lead to catastrophic inverse Compton cooling of the electrons by the same photons
that they created by synchrotron emission. See for example Readhead (1994) for discussion
of whether this limit is actually the correct explanation for the upper limit of observed
brightness temperatures.
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11. Problem Set 5 with solutions

1. Spectral lines and curve of growth.
(a) Question. Plot the Voigt profile for different values of natural to Doppler width.

Solution. The Voigt profile is

1 vV — 1
¢(V> - \/7_TAI/DH <a’ AVD )

where Avp = vo(2ksT /mc?)'/? ~ 14(v) /c is the Doppler width, a = I'/47rAvp compares the
Doppler and natural linewidths, and

a [ eV dy
H(a,u) = —/ A (e
TJ oo@®+(u—y)

Here is a plot of this function normalized to the same peak value, for a = 0.5, 1, and 2.

1.0

0.8~ -

0.6 —

Voigt function

0.2 —

0.0 L L L L ‘ L
—10 -5 0 5 10
<V*Vo>/AVD

(b) Question. By integrating the Voigt profile over frequency, calculate the curve of
growth and confirm the scalings given in the notes, EWx N, < vIn N and o v/N.

Solution. The idea here is to write the observed intensity as o exp(—7,) where the
optical depth is 7, = No, with the column of absorbers N and the shape of the cross-section
determined by the Voigt function, o, < H(a, (v — vy)/Avp).
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Here is a plot of e™™ for increasing column of absorbers by a factor of 3 each time. I've

set a = 1.
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Next I show a similar plot but now for a = 0.01 (Doppler width much greater than
natural width) with steps of ten in the absorbing column. You can see here the different
regimes - initial linear growth as the Gaussian profile becomes deeper, once it saturates
the total area doesn’t change too much (logarithmic part) until the damping wings start to
absorb. You will only see the logarithmic part for a less than one, otherwise there is just a

transition from the linear to square root scaling.
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Finally, the next plot shows the curve of growth as a function of absorption column
(arbitrary units), obtained by integrating the area under the continuum in the previous plot.
You can clearly see the linear, almost flat, and square root scalings.
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2. Radiative transitions

Question. Using Fermi’s Golden Rule as discussed in class, show that the 2p — 1s

2 8 mec?
Ay = (2) o=
21 <3>Oé 7

Solution. This calculation involves assembling the various pieces that go into Fermi’s

transition rate for hydrogen is

Golden Rule that are discussed in the lecture notes in sections 6.4 to 6.6. (This is a standard
textbook example which you can find towards the end of non-relativistic quantum mechanics

books.) We have
21 [ 4mpidp
Ay = L [ I ED
2= %

where My; is the matrix element connecting the initial and final states, Fy = (3/8)a*m.c?

d(pc — Eo) | M|

is the energy of the transition (the energy difference between the n = 1 and n = 2 states
of hydrogen), and the delta function ensures the outgoing photon takes away the transition
energy. We've also assumed that the outgoing photon is isotropically distributed, which is
okay because we will sum over all m for the initial 2p state - ie. the atom initially has no
preferred direction. We can use the delta function to do the integral, which gives (using
photon frequency rather than momentum)

27 4m (hw)?
h  h3c

In section 6.4, we show that in the dipole approximation we can write
2
€ 21 hc?
‘Mfl|2 —9 ( > 2 2

m-w
where the last factor is the square of the overlap integral between the initial 2p and final 1s

A21 = |Mfi|2-

2

(tle-7li)

MeC w

state, and the initial factor of 2 counts the two photon polarizations. The radial part of the
overlap integral is given in the notes as

0 24 (2\°
Riy(r)R ddr = —= | =
/0 10(7") 21<7")7" r \/6(3) ap,

which just leaves the angular part. Before we do that let’s put everything we have so far

2
27 4r(hw)? e \’2rh , |24 (2)° 9
el 2 2 (2 M
h h3c (mec> w Y V6 \3 a| Ml

where M, is the angular part of the overlap integral. Simplifying gives

together:

8 2
2° smec

A21 = ga 7

|Mql.
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From the notes, the angular integral is
/dQ Yoo€: €-Y1m

which depends on the initial m of the 2p state and again from the notes we can write

47 —€, + 1€ €, + 1€
€6 =1/—=(eYio+ ———2V  + = yY). 6.148
3 ( 1,0 \/5 1,1 \/5 1,—1 ( )

In principle we are dealing with an integral of the product of three Y},,’s. However Y,y =
1/+/47 is a constant, and so pulls out of the integral. The orthogonality of the Y;,,’s then
means that each choice of m picks out of the terms in equation (6.148). Summing over the
three terms gives (¢ +¢;, +€2)/3 = 1/3. We then divide by another factor of three to average
over the m values. The final rate is

2N\® m.c?
Asy = [ = R
21 <3> (0% 3

3. HII regions

(a) Question. In the interior of a typical HII region with electron density n, =
100 cm ™3, what is the lifetime of a proton to recombination, and of a hydrogen atom to
photoionization 7 Estimate the ionization fraction.

Solution. The recombination rate per proton is

ne(opu) =107 71 ( Ne ) ( {opv) )

100 cm—3 10~13 ¢m3 s—1

where we use a typical value for the recombination coefficient from section 6.9 of the notes.
The photoionization rate per proton is

N, 5 1 (1pe)” N, Obf
~ 10 ( )
27t i ( r 1059 s=1 J \10~17 c¢m?

where we again take a typical value for the photoionization cross-section near threshold and

N, is the photon luminosity of the central star.

Therefore we estimate that a proton will recombine once every 10! s ~ 3000 years,
whereas a hydrogen atom is ionized about once a day. This tells you that in steady-state
there must be many more protons than neutral hydrogen atoms. The neutral fraction must
be 1 day divided by 3000 years or ~ 107%. (So the ionization fraction is 1 minus 107%). This
number compares well with values in Table 2.2 of Osterbrock.
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This also gives you a way to understand the size of the HII region, since the star
produces 10%° ionizing photons per second, or 10%! ionizing photons in the recombination
time of 10'* s. Therefore we need 10% protons to be able to keep absorbing the ionizing
photons in steady-state. For n ~ 100 cm™3, the volume is 10 /100 ~ 105 cm?, or a radius

of about 10pc.

We could also calculate the time between collisions. The rate per atom is n.7v;; with
Vi ~ 1077 em?® s Q(5, k)T, % /gi.. Therefore an atom undergoes a collision about once a
day. As we discussed in class, collisional deexcitation is therefore only important for transi-
tions with small A values A ~ 1075 s™! such as forbidden transitions (see next question).

(b) Question. Calculate the mean free path of an ionizing photon in neutral hydrogen.
What does your result say about the thickness of the transition zone between HII and HI at
the edge of an HII region?

Solution. The typical photoionization cross-section of 10~!7 cm? implies that we need a
column of hydrogen Ny =~ 107 cm~2 for optical depth unity. The mean free path is therefore
~ 0.03pc (ng/cm—3)~!. This sets the scale for the transition between ionized and neutral
gas at the edge of the HII region. The transition is very sharp.

4. Line diagnostics

Question. Calculate and plot the intensity ratio of the OII 3728.9A and 3726.2A emis-
sion lines discussed in class as a function of n., with and without taking collisional transitions
between the two upper levels into account, and comment on whether it is important to in-
clude the transitions between the upper two levels when using the line ratio to determine
electron density. (One place to find decay rates and collision strengths for the 2Ds/5,? D5 o

and 483/2 levels of OII is Seaton and Osterbrock 1957).

Solution. Here is a summary of the atomic data that comes from Seaton & Osterbrock
(1957):
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We’ll refer to the three levels as 1, 2, and 3. The degeneracies are g3 = 4, go = 6, g1 = 4
based on the values of J = 3/2,5/2 and 3/2 respectively. In class, we derived the expression

for the intensity ratio of the two lines ignoring transitions between levels 2 and 3. The result
1s

Iy gsAnivs o~ 23 /kBT {1 + Azl/ne%l] ‘ (6.149)

Iy g2Anvy 1+ As1/nevs
Now define the critical densities n.o = Ag1 /721 and n.3 = As1/y31. The deexcitation rate
coefficient is from the notes

- —1 0, k)
P 6 3 1 )
Yej = 8.6 x 1077 cm” 8 ATk (6.150)
This gives
Neo =38 x 10° em™PT}?  ney=1.6 x 10* cm™® T,/%.

To get the prefactor in equation (6.149), note that Fyy < kgT for typical HII region tem-
peratures, so we can set the exponential to unity, and also v3; = v, because Fy3 < Fis.
Therefore the prefactor is gsAsi/g2Asr = 2.9, giving

I _ | 1+38x10° em 3T, /.,

Iy 1+1.6x10* cm—3 T41/2/ne

The high density limit is 2.9, the low density limit is given by ©(1,3)/Q(1,2) = 0.51/0.77 =
0.66. Here is a plot of I31/I5; against n, for T, = 1:
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Now let’s put in collision-induced transitions between levels 2 and 3. We can safely
ignore the spontaneous emission from 3 to 2 because Asy/As =~ 1073 so only one in a
thousand radiative decays from level 3 goes to level 2. In equilibrium, the level populations
are given by

n1(neyiz + nemiz) = na(neyor + Aar) + ng(neys + Asi) (6.151)

na (Ao + nevyor +neves) = n3(Asp + neys2) + ni(neniz) (6.152)

ng(Asi + Agz + Neys2 + NeY31) = NiNeY13 + NaNeYas (6.153)

where we write an equation for each level, with the rate of transitions out of that level
on the left, and into that level on the right. Any two of these equations can be solved

by eliminating n; to get an equation for n3/ny (the third equation is redundant since all
transitions are occurring within this set of levels). This gives

ns 2173 + Y28M12 + 23718 + 13401/ e

. (6.154)
e Yi27Ys1 + YY1z + YV137Y32 + Yi2As1 /e

The next step is to realize that

V21713 + V23712 + Y23N13 93~ Fas/kpT

V127931 + Y3212 + V13Y32 G2
which you can show using the relation between ;, and v;; or simply by considering the limit
of equation (6.154) in which the collisional terms dominate.
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The line intensity ratio can now be written

I 93/431V316zbs/ksi‘[}_j;122éfﬁz} (6.155)

Iy g2Aaivm 14 nes/ne

as before (compare eq. [6.149]), but with critical densities

A 71
Mg = 22 {1+@ <1+m)}
Y21 V21 Y13

Asy 732 a! -
nc,g_—3{1+i<1+—3>} .
31 31 712

We just need to calculate the factors in square brackets and modify our previous values for
the critical density. Using the relation between ;5 and 7;;, and using the expression for the
deexcitation rate constant 7; in equation (6.150), we find that both these factors are equal

to
1 1
1+Q(3,2) {9(371) + 9(2,1)} =3.8

where we've set e Fs2/kT 1

Here is the plot (dotted curve is with collisional transitions between 3 and 2; solid curve
is no transitions between 3 and 2):
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Including the 3 to 2 transitions reduces the inferred density for a given measured line ratio
by about a factor of 4. Note that the low and high density limits are unchanged: at high
densities we must still have the Boltzmann occupation of levels, and at low densities because
we haven’t changed the radiative decays: both levels decay straight to the ground state.
Another way to look at this is that at a fixed n., including the 3 to 2 transitions increases
I31/15;. Since it helps the levels reach a thermal population.

Figure 5.8 of Osterbrock’s book shows the inverse ratio I;/I3; as a function of n.. They
include also excitation of the higher energy ?P levels which can cascade down and populate
our levels 1,2 and 3. This shifts the curve to lower densities by about another order of

magnitude, so that the transition occurs for n, between 10? and 103 cm~3.



