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1. Radiative Transfer

These are notes for the first part of PHYS 642 Radiative Processes in Astrophysics. The

idea is to get as far as we can without worrying about the microphysics by which radiation is

emitted, absorbed, or scattered. We will develop a formalism to follow the radiation from its

source to the observer through intervening material, taking into account absorption, emis-

sion, and scattering, and discuss the properties of thermal radiation. Examples covered are

radiative diffusion in stellar interiors and the Rosseland mean opacity, the grey atmosphere

as the simplest example of a stellar atmosphere, the spectrum of an atmosphere and limb

darkening, and the origin of emission and absorption lines.

1.1. The specific intensity and its moments

We describe the radiation propagating in a particular direction in terms of the specific

intensity Iν . The energy crossing per second per unit area perpendicular to the beam is

dE = Iν dA dt dΩ dν (1.1)

in the frequency interval ν to ν+dν and in the cone of solid angle dΩ about the propagation

direction.

The specific intensity has a simple relation to the phase space density of the photons.

Defining the single particle occupation number fα such that the number of particles with

momentum 󰂓p and position 󰂓x is

dn =
2󰁛

α=1

fα d3󰂓x d3󰂓p. (1.2)

We sum over the two polarizations of the photons, labelled by α. We make the connection

with Iν by rewriting the volume element in momentum space in terms of the magnitude and

direction of the momentum,

d3󰂓p = p2dp dΩ =
h3ν2dν dΩ

c3
(1.3)

and the spatial volume element in terms of the area element perpendicular to the photon

propagation direction, and a length cdt, which gives the distance travelled by photons in

time dt,

d3󰂓x = dA c dt. (1.4)
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This gives

dn =
󰁛

α

fαh
3hν

3

c2
dA dt dΩ dν (1.5)

and therefore

Iν ≡
󰁛

α

fαh
3hν

3

c2
. (1.6)

The energy density of the radiation is

U =

󰁝
d3󰂓p

󰁛

α

fαhν =
1

c

󰁝
Iv dν dΩ (1.7)

from which we see that

Uν =
1

c

󰁝
Iν dΩ. (1.8)

We can also write an expression for the energy flux 󰂓F . In the x-direction, for example,

Fx =

󰁝
d3󰂓p

󰁛

α

fα vx hν (1.9)

where we construct the flux by multiplying the number density of particles by the velocity

in the x-direction and the quantity being carried, here energy. If θ is the angle with respect

to the photon propagation direction, then

Fx =

󰁝
d3󰂓p

󰁛

α

fα hνc cos θ =

󰁝
Iν dν dΩ cos θ (1.10)

Similarly, we can derive the pressure of the radiation by calculating the momentum flux

across a unit area. The flux of x-momentum in the x-direction is

Pxx =

󰁝
d3󰂓p

󰁛

α

fα vx px =

󰁝
d3󰂓p

󰁛

α

fα hν cos2 θ =
1

c

󰁝
Iν dν dΩ cos2 θ (1.11)

We see that the energy density, pressure, and flux can be expressed in terms of the

zeroth, first, and second moments of the radiation field,

cUν

4π
= Jν =

1

4π

󰁝
IνdΩ =

1

2

󰁝 1

−1

dµ Iν(µ) (1.12)

Fν

4π
= Hν =

1

4π

󰁝
Iν cos θ dΩ =

1

2

󰁝 1

−1

dµ µIν(µ) (1.13)

cPν

4π
= Kν =

1

4π

󰁝
Iν cos

2 θ dΩ =
1

2

󰁝 1

−1

dµ µ2Iν(µ) (1.14)
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where the integrals over µ are for an axially symmetric radiation field, where dΩ = 2π dµ

with µ = cos θ. The quantity Jν is known as the mean intensity.

Let’s do some simple examples. An isotropic radiation field has Iν constant for photons

propagating in all directions. Then

cUν

4π
= Jν = Iν =

3cPν

4π
(1.15)

or

Pν =
1

3
Uν . (1.16)

The flux vanishes for integration over all solid angles. The flux from a surface is given by

integrating over a hemisphere in solid angle,

Fν = πIν . (1.17)

Another example is a unidirectional radiation field, e.g. Iν = I0δ(µ). This gives Pν = Uν in

contrast to the result for an isotropic radiation field. In an atmosphere as we move towards

the surface, the radiation field becomes more and more outwards directed, and Pν/Uν goes

from 1/3 → 1. Keeping track of this variation is important in modeling stellar atmospheres.

1.2. Thermal radiation

An important case is when the radiation is in thermal equilibrium at temperature T .

Then the photon distribution function is given by the Bose-Einstein distribution with zero

chemical potential (µ = 0)

h3fα =
1

ehν/kBT − 1
(1.18)

the same for both spin states α, giving

Iv ≡ Bν(T ) =
2hν3

c2
1

ehν/kBT − 1
(1.19)

which defines the Planck distribution Bν(T ) or blackbody spectrum. The two limits hν ≫
kBT and hν ≪ kBT both have names. The Rayleigh-Jeans part of the spectrum at low

frequency is given by

Bν =
2ν2

c2
kBT ∝ ν2. (1.20)

This formula can be obtained by counting the photon modes and assuming each has kBT of

energy in thermal equilibrium. Taken to large frequency, this predicts infinite energy in the

photon field, the so-called ultraviolet catastrophe. The resolution is in the quantization of
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the photon energy spectrum. At high frequencies, the photon energy becomes much greater

than the thermal energy hν/kBT , and the occupation number is exponentially suppressed,

giving the Wien tail

Bν =
2hν3

c2
exp

󰀕
−hν

kBT

󰀖
. (1.21)

The other point to note about the blackbody spectrum is that ∂Bν(T )/∂T |ν > 0, that is the

emissivity increases at every frequency when the temperature increases. In other words, the

blackbody curves all fit inside each other in a plot.

The peak of Bν is at hνmax = 2.28kBT (the Wien displacement law), or νmax/T = 5.88 ×
1010 Hz K−1. The peak of Bλ is given by λmaxT = 0.290 cm K.

Integrating over frequency1 gives B =
󰁕
Bνdν = acT 4/4π where the radiation constant

a =
8π5

15

k4
B

(hc)3
= 7.5657× 10−15 cgs. (1.22)

Since Bν is isotropic, we can use our earlier results for the energy density and pressure, which

are

U = aT 4 P =
1

3
aT 4. (1.23)

The flux from a surface is Fν = πBν , or integrated over frequency,

F = πB =
1

4
acT 4 = σSBT

4 (1.24)

where the Stefan-Boltzmann constant is σSB = 5.67× 10−5 cgs.

1.3. The transfer equation for emission and absorption

Having defined Iν and looked at some examples, we now ask how Iν changes as photons

propagate through space. First, consider propagation through vacuum so that photons

1Use the result
󰁕∞
0

dxx3/(ex − 1) = π4/15.
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are neither created or destroyed. The single particle distribution function fα satisfies the

collisionless Boltzmann equation

1

c

∂f

∂t
+
󰂓
k · 󰂓∇fα = 0 (1.25)

where 󰂓k is a unit vector giving the photon propagation direction. This is straightforward

to derive. The idea is that photons initially at position (󰂓x, 󰂓p) in phase space will be at

position (󰂓x + 󰂓kcdt, 󰂓p) a time dt later. The photons conserve phase space volume as they

propagate. Setting the number of photons in a phase space volume d3󰂓xd3󰂓p constant implies

that fα(󰂓x, 󰂓p, t) = fα(󰂓x+ 󰂓kcdt, 󰂓p, t+ dt). Equation (1.25) follows by a Taylor expansion.

Since Iν and fα are related by a constant factor, then

1

c

∂Iν
∂t

+ 󰂓k · 󰂓∇Iν = 0. (1.26)

There are two points to make about this equation. First, the first term is often much smaller

than the second term if the timescale for evolution of the system we’re interested in is

much longer than the light crossing time for that system. Second, in general photons are

not conserved but scattered, absorbed, and emitted and we account for these processes by

adding source and sink terms to the RHS. Define coordinate s along the photon path, we

then have
dIν
ds

= (sources)− (sinks). (1.27)

In general, we must solve a number of equations for Iν at different photon frequencies and

propagation directions. Emission and absorption of photons by matter are obvious sources

and sinks that we must include. Also, scattering moves photons from one direction to another

and perhaps from one frequency to another if it is inelastic.

The spontaneous emission coefficient jν is defined as the energy emitted per unit time,

volume, in a given direction and frequency, so that

dIν
ds

= jν (1.28)

with units erg cm−3 s−1 Hz−1 sterad−1. Often the emission process is isotropic, and it’s

useful to define an emissivity 󰂃ν , where

jν =
ρ󰂃ν
4π

(1.29)

(units of 󰂃ν are erg g−1 s−1 Hz−1). We’ll calculate jν due to various physical processes later

in the course. Notice that locally where we can treat jν as constant, the specific intensity

increases linearly due to emission.
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Now consider absorption of photons. Draw a cylinder around the direction of photon

propagation, with length ds and cross-section dA.

If the absorbers have number density n, and each has a cross-section for photon absorption

of σ, the absorption cross-section looking along the cylinder is σn dAds. The probability

that a ray is absorbed on traversing the cylinder is therefore σn ds = ds/l, where l = 1/nσ

is the photon mean free path2.

Therefore, as the beam passes through the material,

dIν
Iν

= −nσds = −ds

l
. (1.30)

Rather than writing l in terms of n and σ, in astrophysics it is usual to write

l =
1

nσ
=

1

κρ
=

1

α
(1.31)

where ρ is the mass density, κ is the opacity (units cm2 g−1) and α is the opacity coefficient

(units cm−1), giving
dIν
ds

= −ρκIν = −ανIν . (1.32)

The absorption results in exponential decrease in Iν as the photons propagate (one e-folding

per photon mean free path).

The final result is
dIν
ds

= jν − ανIν (1.33)

which describes radiative transfer with emission and absorption.

2To see that this is the photon mean free path, construct a cylinder of cross-section σ and length l along

the direction of the photon. We are guaranteed an absorption on average if there is one

absorber in the cylinder nσl = 1. This defines the mean free path l.
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1.4. Optical depth, source function, and Kirchoff ’s theorem

We define the optical depth τ by dτ = αds = κρds = ds/l, or

τ(s)− τ(s0) =

󰁝 s

s0

α(s)ds (1.34)

If τ ≫ 1 when integrated along a typical path in a medium, the medium is said to be optically

thick (most photons absorbed), whereas if τ ≪ 1 along a typical path, the medium is said

to be optically thin (most photons escape).

To get a sense of the size of the mfp as a function of density, we can estimate σ ≈ σT

where σT = 8πr20/3 = 6.63 × 10−25 cm2 is the Thomson cross-section and r0 = e2/mec
2

is the classical electron radius3. This cross-section is for Thomson scattering rather than

absorption, but gives a starting point for an estimate of an interaction cross-section. For a

gas of protons, the cross-section per gram is then

κ =
σT

mp

= 0.40 cm2 g−1. (1.35)

The photon mfp is

l =
1

nσ
=

0.5 Mpc

(n/cm−3)
(1.36)

or

l =
1

ρκ
=

2.5 cm

(ρ/g cm−2)
. (1.37)

The first case is a typical interstellar medium (ISM) density, the second case is for the mean

density of the Sun. For the Sun, the mean free path is a factor ∼ 1011 smaller than the

radius of the star, so that the solar interior is extremely optically thick. For the ISM, the

mean free path we estimate is larger than the size of the Galaxy. Of course, we haven’t

included the correct opacity sources for optical photons travelling through the ISM, but still

this estimate makes the point that at ISM densities the mfp can be large.

In terms of optical depth, the transfer equation is

dIν
dτν

=
jν
αν

− Iν = Sν − Iν (1.38)

where we define the source function Sν ≡ jν/αν .

3Note that in cgs, the electron charge is e = 4.8032× 10−10 cgs.
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The general solution of the transfer equation is4

Iν(τν) = Iν(0)e
−τν +

󰁝 τν

0

e−(τν−τ ′ν)Sν (τ
′
ν) dτ

′
ν . (1.39)

Each term has a simple physical interpretation. The first term describes absorption of the

incident radiation Iν(0). The second term is an integral over the emitted photons given by

the source function, and a factor to include absorption of those emitted photons as they

propagate to optical depth τν .

As a simplified case, consider S =constant. Then the solution is

Iν(τν) = Iν(0)e
−τν + Sν

󰀃
1− e−τν

󰀄
= Sν + e−τν (Iν(0)− Sν) (1.40)

which shows that for large optical depths, Iν → Sν . If initially Iν > Sν , then photons are

absorbed from the beam until Iν = Sν . Similarly, if Iν < Sν initially, then photons are added

to the beam until Iν = Sν . For small optical depth, Iν(τν) ≈ Iν(0)(1− τν) + τνSν .

An extremely important result is Kirchoff ’s law, which states that a material in ther-

modynamic equilibrium at temperature T has

jν = ανBν(T ) (1.41)

or

Sν = Bν(T ). (1.42)

One way to see that this must be the case is to consider an object placed inside a thermal

cavity and allowed to come into equilibrium with it. It must replace any radiation it absorbs,

frequency by frequency.

A true blackbody has αν constant, independent of frequency (a “perfect absorber”

absorbs all frequencies equally), and so has jν ∝ Bν . But this is not true for real materials,

which have an emissivity weighted by a non-constant absorption coefficient. At frequencies

which are readily absorbed, the emissivity is high, and vice versa. An example of this is

emission lines from thermal optically thin gas (e.g. in the chromosphere of the Sun). The

absorption coefficient κν is larger at the frequencies of line transitions, and therefore so is

the emissivity.

4To see this, first take out the expected e−τ behavior by defining f = Iνe
τ , and g = Seτ . Then df/dτ = g

can be integrated to give eq. [1.39].
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1.5. Examples

1.5.1. Stellar interiors

Let’s consider optically thick regions such as stellar interiors. A good assumption is often

local thermodynamic equilibrium (LTE), in which the degrees of freedom associated with the

particles (e.g. atomic energy levels) are characterized by their values in thermodynamic

equilibrium (TE) at temperature T . In this case, Sν = Bν(T ). The difference from full TE is

that the radiation field in general does not have a Planck distribution, Iν = Bν(T ). However,

our solution for the radiative transfer equation tells us that Iν → Bν for optically thick LTE

material.

We first write ds in terms of the radial coordinate r, as ds = dr cos θ = µdr for a photon

propagating at angle θ to the radial direction. Then

µ
dIν
dr

= jν − ανIν . (1.43)

Since the optical depth increases inwards, it makes sense to define the radial optical depth

as dτν = −ανdr, and so

µ
dIν
dτν

= −Sν + Iν (1.44)

where the factor of µ on the LHS accounts for the fact that τν is the radial optical depth.

Next, we take the moments of equation (1.44). Integrating over solid angle gives

1

4π

dFν

dτν
= −Sν + Jν (1.45)

and multiplying by µ and integrating gives

c
dPν

dτν
= Fν . (1.46)

We have assumed Sν is isotropic so that
󰁕
dΩµSν = 0.

In a stellar interior, we already mentioned the fact that τ ≫ 1, and therefore we expect

Iν ≈ Bν . However, there must be some anisotropy in the radiation field since the photons

transport heat outwards. Therefore

Iν = Bν(T ) + (small anisotropic part) (1.47)

Now look at equation (1.46). The flux Fν must come from the anisotropic part of Iν , but

the pressure is mostly set by the isotropic part, Pν ≈ 4πBν/3c. Therefore

Fν = − 4π

3ρκν

dBν

dT

dT

dr
. (1.48)
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Integrating over frequency gives the total flux

F = −4π

3ρ

dT

dr

󰁝
dν

1

κν

dBν

dT
. (1.49)

Next, we define the Rosseland mean opacity
󰀗󰁝

dν
dBν

dT

󰀘
1

κR

=

󰀗󰁝
dν

1

κν

dBν

dT

󰀘
. (1.50)

The factor on the LHS is
󰁝

dν
dBν

dT
=

d

dT

󰁝
dνBν =

d

dT

󰀕
acT 4

4π

󰀖
(1.51)

and therefore we arrive at

F = −4acT 3

3κRρ

dT

dr
(1.52)

the radiative diffusion equation.

We see that radiation diffuses down the temperature gradient, as would be expected.

We can rewrite equation (1.52) as

F = −1

3
c l

d

dr

󰀃
aT 4

󰀄
(1.53)

exactly what we would have guessed from a kinetic theory approach. The 1/3 factor is the

usual factor from integration over angles, and the transported quantity is the photon energy

density aT 4. At a given location, the photons coming from deeper in the star are hotter (by

an amount ≈ ldT/dr) than those coming from cooler regions above.

We can use equation (1.52) to understand the solar luminosity. We expect

L⊙ ≈ 4πR2F

≈ 4πR21

3
cl
aT 4

c

R

≈
󰀕
4πR3

3
aT 4

c

󰀖󰀕
cl

R2

󰀖
. (1.54)

In the second line, we approximate d(aT 4)/dr ≈ aT 4
c /R, where Tc is the central temperature.

In the last line, the first term is the total energy content in radiation in the solar interior.

In the second term, we are dividing by the time for a photon to random walk out of the

Sun. Recall that for a random walk, the total distance travelled is R =
√
Nl where N is the

number of steps. Therefore the time to escape is Nl/c = R2/lc = tesc, and

L⊙ ≈ Eγ

tesc
. (1.55)
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Let’s plug in some numbers: the central density of the Sun is ρ ≈ 150 g cm−3 which gives

l/R ≈ 10−13 (see eq. [1.37]). The light travel time is R/c ≈ 2 s, and therefore tesc ≈ 106 years.

The luminosity of the Sun L⊙ = 4×1033 erg s−1. Putting this together gives Tc ≈ 9×106 K.

Not bad, the actual value is 1.5× 107 K.

1.5.2. Grey atmosphere: temperature profile, limb darkening

Next, we consider the solution of the radiative transfer equation in the stellar atmo-

sphere, in which the optical depth drops from τ ≫ 1 to τ ≪ 1. The simplest case is a grey

atmosphere, in which “grey” refers to a frequency-independent opacity κν = κ. Equation

(1.45) integrated over frequency is

1

4π

dF

dτ
= −S + J (1.56)

which for a constant flux F implies that we must have S = J . Similarly, the frequency-

integrated equation (1.46),

c
dP

dτ
= F (1.57)

gives the simple result P = (F/c)(τ + τ0). To close these equations, we make the Eddington

approximation that U = 3P or 3P = 4πJ/c. Then,

S = J =
3cP

4π
=

3F

4π
(τ + τ0). (1.58)

To find the constant τ0, we solve the radiative transfer equation for I(τ) and then use it

to find the flux F at the surface. Only for the correct choice of τ0 is the solution self-consistent

in this way. The specific intensity is

I(τ, µ) =

󰁝 ∞

τ

e−(τ−τ ′)/µS (τ ′)
dτ ′

µ
. (1.59)

Substituting our expression for S gives I(0) = (3F/4π)(τ0 + µ) for µ > 0 and I(0) = 0 for

µ < 0. The flux at the surface can be found from
󰁝 1

0

2πµ dµ I(0), (1.60)

which is equal to F only if τ0 = 2/3.

If we assume LTE, then S = B, and therefore

B = S =
3F

4π

󰀕
τ +

2

3

󰀖
(1.61)
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but F = σT 4
eff and B = σT 4/π, giving

T 4 =
3

4
T 4
eff

󰀕
τ +

2

3

󰀖
, (1.62)

the temperature profile of the grey atmosphere in the Eddington approximation. Note that

T = Teff at τ = 2/3. This optical depth is often taken as the photosphere.

The specific intensity for arbitrary depth is (for outgoing rays, µ > 0)

I(µ, τ) =
3F

4π

󰀕
µ+

2

3
+ τ

󰀖
= B +

3Fµ

4π
. (1.63)

This shows that at large optical depth, the anisotropic part of the specific intensity is ≈ 1/τ

of the isotropic part.

We can also estimate the amount of limb darkening we expect. This is the effect that

when we look at the edge of the Sun, we see to cooler layers for a given optical depth. The

limb therefore appears darker than the face of the Sun. In our solution,

I(τ = 0, µ = 0)

I(τ = 0, µ = 1)
=

2

5
. (1.64)

A full solution to the grey atmosphere (without the Eddington approximation) gives 0.35 (see

Appendix which summarizes the exact solution to the grey atmosphere from Chandrasekhar’s

book). Here is a comparison of the observed limb-darkening of the Sun compared to the

Eddington approximation result, taken from Carroll and Ostlie.

It may seem surprising that the Eddington approximation P = U/3 gives such good re-

sults given that it holds for an isotropic photon distribution, whereas the photon distribution
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is anisotropic in the stellar atmosphere. In fact, the Eddington approximation holds for more

general angular distributions of the photons. For example, if the photons are isotropic in

the outgoing and ingoing hemispheres, but with different intensities, the Eddington approx-

imation holds. Similarly, the Eddington approximation holds for the anisotropic intensity

I = a+ bµ (or with additional terms as long as only odd powers of µ are included).

1.5.3. Spectrum of a grey atmosphere

Having calculated the temperature profile of the grey atmosphere, we can now go back

and calculate its spectrum if we assume LTE so that the source function is Bν(T ) at each

depth. Then the outgoing specific intensity at the surface is

Iν(0, µ) =

󰁝 ∞

0

e−τ/µBν (T (τ))
dτ

µ
(1.65)

where we can take T (τ) as previously calculated using the Eddington approximation. The

emergent flux is

Fν(0) =

󰁝 1

0

dµ 2πµ Iν(0, µ) (1.66)

=

󰁝 1

0

dµ 2πµ

󰁝 ∞

0

e−τ/µBν(T )
dτ

µ
(1.67)

= 2π

󰁝 ∞

0

dτBν(T )

󰁝 1

0

dµ e−τ/µ (1.68)

= 2π

󰁝 ∞

0

dτBν(T )

󰁝 ∞

1

dx

x2
e−τx (1.69)

= 2π

󰁝 ∞

0

dτBν(T )E2(τ) (1.70)

where we have made the substitution x = 1/µ, and E2(τ) is an exponential integral5.

5Defined as En(τ) =
󰁕∞
1

x−ne−τx dx. These functions occur often in analytic solutions to the radiative

transfer problem. Some properties (which are straightforward to prove) are: En(x) → e−x/x for x → ∞,

E1(x) → ln(1/x) as x → 0, En(x) → 1/(n − 1) as x → 0 (n > 1), (n − 1)En(x) = e−x − xEn−1(x),

dEn/dx = −En−1(x), and
󰁕∞
0

dxEn(x) = 1/n. This last result can be used to show that eq. [1.70] gives the

correct result for an isothermal atmosphere, Fν = πBν(T ).
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The first question in the homework 1 is about calculating the spectrum using equation

(1.70). The plot above compares the grey atmosphere spectrum with a blackbody spectrum.

The grey atmosphere spectrum is harder than a blackbody at the effective temperature, i.e.

it has enhanced emission at higher photon energies. This is due to the increasing temperature

profile with depth.

1.5.4. Emission and absorption lines

Of course, the spectrum of the Sun is not smooth and featureless like a blackbody or

grey atmosphere spectrum, but has many absorption lines. The figure below is taken from

Carroll and Ostlie. We can use the general solution to the equation of radiative transfer to

get a feeling for when to expect absorption and emission lines.

Before we do this, it is interesting to note that the smooth part of the Sun’s spectrum

differs from a blackbody in the opposite way to a grey atmosphere – i.e. higher frequencies

are suppressed slightly and lower frequencies enhanced. As discussed in chapter 4 of Shu’s

book, this difference was used to infer that the opacity in the solar atmosphere must increase

with frequency (so that lower frequency photons come from deeper in the atmosphere, where

the temperature is greater). This frequency variation was explained in the 1930s/40s when

it was realized that H− dominates the opacity in the atmosphere.
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We already briefly mentioned optically thin, thermal gas, for which if we assume that

the source function does not depend on position,

Iν =

󰁝 τ

0

Sν(τ
′)e−τ ′νdτ ′ν = Sν(1− e−τν ) ≈ τνSν = τνBν . (1.71)

At the frequencies associated with line transitions, the absorption coefficient is large, and

therefore so is the emissivity, jν = ανBν . The spectrum looks like this:

Note that since 1− e−τ < 1 the brightness of the emission lines can never exceed the Planck

spectrum at the temperature of the gas (dashed line in the Figure).

A stellar atmosphere produces an absorption line spectrum. In this case, the object

we’re looking at is optically thick. At the frequencies of the absorption lines, a given optical

depth corresponds to a much smaller physical depth, and therefore the photons come from

a lower temperature region, giving a lower intensity than the continuum.
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To get some intuition for this, a simple problem is a background source viewed through

a layer of gas in LTE at temperature T .

The solution is

Iν = Iν(0)e
−τν +Bν(T )(1− e−τν ). (1.72)

Now, if Iν(0) > Bν(T ) then

Iν = [Iν(0)− Bν(T )] e
−τν +Bν(T ) (1.73)

is smaller at larger τ , and so would give absorption lines at frequencies where αν is larger

than the continuum absorption coefficient. (See also problem 1.9 in Rybicki and Lightman).

If Iν(0) < Bν(T ) on the other hand (e.g. the source is cooler than the layer of gas), then

the brightness will be larger at frequencies with a higher optical depth, and an emission line

spectrum would be seen.

1.6. Scattering

So far, we have not included scattering processes. The reason is that in general including

scattering introduces significant complexity in solving the equation of radiative transfer.

Scattering abruptly changes the direction and possibly frequency of the scattered photon,

resulting in an integro-differential equation as we will see below.

1.6.1. Scattering only

Start by considering a medium with no emission or absorption, scattering only. We will

assume that the scattering is monochromatic, coherent, elastic – i.e. no change in photon

frequency occurs on scattering, only direction. In general, we can write

dIν(󰂓k)

ds
= −σνIν(󰂓k) + σν

󰁝
φν

󰀓
󰂓k,󰂓k′

󰀔
Iν

󰀓
󰂓k′
󰀔
dΩ′ (1.74)
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where σν is the scattering coefficient, the first term on the RHS describes photons removed

from the beam by scattering, and the second term describes photons added to the beam by

scattering from other directions. The function φ gives the probability of scattering from ini-

tial direction 󰂓k′ into direction 󰂓k, and is normalized such that
󰁕
dΩφ(󰂓k,󰂓k′) =

󰁕
dΩ′φ(󰂓k,󰂓k′) = 1.

For simplicity, we will assume isotropic scattering, for which φ = 1/4π is a constant, i.e.

all scattering angles are equally likely. In that case,

dIν
ds

= −σνIν + σνJν . (1.75)

If we define an optical depth dτν = σνds, then

dIν
dτν

= −Iν + Sν (1.76)

with the source function for scattering Sν = Jν .

The number of scatterings required to escape a medium depends on whether it is opti-

cally thick or optically thin. In the optically thick case, τ ≫ 1, the scattering photon executes

a random walk, and the number of scatterings is given by L =
√
Nl, or N = (L/l)2 = τ 2.

In the optically thin case, τ ≪ 1, the chance of scattering is l/L which gives N ≈ τ .

1.6.2. Scattering and absorption

Putting scattering and absorption terms into the radiative transfer equation gives

dIν
ds

= −σνIν + σνJν + jν − ανIν . (1.77)

If the gas is in LTE, then jν = ανBν , and

dIν
ds

= αν(Bν − Iν) + σν(Jν − Iν) (1.78)

= −(αν + σν)(Iν − Sν) (1.79)

where we have defined a source function for absorption and scattering,

Sν =
ανBν + σνJν

αν + σν

. (1.80)

If we define the total optical depth dτν = (αν + σν)ds, then we recover the same form of the

transfer equation as earlier
dIν
dτν

= −Iν + Sν . (1.81)
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We can check the limits of this expression: if Jν ≈ Bν then Sν ≈ Bν ; if Jν ≈ 0 then

Sν ≈ Bναν/(αν + σν) < Bν .

Another way to write the source function is to define the absorption probability 󰂃ν =

αν/(αν + σν). The source function is then Sν = 󰂃νBν + (1− 󰂃ν)Jν .

Now think about the random walk of a photon in a gas with scattering and absorption.

The number of steps before being absorbed is 1/󰂃ν , giving the mean free path to absorption

l󰂏 =
√
Nl = l/

√
󰂃ν . But l = 1/(αν + σν), and so

l󰂏 =
1󰁳

αν(αν + σν)
. (1.82)

This length is known as the diffusion length, thermalization length, or the effective mean free

path. The effective optical thickness is τ󰂏 = L/l󰂏 =
√
󰂃τ . When τ󰂏 ≪ 1, most photons escape

without being absorbed (but they might scatter multiple times depending on the value of

τ). This implies a luminosity L = 4πανBνV where V is the volume. For τ󰂏 ≫ 1, we expect

Iν → Bν and Sν → Bν , giving a luminosity L ≈ 4πανBν(Al󰂏) where Al󰂏 is the volume from

which photons can escape, or since ανl󰂏 =
√
󰂃ν , we get L ≈ 4π

√
󰂃νBνA. For 󰂃ν = 1, we

should get L = πBνA, so this estimate is off by a factor of 4, but the important point is

that we see that when scattering is included, the emissivity is reduced by a factor of
√
󰂃ν .

There are two competing effects. First, the emitting volume near the surface is increased by

scattering, since the depth from which photons escape is l/
√
󰂃. However, the mean free path

l is shorter by a factor of 󰂃, so the overall emitting volume is actually smaller by
√
󰂃.

Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

• Specific intensity Iν and its moments Fν , Pν , Uν = 4πJν/c. Source function, Sν =

jν/αν . Outwards flux Fν = πIν for isotropic Iν . Closure relations: Pν = Uν/3,

Pν = Uν .

• Mean free path l = 1/α = 1/nσ = 1/ρκ. Optical depth.

• Radiative transfer equation
dIν
ds

= jν − ανIν

• General solution. For constant source function,

Iν = Iν(0)e
−τν + Sν

󰀃
1− e−τν

󰀄
,
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giving Iν → Sν for τ ≫ 1 and Iν ≈ Iν(0) + τSν for τ ≪ 1.

• Thermal radiation. U = aT 4, P = (1/3)aT 4. Properties of Planck spectrum. λmax =

0.29 cm/T . Kirchoff’s Law jν = ανBν .

• Local thermodynamic equilibrium (LTE). Radiative diffusion equation. Rosseland

mean opacity.

• Stellar atmospheres. The Eddington approximation and the source function and tem-

perature profile of a grey atmosphere. τ = 2/3 as the photosphere. Limb darkening.

• Emission lines from optically thin thermal gas. Conditions for forming absorption lines.

• Scattering as a random walk. Number of scatterings to escape max(τ, τ 2). Source

function

Sν =
ανBν + σνJν

αν + σν

= 󰂃νBν + (1− 󰂃ν)Jν .

Thermalization depth. Emissivity of a scattering atmosphere Fν =
√
󰂃νπBν .

Reading

• Rybicki and Lightman, chapter 1.

• Chandrasekhar, S. “Radiative Transfer” Dover 1960. Classic treatise on radiative trans-

fer. Analytic solution for grey atmosphere.

• Mihalas, D. “Stellar atmospheres” W.H. Freeman & Co. 1978. Now unfortunately out

of print. Detailed treatment of the physics of atmospheres and also it tells you how to

calculate a “real” stellar atmosphere.

Appendix: Chandra’s exact solution for a grey atmosphere

In his book Radiative Transfer, Chandrasekhar presents a beautiful analytic solution

to the grey atmosphere. We summarize it here, and compare the results with our solution

derived using the Eddington approximation.

For a grey atmosphere, S = J regardless of the degree of scattering or absorption. The

transfer equation is

µ
dI

dτ
(τ, µ) = I (τ, µ)− 1

2

󰁝 1

−1

dµ′I (τ, µ′) (1.83)
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an integral equation for I(τ, µ).

If we follow only a finite set of µ values, the integral can be written as a sum,

µi
dIi
dτ

= Ii −
1

2

󰁛
ajIj (1.84)

for i = ±1,±2,...±n. Gaussian quadrature is used to choose the appropriate µi’s and the

corresponding ai’s. For 󰁝 1

−1

f(µ)dµ =
m󰁛

j=1

ajf(µj) (1.85)

the appropriate choice is to choose the µi to be the zeroes of Pm(µ), and

aj =
1

P ′
m(µj)

󰁝 1

−1

dµPm(µ)

µ− µj

(1.86)

(where
󰁓m

j=1 aj = 1) (e.g. see Chandra’s book or numerical recipes). This choice gives an

exact solution for f(µ) a polynomial with order < 2m. For integrals of the form
󰁕
e−xf(x)dx,

the Laguerre polynomials are used instead. For any weight function (e−x in this case), a set of

µi and ai can be constructed that solves the integral exactly for f(x) a polynomial of degree

< 2m. This is therefore a good technique for numerically integrating smooth functions. Note

that Chandra uses the terminology “nth approximation” for m = 2n, i.e. we use the roots

of P2n(µ) for which aj = a−j and µ−j = −µj.

Chandra derived an analytic solution for equation (1.84). First, we look for a solution

with exponential dependence on τ , Ii = gie
−kτ , i = ±1,...±n. Substituting this into equation

(1.84) gives

gi =
constant

1 + µik
(1.87)

where k is determined by

1 =
n󰁛

j=1

aj
1− µ2

jk
2
. (1.88)

There are 2n−2 roots ±kα, for α = 1,...n−1. We keep only the k > 0 roots, since we want I

finite at large optical depth. There is also a solution linear in τ , Ii = b(τ + qi), i = ±1,...±n.

Substituting into equation (1.84) gives qi = Q + µi where Q is a constant. Therefore, the

solution is

Ii = b

󰀥
n−1󰁛

α=1

Lαe
−kατ

1 + µikα
+ τ + µi +Q

󰀦
(1.89)

which has n constants Q and Lα to be determined. To fix their values, we set I−i = 0 at

τ = 0 (no ingoing radiation at the surface) which gives

n−1󰁛

α=1

Lα

1− µikα
− µi +Q = 0 i = 1, ...n (1.90)
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Given the analytic expression for Ii, the flux, pressure and mean intensity can be cal-

culated

F = 2π
󰁛

aiµiIi (1.91)

cP

4π
= K =

1

2

󰁛
aiµ

2
i Ii =

F

4π
(τ +Q) (1.92)

J =
1

2

󰁛
aiIi =

3F

4π
[τ + q(τ)] (1.93)

where

q(τ) = Q+
n−1󰁛

α=1

Lαe
−kατ . (1.94)

Putting S = J , we can then solve for I(µ) for all values of µ,

I(τ,+µ) =
3F

4π

󰀥
n−1󰁛

α=1

Lαe
−kατ

1 + kαµ
+ τ + µ+Q

󰀦
(1.95)

and at the surface

I(µ) =
3F

4π

󰀥
n−1󰁛

α=1

Lα

1 + kαµ
+ µ+Q

󰀦
=

3F

4π

H(µ)√
3

. (1.96)

The tables in Chandra’s book give Q, Lα, and kα for different n’s. At all orders, the Hopf-

Bronstein relation holds at τ = 0, J(0) =
√
3F/4π.

To make a connection with our Eddington approximation solution, let’s look at the first

approximation (n = 1). Then looking at Chandra’s table VIII we find Q = 1/
√
3, and we

have two photon directions µ± = ±1/
√
3 which are the roots of P2(µ) (there are no Lα’s

to consider for n = 1). This gives another way to understand the discussion in Rybicki

and Lightman section 1.10, where they introduce a “two stream approximation” using these

angles, motivating them by saying that this choice gives moments that satisfy the Eddington

approximation. Another point to note is that this solution is very similar to the Eddington

approximation solution, but with Q = 1/
√
3 = 0.58 rather than Q = 2/3 = 0.67. The

different approximations made in each case are that in Chandra’s solution, the ratio 3P/U

is not assumed to be constant, but only two photon directions are followed, whereas in the

Eddington approximation the ratio 3P/U is fixed to be unity, but all photon angles are

followed.

Let’s check the limb darkening ratio. For the Eddington approximation, this was I(µ =

0)/I(µ = 1) = 2/5. In the first approximation I(µ = 0)/I(µ = 1) = Q/(1+Q) = 0.37. In the

second approximation n = 2, we haveQ = 0.694, k1 = 1.97, and L1 = −0.117. The angles are
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µ±1 = ±0.340 and µ±2 = ±0.861. Then I(µ = 0)/I(µ = 1) = (Q+L1)/(1+Q+L1/(1+k1)) =

0.35.

Next, look at the temperature profile which is given by equation (1.93) with J = S = B.

Then

T 4 =
3

4
T 4
eff (τ + q(τ)) . (1.97)

In the Eddington approximation, q(τ) = 2/3. In the first approximation n = 1, we have

q(τ) = 1/
√
3. In the second approximation,

q(τ) = Q+ L1e
−k1τ (1.98)

which changes from Q+ L1 = 0.577 at τ = 0 to Q = 0.694 at large τ .
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2. Radiation from Accelerating Charges

These are notes for part two of PHYS 642 Radiative Processes in Astrophysics. The

basic physics underlying the radiation that we see is that accelerating charges radiate. The

power radiated from a single charged particle q moving non-relativistically (u ≪ c) is given

by Larmor’s formula

P =
2q2u̇2

3c3
(2.1)

where u̇ is the magnitude of the acceleration. In this section, we derive this equation, and

use it to understand the emission from a thermal plasma due to scattering of electrons from

ions, bremstrahlung radiation. Next , we consider emission from collections of particles using

the multipole expansion. Applications include: X-ray emission from galaxy clusters, free-free

opacity in stars, the spectra of compact HII regions, emission from spinning dust, and the

spin down of radio pulsars.

2.1. Derivation of the radiation field of an accelerated charge

Here we go through the derivation of the radiation fields of an accelerating charge

starting with Maxwell’s equations. We’ll skip a lot of the algebra and focus on the physical

ideas.

In cgs units, Maxwell’s equations are

󰂓∇ · 󰂓E = 4πρ (2.2)

󰂓∇× 󰂓B =
4π 󰂓J

c
+

1

c

∂ 󰂓E

∂t
(2.3)

󰂓∇× 󰂓E = −1

c

∂ 󰂓B

∂t
(2.4)

󰂓∇ · 󰂓B = 0 (2.5)

together with charge conservation

∂ρ

∂t
+ 󰂓∇ · 󰂓J = 0. (2.6)

In these units, the Lorentz force is

󰂓F = q

󰀣
󰂓E +

󰂓v × 󰂓B

c

󰀤
. (2.7)
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It is convenient to work with potentials

󰂓∇× 󰂓A = 󰂓B 󰂓E = −󰂓∇φ− 1

c

∂ 󰂓A

∂t
(2.8)

(recall that the 󰂓B field is always divergence free, but 󰂓E can have both divergence and curl if

∂ 󰂓B/∂t is non-zero).

Substituting these potentials into Maxwell’s equations gives

∇2 󰂓A− 1

c2
∂2 󰂓A

∂t2
= −4π 󰂓J

c
+ 󰂓∇

󰀗
󰂓∇ · 󰂓A+

1

c

∂φ

∂t

󰀘
(2.9)

∇2φ− 1

c2
∂2φ

∂t2
= 4πρ+

1

c

∂

∂t

󰀗
󰂓∇ · 󰂓A+

1

c

∂φ

∂t

󰀘
. (2.10)

I’ve written the equations this way to emphasize that φ and 󰂓A satisfy the inhomogeneous

wave equation

∇2
󰀓
󰂓A,φ

󰀔
− 1

c2
∂2

∂t2

󰀓
󰂓A,φ

󰀔
= 4π

󰀣
−

󰂓J

c
, ρ

󰀤
(2.11)

if we choose
󰂓∇ · 󰂓A+

1

c

∂φ

∂t
= 0. (2.12)

In fact we are free to choose 󰂓∇ · 󰂓A (only the curl of 󰂓A which gives 󰂓B is the physical quantity)

in this way – this choice is the Lorenz gauge.

The solutions to equations (2.11) are the retarded potentials

φ(󰂓r, t) =

󰁝 ρ
󰀓
󰂓r′, t′

󰀔
d3󰂓r′

󰀏󰀏󰀏󰂓r − 󰂓r′
󰀏󰀏󰀏

(2.13)

󰂓A(󰂓r, t) =
1

c

󰁝 󰂓J
󰀓
󰂓r′, t′

󰀔
d3󰂓r′

󰀏󰀏󰀏󰂓r − 󰂓r′
󰀏󰀏󰀏

(2.14)

where the integrand is evaluated at the retarded time

t′ = t−

󰀏󰀏󰀏󰂓r − 󰂓r′
󰀏󰀏󰀏

c
. (2.15)

The physics of this makes sense – the relevant value of the source (ρ or 󰂓J) is the value a light

travel time ago. Electromagnetic disturbances propagate at the speed of light. In electro- or

magnetostatics, t′ → t, and the expressions for the potentials should be familiar.
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For a point charge moving with velocity 󰂓u along a path 󰂓r0(t), we can write

ρ(󰂓r, t) = q δ (󰂓r − 󰂓r0(t)) (2.16)

󰂓J (󰂓r, t) = q󰂓u δ (󰂓r − 󰂓r0(t)) . (2.17)

Substituting these expressions into the potential integrals, and evaluating gives the Lienard-

Wiechart potentials for a point charge,

φ =
󰁫 q

κR

󰁬
󰂓A =

󰀗
q󰂓u

cκR

󰀘
(2.18)

where the notation [...] means that the quantity inside the brackets should be evaluated at

the retarded time,

κ = 1− 󰂓n · 󰂓u
c

R = |󰂓r − 󰂓r0(t)| (2.19)

and 󰂓n = 󰂓eR = 󰂓R/
󰀏󰀏󰀏󰂓R

󰀏󰀏󰀏. This is the same idea as before – evaluate the source ρ or 󰂓J at the

retarded time, but now ρ and 󰂓J are non-zero only on a particular track through space 󰂓r0(t).

For u ≪ c, we see that φ = [q/R] is the Coulomb potential.

The factor κ has a simple interpretation as the effect of the finite velocity on the apparent

size of the volume element. The basic point is illustrated by the thought experiment where

one measures the length of a moving train.
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Photon 1 is emitted from the far side of the train at t = 0. It is straightforward to show that

photon 2 from the front of the train should be emitted at position x = L′ if it is to arrive at

the observer at the same time as photon 1, where

L′ =
L

1− v/c
. (2.20)

The length L′ is the apparent length of the train. The volume element d3󰂓r′ in the integral

undergoes the same distortion
󰁝

ρd3󰂓r′ =
q

1− 󰂓n · 󰂓u/c. (2.21)

We think the charge is spread out over a larger volume than it actually is.

Once we know the potentials, we can differentiate to find the fields. This is where we

skip some algebra, and give the result,

󰂓E(󰂓r, t) =
󰁫 q

κ3R2

󰀓
󰂓n− 󰂓β

󰀔 󰀃
1− β2

󰀄󰁬
+

󰀥
q

κ3Rc
󰂓n×

󰀫󰀓
󰂓n− 󰂓β

󰀔
× ∂󰂓β

∂t

󰀬󰀦
(2.22)

󰂓B(󰂓r, t) =
󰁫
󰂓n× 󰂓E

󰁬
, (2.23)

where 󰂓β = 󰂓u/c.

Let’s take a closer look at each term and see if they make sense. The first term is known

as the velocity field,
󰂓EV =

󰁫 q

κ3R2

󰀓
󰂓n− 󰂓β

󰀔 󰀃
1− β2

󰀄󰁬
. (2.24)

For β ≪ 1, 󰂓EV = [q󰂓n/R2] which is Coulomb’s law, and 󰂓B is smaller by β than 󰂓E. The vector

󰂓n− 󰂓β points to the current position of the particle:

Remarkably, for a particle moving at constant velocity, the electric field 󰂓EV points in the

direction of the current position of the particle even though the electric field is determined

by its position at the retarded time!
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The second term, which involves ∂󰂓β/∂t, is called the acceleration field or radiation field,

󰂓Erad =

󰀥
q

κ3Rc
󰂓n×

󰀫󰀓
󰂓n− 󰂓β

󰀔
× ∂󰂓β

∂t

󰀬󰀦
. (2.25)

This is the term that gives rise to radiation. Since Erad ∝ 1/R, the Poynting flux is ∝ 1/R2,

giving a constant energy per unit area at large distance since the area of constant solid angle

increases ∝ R2. The velocity field decreases as 1/R2 (as for the static Coulomb field), and

does not therefore contribute at large R.

2.2. Radiation from non-relativistic particles: Larmor’s formula

We will need the relativistic version of 󰂓Erad later for emission by relativistic particles,

but for now we assume β ≪ 1, and therefore κ = 1, and we need not distinguish between

the current time and the retarded time. Our aim is to calculate the Poynting flux

󰂓S =
c

4π
󰂓E × 󰂓B. (2.26)

Since 󰂓B = 󰂓n× 󰂓E, then

󰂓S =
c

4π

󰀓
󰂓E ×

󰀓
󰂓n× 󰂓E

󰀔󰀔
=

c

4π
󰂓n
󰀏󰀏󰀏 󰂓E

󰀏󰀏󰀏
2

(2.27)

where we use the fact that 󰂓n · 󰂓E = 0.

Now substitute

󰂓Erad ≈ q

Rc
󰂓n×

󰀣
󰂓n× ∂󰂓β

∂t

󰀤
(2.28)

gives

󰂓S = 󰂓n
q2

4πc3R2

󰀏󰀏󰀏󰂓n×
󰀓
󰂓n× 󰂓̇u

󰀔󰀏󰀏󰀏
2

. (2.29)

The vector 󰂓n× (󰂓n× 󰂓̇u) is the piece of 󰂓̇u that is perpendicular to the direction of 󰂓n.
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Therefore we see that the radiation electric field is perpendicular to the radial direction,

which is why it leads to a radial Poynting flux.

Defining the angle Θ so that
󰀏󰀏󰀏󰂓n× (󰂓n× 󰂓̇u)

󰀏󰀏󰀏
2

= sin2 Θ, we arrive at the final result

󰂓S = 󰂓n
q2u̇2

4πR2c3
sin2 Θ, (2.30)

which is the flux at distance R and angle Θ. Now since the area element is dA = R2dΩ, then

we can rewrite this as
dW

dtdΩ
=

q2u̇2

4πc3
sin2 Θ, (2.31)

which is the power radiated per unit solid angle at angle Θ.

The total power radiated is given by integrating over all solid angles

P =
dW

dt
=

(qu̇)2

4πc3

󰁝
sinΘ2dΩ (2.32)

or

P =
2q2u̇2

3c3
, (2.33)

which is Larmor’s formula.

There is a nice graphical argument which can be used to obtain Eθ and therefore Lar-

mor’s formula, due to J. J. Thomson and presented in Longair’s book High Energy Astro-

physics. The idea is to consider accelerating a particle for time ∆t by an amount ∆v. In a

frame moving at the original velocity of the particle, the particle now begins to move. The

idea is that a time t later, there is a sphere at radius ct within which the electric field lines

point to the current location of the particle, and outside which the electric field lines point

back to the original location (the field doesn’t “know” yet that the charge has moved).
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The Figures you need are above, taken from Longair. The graphical argument gives

Eθ

Er

=
(∆v)t sin θ

c∆t
(2.34)

but Er = q/r2 = q/(ct)2, and so Eθ = qu̇ sin θ/c2r, exactly as we found earlier. This shows

very nicely that Eθ/Er grows with time t ∝ r, and so Eθ ∝ 1/r.

2.3. The spectrum of the emitted radiation

Next, we consider the frequency spectrum of the radiation. As might be expected, the

frequency spectrum is related to the time history of the acceleration of the particle. To see

this, we write the power radiated per unit solid angle as

dW

dtdΩ
=

c

4π

󰀏󰀏󰀏R 󰂓E
󰀏󰀏󰀏
2

=
󰀏󰀏󰀏 󰂓A(t)

󰀏󰀏󰀏
2

(2.35)

(note that 󰂓A is not the vector potential, but a temporary definition for this section; we are

following the notation and argument of Jackson 14.5). The argument is to integrate over all

time to get the total energy emitted per unit solid angle,

dW

dΩ
=

󰁝 ∞

−∞

󰀏󰀏󰀏 󰂓A(t)
󰀏󰀏󰀏
2

dt =

󰁝 ∞

−∞

󰀏󰀏󰀏 󰂓A(ω)
󰀏󰀏󰀏
2

dω (2.36)

where Parseval’s theorem has been used to rewrite the integral in terms of the Fourier

transform of 󰂓A(t). We write the Fourier transforms as6

󰂓A(t) =
1√
2π

󰁝 ∞

−∞

󰂓A(ω)e−iωtdω 󰂓A(ω) =
1√
2π

󰁝 ∞

−∞

󰂓A(t)eiωtdt. (2.37)

If 󰂓A(t) is real, then 󰂓A(−ω) = 󰂓A∗(ω), and so we can integrate over positive frequencies over

and multiply by two. The energy radiated per unit solid angle per unit frequency interval is

therefore
dW

dωdΩ
= 2

󰀏󰀏󰀏 󰂓A(ω)
󰀏󰀏󰀏
2

. (2.38)

6As usual, beware of different normalizations used by different authors. I prefer the symmetry of putting

1/
√
2π in front of each integral in the pair; Rybicki and Lightman put the full 1/2π in front of the integral

for 󰂓A(ω).
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2.4. Thermal Bremsstrahlung

An important emission mechanism arises from Coulomb collisions between electrons and

ions in a plasma. Consider an electron scattering from an ion, with impact parameter b. For

the purposes of calculating the radiation, we assume that the path is undeviated (dashed

line in the Figure), which is a good approximation since we are generally in the limit where

small angle scattering dominates.

This gives us a chance to apply our formula for the frequency spectrum (eq. [2.38]) Since we

assume the particle travels in a straight line, the angle to the observer Θ does not change

with time. Therefore

dW

dωdΩ
= 2

󰀏󰀏󰀏󰀏
1√
2π

󰁝 ∞

−∞
eiωtdt

qu̇

(4πc3)1/2
sinΘ

󰀏󰀏󰀏󰀏
2

=
q2

2πc3
|u̇(ω)|2 sin2 Θ. (2.39)

The angle of the incoming electron with respect to the line of sight is random, and so

averaging over incoming angles is equivalent to integrating over the outgoing solid angle,

giving the frequency spectrum of the radiation

dW

dω
=

4q2

3c3
|u̇(ω)|2 = 4q2

3c3
󰀃
u̇2
󰀂(ω) + u̇2

⊥(ω)
󰀄

(2.40)

where we write down the two components of the acceleration, perpendicular to the motion

and parallel to the motion.

We parametrize the particle path so that at t = 0 the particle is at closest approach, dis-

tance b away from the ion. The perpendicular acceleration is then given by the perpendicular

component of the Coulomb force,

u̇⊥ =
Ze2

m

1

b2 + u2t2
b√

b2 + u2t2
(2.41)

where the last factor gives the perpendicular component of the force. The total change in

velocity perpendicular to the path is given by

∆u⊥ =
Ze2

m

󰁝 ∞

−∞

b dt

(b2 + u2t2)3/2
=

2Ze2

mbu
(2.42)
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It is straightforward to see that this is much larger than the acceleration parallel to the

path. Energy conservation gives before and after scattering u2 = (u − ∆u󰀂)
2 + ∆u2

⊥, or

∆u󰀂/∆u⊥ ≈ Ze2/bmu2 which is small for small angle collisions.

Therefore,

u̇(ω) =
1√
2π

󰁝 ∞

−∞
eiωtdt

Ze2

m

b

(b2 + u2t2)3/2
(2.43)

=
1√
2π

Ze2

mub

󰁝 ∞

−∞

dx eixωb/u

(1 + x2)3/2
=

󰁵
2

π

Ze2

mub
yK1(y) (2.44)

where y = ωb/u and K1(y) is a modified Bessel function. The limits are yK1(y) ≈ 1 for

low frequencies ω ≪ v/b, and yK1(y) ≈ (yπ/2)1/2e−y for ω ≫ v/b. That is the frequency

spectrum is constant below ω = u/b, and falls to zero for higher frequencies. This makes

sense because since b is the distance of closest approach, b/v is the shortest timescale in the

problem, and we might expect no higher frequency components. On the other hand, at low

frequencies, the eiωt term is approximately unity, and u̇(ω) ≈ ∆u/
√
2π. Another way to look

at it is that the interaction is strongly peaked around t = 0 when the particle is at closest

approach, and therefore the frequency spectrum is very broad.

Substituting u̇⊥(ω) into equation (2.40) gives the spectrum for a single particle collision

averaged over angles for a particle value of impact parameter b. The total emission rate per

unit volume is

dW

dt dω dV
= nineu

󰁝 bmax

bmin

2πb db
dW

dω
(b) (2.45)

=
16Z2e6

3m2c3u
neni

󰁝 bmax

bmin

db

b

󰀗󰀕
ωb

u

󰀖
K1

󰀕
ωb

u

󰀖󰀘2
(2.46)

An approximate way to write this is

dW

dt dω dV
=

16Z2e6

3m2c3u
neni

󰁝 bmax

bmin

db

b
(2.47)

for ωb/u < 1, and zero for ωb/u > 1. The integral over impact parameters gives the Coulomb

logarithm

Λ = ln

󰀕
bmax

bmin

󰀖
, (2.48)

which indicates a logarithmic divergence for large bmax that arises because the Coulomb force

is a long range force.

How do we choose bmax? To be consistent with our approximation for the integral, we

should choose bmax = u/ω, that is only consider values of b that give a contribution to the
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spectrum at frequency ω. For bmin there are two possibilities. The “classical” approach is to

choose bmin as the impact parameter where ∆u⊥ = u, that is the impact parameter where

a large angle scatter occurs, giving bmin = 2Ze2/mu2. (This is also the distance of closest

approach for a repulsive interaction.) However, if bmin = 󰄁/meu is larger, then we should

choose that instead. Then quantum mechanics sets bmin. You can think of this as the impact

parameter of a particle with one quantum of angular momentum. The changeover occurs

when 2Ze2/mu2 = 󰄁/mu or

1

2
mu2 = Z2

󰀕
e2

󰄁c

󰀖2

mc2 = Z2α2mc2 = Z2(13.6 eV) (2.49)

(where α = e2/󰄁c is the fine structure constant). We see that the classical calculation is no

longer appropriate when the electron energy exceeds Z2Ry.

In general, the emissivity is written as

dW

dt dω dV
=

16e6

3m2c3u
neniZ

2

󰀗
π√
3
gff

󰀘
(2.50)

where gff (ω, u) is the Gaunt factor. As our classical calculation indicated, the Gaunt factor

is typically a slowly varying function of ω and u, so that the prefactor gives the major

dependence. A classic paper which presents calculations of gff is Karzas and Latter (1961).

The Gaunt factor is also plotted in Rybicki and Lightman’s book. You’ll see the parameter

γ = Z2Ry/kBT which measures the transition between the classical and quantum regimes.

For a gas with a thermal distribution of velocities,

f(u)du =

󰀕
m

2πkBT

󰀖3/2

exp

󰀕
− mu2

2kBT

󰀖
4πu2du (2.51)

we can average over the velocity distribution to obtain the total emissivity due to ther-

mal bremsstrahlung. However, we must be careful to cut off the velocity distribution at a

minimum velocity umin where 󰄁ω = mu2
min/2. This accounts for photon discreteness, that

is the incoming electron must have enough energy to produce the photon of frequency ω.

Combining equations (2.50) and (2.51), we can see that the answer will look like

dW

dtdV dω
∝

󰁝 ∞

umin

u2du exp

󰀕
− mu2

2kBT

󰀖
gff (u)

u
(2.52)

∝ ḡff

󰁝 ∞

u2
min

d(u2) exp

󰀕
− mu2

2kBT

󰀖
(2.53)

∝ ḡff exp

󰀕
− 󰄁ω
kBT

󰀖
(2.54)
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for a suitably averaged Gaunt factor ḡff . Keeping the prefactors, the result is

dW

dtdV dω
=

25πe6

3mc3

󰀕
2π

3kBm

󰀖1/2

Z2T−1/2nenie
−󰄁ω/kBT ḡff (2.55)

or

󰂃ffν = 6.8× 10−38 erg s−1 cm−3 Hz−1 Z2neniT
−1/2e−hν/kBT ḡff (2.56)

where ḡff is the thermally-averaged Gaunt factor, 󰂃ν is the emissivity (where jν = 󰂃ν/4π).

We write “ff” for “free-free” which refers to the fact that we can think of the electron as

making a transition between states in the continuum.

We see from equation (2.56) that the thermal bremsstrahlung spectrum is approximately

flat at low frequencies, with a cutoff at hν ≈ kBT .

The spectrum is not completely flat at low frequencies, there is a small slope set by the

frequency dependence of the Gaunt factor.

The total power per unit volume is
󰁕
dν 󰂃ffν , which gives

dW

dtdV
=

󰀕
2πkBT

3m

󰀖1/2
25πe6

2hmc3
Z2neniḡB (2.57)

or

󰂃ff = 1.4× 10−27 erg s−1 cm−3 T 1/2neniZ
2ḡB, (2.58)

where ḡB(T ) is the thermally-averaged and frequency-averaged Gaunt factor.

The classical example of gas emitting thermal bremsstrahlung is hot gas in Galaxy

cliusters. There is a question on this in HW2 in which you can work out the details. The

turnover in the spectrum gives a measure of the temperature of the gas, as a function of

position in the cluster, and the total luminosity tells you about the gas mass.

2.5. Free-free absorption opacity

By Kirchoff’s law, we know that there must be an absorption process corresponding to

bremsstrahlung or free-free emission, which is known as free-free absorption. The absorption
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coefficient is given by

αff
ν =

jffν
Bν(T )

=
1

4πBν(T )

dW

dtdV dν
(2.59)

=
4e6

3mch

󰀕
2π

3kBm

󰀖1/2

T−1/2Z2neniν
−3

󰀃
1− e−hν/kBT

󰀄
ḡff (2.60)

= 3.7× 108 cm−1 T−1/2Z2neniν
−3

󰀃
1− e−hν/kBT

󰀄
ḡff . (2.61)

In the Rayleigh-Jeans limit, hν ≪ kBT , α
ff
ν = 0.018 cm−1 T−3/2Z2neniν

−2ḡff .

In optically thick regions, the Rosseland mean opacity is the relevant quantity. Recall

that the Rosseland mean is defined by

󰀗󰁝
dν

dBν

dT

󰀘
1

αR

=

󰀗󰁝
dν

1

αν

dBν

dT

󰀘
. (2.62)

The result is

αff
R = 1.7× 10−25 T−7/2Z2neniḡR, (2.63)

where the prefactor comes from Rybicki and Lightman. The T−7/2 factor comes from the

T−1/2ν−3 dependence of the frequency-dependent opacity, since the averaging replaces hν

with a multiple of kBT . For use in stellar interiors, it is more convenient to write down an

expression for the opacity κR = αR/ρ. To do so, we write ne = ρYe/mp, where Ye is the

number fraction of electrons, and ni = ρYi/mp where Yi is the number fraction of nuclei.

The opacity is then

κff
R = 6.1× 1022 cm2 g−1 ρYe

T 7/2
ḡR

󰁛

i

XiZ
2
i

Ai

, (2.64)

where the sum is over the charges Zi, masses Ai, and mass fractions Xi of nuclei. In terms of

the nuclear charges and masses, Ye =
󰁓

i XiZi/Ai and Yi =
󰁓

i Xi/Ai. **The prefactor here

doesn’t agree with Clayton or Itoh who have 7.53× 1022**. The result κ ∝ ρT−7/2 is known

as Kramer’s law. A rough rule is that free-free absorption is important in stars less massive

than the Sun, and Thomson scattering in stars more massive than the Sun. This is shown

in HW2, where you will see that it results in a change in the slope of the luminosity-mass

relation for main sequence stars at around 1 M⊙.

Another application to mention is to compact HII regions, which can be optically thick

to free-free absorption at low frequencies (αff
ν ∝ ν−2 at low frequencies). They are said to

be self-absorbed and this gives a falling spectrum at low frequencies, as you will see in HW

2.
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2.6. Multipole radiation

So far we have dicussed radiation resulting from acceleration of a single particle. We

now turn to a collection of particles, and use the multipole expansion to evaluate the radiated

power.

First, a reminder of the multipole expansion in electrostatics or magnetostatics. The

electrostatic potential at a large distance from a charge distribution can be expanded as

φ(󰂓r) =

󰁝
ρ(󰂓r′)d3󰂓r′󰀏󰀏󰀏󰂓r − 󰂓r′

󰀏󰀏󰀏
=

Q

r
+

󰂓er · 󰂓p
r2

+
󰂓er ·Q2 · 󰂓er

r3
+ ... (2.65)

where

Q =

󰁝
ρ(󰂓r′)d3󰂓r′ (2.66)

is the total charge,

󰂓p =

󰁝
ρ(󰂓r′)󰂓r′d3󰂓r′ (2.67)

is the electric dipole moment, and

(Q2)ij =

󰁝
ρ(󰂓r′)

󰀅
3r′ir

′
j − r′2δij

󰀆
d3󰂓r′ (2.68)

is the electric quadrupole moment tensor. Similarly, for a current distribution, the vector

potential can be expanded

󰂓A(󰂓r) =
1

c

󰁝 󰂓J(󰂓r′)d3󰂓r′󰀏󰀏󰀏󰂓r − 󰂓r′
󰀏󰀏󰀏

=
󰂓m× 󰂓er
r2

+ ... (2.69)

where

󰂓m =
1

2c

󰁝
󰂓r′ × 󰂓J(󰂓r′)d3󰂓r′ (2.70)

is the magnetic dipole moment. To derive these results, expand

1󰀏󰀏󰀏󰂓r − 󰂓r′
󰀏󰀏󰀏
≈ 1

r

󰀣
1 +

󰂓er · 󰂓r′
r

+
3(󰂓er · 󰂓r′)2 − r′2

r2
+ ...

󰀤
. (2.71)

The idea is to now do something similar for the time-dependent case, in particular to

expand the retarded potentials (eqs. [2.13] and [2.14]) and therefore radiation fields as a

sum of multipole components. In the time-dependent case, there is a new lengthscale in the

problem, which is the wavelength of the emitted radiation λ. We will assume that the size of
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the emitting region d ≪ λ ≪ r, and that the particles are non-relativistic. (In other words,

the light-crossing time d/c is much smaller than the wave period 2π/ω = 2π/ck = λ/c.)

We start by looking at an individual Fourier components 󰂓J(󰂓r, t) = 󰂓J(󰂓r)e−iωt etc. The

spatial part of the vector potential is then, from equation (2.14),

󰂓A(󰂓r) =
1

c

󰁝
󰂓J(󰂓r′)d3󰂓r′

eik|󰂓r−󰂓r′|
󰀏󰀏󰀏󰂓r − 󰂓r′

󰀏󰀏󰀏
(2.72)

since the integrand is evaluated at the retarded time (t′ = t−
󰀏󰀏󰀏󰂓r − 󰂓r′

󰀏󰀏󰀏 /c). Our approach will

be to calculate 󰂓A(󰂓r) and then obtain the fields from

󰂓B = 󰂓∇× 󰂓A 󰂓E =
i

k
󰂓∇× 󰂓B (2.73)

(this is simpler than expanding φ and using that to obtain 󰂓E). The relation between 󰂓E and
󰂓B holds since outside the source there are no currents and ∂ 󰂓E/∂t = c󰂓∇× 󰂓B.

2.6.1. Electric dipole

We start with the electric dipole term by writing
󰀏󰀏󰀏󰂓r − 󰂓r′

󰀏󰀏󰀏 ≈ r. This means that we

ignore variations in the retarded time across the source. Then

󰂓A(󰂓r) ≈ 1

rc
eikr

󰁝
󰂓J(󰂓r′)d3󰂓r′. (2.74)

To simplify this term, integrate by parts using 󰂓∇ · (ri 󰂓J) = ri󰂓∇ · 󰂓J + 󰂓J · 󰂓∇ri = iωρri + Ji.

The surface term vanishes, giving

󰂓A(󰂓r) = − ik

r
eikr

󰁝
ρ(󰂓r′)󰂓r′d3󰂓r′ = − ik󰂓peikr

r
. (2.75)

The radiation fields are therefore

󰂓B =
k2eikr

r
󰂓n× 󰂓p (2.76)

󰂓E = 󰂓B × 󰂓n =
k2eikr

r
󰂓n× (󰂓p× 󰂓n) . (2.77)

The power radiated is

dP

dΩ
=

c

8π
Re

󰁫
r2󰂓n · 󰂓E × 󰂓B󰂏

󰁬
=

c

8π
k4 |󰂓p|2 sin2 θ (2.78)
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where in the first step we have included a factor of 1/2 to give the time-average value, and

in the second step, we assume that all components of 󰂓p have the same phase.

Integrating over angles gives the total power

P =
ω4 |󰂓p|2

3c3
. (2.79)

(Note that we would get the same answer by applying Larmor’s formula, since the dipole

moment for a set of charges is 󰂓p =
󰁓

qi󰂓ri.)

2.6.2. Magnetic dipole and electric quadrupole

Now take the next term in the expansion. We only need to expand the exponent

k
󰀏󰀏󰀏󰂓r − 󰂓r′

󰀏󰀏󰀏 because this is (kr)−1 times larger than the term in the expansion of 1/
󰀏󰀏󰀏󰂓r − 󰂓r′

󰀏󰀏󰀏.

The expansion is k
󰀏󰀏󰀏󰂓r − 󰂓r′

󰀏󰀏󰀏 = kr − k󰂓er · 󰂓r′ + ..., which gives

󰂓A (󰂓r) = − ik

rc
eikr

󰁝
󰂓J(󰂓r′)󰂓n · 󰂓r′d3󰂓r′. (2.80)

We again evaluate this by integrating by parts. First, evaluate the surface term 󰂓∇ · (rirj 󰂓J) =
rirj 󰂓∇ · 󰂓J + ( 󰂓J · 󰂓∇ri)rj + ( 󰂓J · 󰂓∇rj)ri = rirj 󰂓∇ · 󰂓J + Jirj + Jjri or

1

2
(Jirj − Jjri) = −Jjri −

1

2
rirj 󰂓∇ · 󰂓J. (2.81)

Now dot this with 󰂓n,

1

2

󰀓
󰂓r(󰂓n · 󰂓J)− 󰂓J(󰂓r · 󰂓n)

󰀔
=

1

2
󰂓n×

󰀓
󰂓r × 󰂓J

󰀔
= − 󰂓J(󰂓r · 󰂓n)− 1

2
󰂓r(󰂓r · 󰂓n)󰂓∇ · 󰂓J. (2.82)

The first term on the RHS is the one we want, since it appears in the integral equation

(2.80). Therefore,
󰁝

󰂓J
󰀓
󰂓r′
󰀔
󰂓n · 󰂓r′d3󰂓r′ = −i

ω

2

󰁝
󰂓r′
󰀓
󰂓r′ · 󰂓n

󰀔
ρ(󰂓r′)d3󰂓r′ +

1

2

󰁝
󰂓n×

󰀓
󰂓J(󰂓r′)× 󰂓r′

󰀔
d3󰂓r′ (2.83)
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The two terms on the RHS represent electric quadrupole radiation and magnetic dipole

radiation respectively.

Let’s take the magnetic dipole term first. Its contribution to 󰂓A is

󰂓A(󰂓r) = − ik

rc
eikr

1

2
󰂓n×

󰁝
󰂓J(󰂓r′)× 󰂓r′d3󰂓r′ =

ik

r
eikr󰂓n× 󰂓m (2.84)

which gives the radiation fields

󰂓E = −k2(󰂓n× 󰂓m)
eikr

r
󰂓B = k2(󰂓n× 󰂓m)× 󰂓n

eikr

r
(2.85)

and radiated power
dP

dΩ
=

ω4

8πc3
|󰂓m|2 sin2 θ P =

ω4 |󰂓m|2

3c3
, (2.86)

the (time-averaged) power radiated by an oscillating magnetic dipole. Since the magnetic

dipole moment is of order v/c compared to the electric dipole moment, we see that the power

emitted in this term is ∼ (v/c)2 times the electric dipole emission.

The electric quadrupole contribution to 󰂓A is

󰂓A = − ik

rc
eikr

󰀕
− iω

2

󰀖󰁝
󰂓r′(󰂓r′ · 󰂓n)ρ(󰂓r′)d3󰂓r′. (2.87)

The integral in this expression is the first term of (Q2)ijnj ≡ 󰂓Q(󰂓n). The remaining term

∝ δij vanishes when we take the cross product of 󰂓A with 󰂓k = 󰂓n to find the magnetic field.

Therefore

󰂓B = − ik3

6

eikr

r
󰂓n× 󰂓Q(󰂓n). (2.88)

The radiated power is

dP

dΩ
=

c

288π
k6

󰀏󰀏󰀏(󰂓n× 󰂓Q(󰂓n))× 󰂓n
󰀏󰀏󰀏
2

P =
ck6

360

󰁛

ij

|(Q2)ij|2 ∝ ω6. (2.89)

The power emitted is a factor of ∼ (kd)2 smaller than the electric dipole emission.

2.7. Applications of multipole emission

2.7.1. Spinning dust emission

For example, see Draine and Lazarian (1998). In the interstellar medium, dust grains

become charged due to photoionization and collisions. In general, the charge distribution
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has a different center than the mass distribution, which implies a net dipole moment. Small

molecules also have intrinsic dipole moments. If the rotation axis and dipole axis are mis-

aligned by angle θ, the radiated power is P = (2/3)(ω4p2 sin2 θ/c3) (this is a factor of 2 larger

than eq. [2.79] since for rotation you can think of two components of 󰂓p perpendicular to the

rotation axis that vary).

To estimate the rotation frequency and therefore frequency of the emitted radiation,

we note that for thermal equilibrium we expect (1/2)Iω2 = (3/2)kBT , and the simplest

estimate is to assume I = (2/5)Ma2 where M = 4πa3ρ/3. Draine and Lazarian (1998)

assume ρ = 2 g cm−3. The result is

ν = 5.6× 109 Hz
󰀓 a

10−7 cm

󰀔−5/2
󰀕

T

100 K

󰀖1/2

. (2.90)

Therefore, we expect radiation in the GHz range (wavelengths of ≈ 10 cm). For estimates of

the dipole moment, see Draine and Lazarian (1998). There are two contributions: intrinsic

dipole moments and grain charging. A typical value is a Debye.

This emission mechanism is used to explain the 15–90 GHz anomalous emission which

was correlated with 100 µm from dust. An important question is whether the emission is

polarized, which could arise if the grains align with the local B field for example (Lazarian

and Draine 2000).

2.7.2. Radio pulsar spin down

The standard way to estimate the magnetic field of radio pulsars is to assume that the

star spins down due to magnetic dipole radiation, that is

d

dt

󰀕
1

2
Iω2

󰀖
=

2

3

ω4µ2

c3
sin2 θ. (2.91)

The magnetic moment of the star is µ = BR3 where B is the surface magnetic field strength

at the equator. For a neutron star, I ≈ MR2/5 (Lattimer and Schutz 2005; this is 1/2 the

value for a constant density sphere). The magnetic field can then be written in terms of the

spin period of the star, P = 2π/ω, and the spin period derivative Ṗ ,

B =

󰀣
3

10

ṖP

4π2

Mc3

R4 sin2 θ

󰀤1/2

= 2.4× 1019 G (PṖ )1/2
󰀕

M

1.4 M⊙

󰀖1/2 󰀕
R

10 km

󰀖−2
1

sin θ
. (2.92)

Since ω̇ ∝ ω3, the braking index n ≡ ω̈ω/ω̇2 is predicted to have the value 3. The measured

values are all less than 3, although only a few have been measured so far. If the initial period



– 45 –

is much smaller than the current period, the age of the pulsar is

τ =
P

2Ṗ
= 9× 106 yrs

󰀕
P

1 s

󰀖2 󰀕
B

1012 G

󰀖−2

. (2.93)

In fact, the spin down of the pulsar is not as a vacuum dipole because the magnetosphere

is filled with plasma! Even an aligned rotator (sin θ = 0) spins down, by driving a wind

through the light cylinder. This is a complex theoretical problem that has begun to be

solved only recently. Numerical simulations by Spitkovsky (2006) find

B = 2.6× 1019 G (PṖ )1/2(1 + sin2 θ)−1/2 (2.94)

amazingly close to the vacuum dipole spin down value.

Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

• Radiation from an accelerated charge. Retarded time and potentials. Velocity and

radiation fields for a point charge. The velocity field always points to the current

position of the charge.

• Poynting flux 󰂓S = c 󰂓E × 󰂓B/4π. Larmor’s formula

dP

dΩ
=

q2u̇2

4πc3
sin2 Θ P =

2q2u̇2

3c3

• Bremsstrahlung. Flat spectrum with cutoff at ω = v/b. Below the cutoff,

dW

dtdV dω
=

16e6

3c3m2v
neniZ

2

󰀗
πgff√

3

󰀘
.

The Gaunt factor gff ≈ ln(bmax/bmin). The physics setting bmin and bmax.

• Thermal bremsstrahlung:

󰂃ffν = 6.8× 10−38 Z2neniT
−1/2e−hν/kBT ḡff erg s−1 cm−3 Hz−1

󰂃ff = 1.4× 10−27 T 1/2neniZ
2ḡB erg s−1 cm−3.

Application to cluster gas.
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• Free-free absorption:

κff
ν = 3.7× 108

Z2neni

ρT 1/2ν3

󰀃
1− e−hν/kBT

󰀄
ḡff .

Rosseland mean free-free opacity:

κff
R = 1.7× 10−25 Z2neni

ρT 7/2
ḡR cm2 g−1 ∝ ρT−3.5.

Self-absorption at low frequencies giving 󰂃ffν ∝ ν2. Example: compact HII regions.

• Multipole radiation. Physics of the electric dipole approximation. Power radiated by

oscillating electric and magnetic dipoles, and polarization of the radiation. dP/dΩ =

(p̈2/4πc3) sin2 θ, P = 2p̈2/3c3. Application to spinning charged dust grains and radio

pulsars.

Reading

• Rybicki and Lightman, chapters 3 and 5. Longair p64 gives a nice pictorial argument

for Larmor’s formula. See also of course Jackson.

• Karzas & Latter 1961, ApJS 6, 167 calculate the free-free Gaunt factor.

• Draine & Lazarian 1998, and Lazarian & Draine 2000 calculate spinning dust emission.

See Dickinson et al. 2006 ApJL for recent observations.



– 47 –

3. Compton Scattering

These are notes for part three of PHYS 642 Radiative Processes in Astrophysics. We

cover Compton scattering and its applications. An excellent reference is the review article

by Blumenthal and Gould (1970 Rev Mod Phys).

3.1. Thomson scattering

We mentioned earlier in the course that the cross-section for scattering of a photon by

an electron is the Thomson cross-section σT = 8πr20/3 where r0 = e2/mec
2 is the classical

electron radius.

Rybick and Lightman give a simple derivation of the cross-section in section 3.4, that we

go through here. We consider the response of a free electron to an incident electromagnetic

wave. The force on the electron is 󰂓F = e 󰂓E sinωt = m󰂓r, and therefore the time-averaged

acceleration is given by r̈2 = (eE/m)2/2. Substituting this into Larmor’s formula gives the

power radiated
dP

dΩ
=

e4

8πm2c3
E2 sin2 θ P =

e4E2

3m2c3
, (3.1)

where the angle θ is measured relative to the electric field (and therefore acceleration) direc-

tion. The radiation is polarized in the plane of the incident wave:

We can obtain the cross-section by dividing the radiated power by the incident flux.

The incident flux is given by the time-average Poynting vector for the wave, 〈S〉 = cE2/8π,

and therefore the differential cross-section and total cross-sections are

dσ

dΩ
=

1

〈S〉
dP

dΩ
= r20 sin

2 θ σ =
8π

3
r20. (3.2)

The numerical value is σT = 6.63× 10−25 cm2.

An unpolarized beam can be thought of as a superposition of two uncorrelated orthog-

onal waves.
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If we consider scattering at an angle α as shown in the diagram, one of the beams is always

at angle π/2 compared to the incoming radiation, and so the differential cross-section is

dσ

dΩ
=

1

2

󰀕
dσ

dΩ
(θ) +

dσ

dΩ

󰀓π
2

󰀔󰀖
=

r20
2

󰀃
1 + cos2 α

󰀄
(3.3)

Note that the scattering is symmetric with respect to the forward and backward directions.

The time-averaged energy density in the incident wave is E2/8π, so that the total power

in equation (3.1) can be written as

P = σT cUrad (3.4)

where Urad is the radiation energy density. This is a general result, since the total Thomson

cross-section does not depend on the direction or the polarization of the incoming radiation.

The Thomson cross-section is appropriate for photon energies 󰂃 ≪ mec
2 (that is 󰂃 ≪

511 keV). As the photon energy approaches and exceeds mec
2, there are two effects to worry

about: a suppression of the cross-section and a change in photon energy on scattering due

to electron recoil.

The first of these requires a quantum-mechanical calculation of the cross-section (look in

any introductory book on quantum field theory), which gives the Klein-Nishina cross-section

dσ

dΩ
=

r20
2

󰂃2f
󰂃2i

󰀕
󰂃i
󰂃f

+
󰂃f
󰂃i

− sin2 α

󰀖
. (3.5)

It reduces to equation (3.3) when the scattering is elastic (final photon energy 󰂃f is equal to

the initial photon energy 󰂃i).
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The final photon energy 󰂃f is given by a consideration of the kinematics of the scattering,

which we look at in the next section. The resulting total cross-section is given by Rybicki

and Lightman equation (7.5). The limits are

σ ≈ σT (1− 2x+ ...) x ≪ 1 (3.6)

=
3

8
σT

1

x

󰀕
ln 2x+

1

2

󰀖
∼ σT

󰀕
mec

2

󰂃

󰀖
x ≫ 1 (3.7)

where x = 󰂃i/mec
2. The cross-section is Thomson for low photon energies and suppressed

at high photon energies.

3.2. Kinematics of Compton scattering

We first consider scattering of a photon from an electron at rest.

We write the initial and final 4-momenta of the photon as P̃i and P̃f and for the electron as

Q̃i and Q̃f . Then energy and momentum conservation is written as P̃i + Q̃i = P̃f + Q̃f . By

expanding Q̃2
f = (P̃i + Q̃i − P̃f )

2 and using Q̃2 = −mec
2 and P̃ 2 = 0, we find

P̃i · P̃f = Q̃i(P̃i − P̃f ) (3.8)

or
󰂃i󰂃f
c2

(−1 + 󰂓ni · 󰂓nf ) = me (−󰂃i + 󰂃f ) . (3.9)

In the last term we use the fact that Q̃i only has an energy component since the electron is

initially at rest. Writing 󰂓ni · 󰂓nf = cosα, we find

󰂃f =
󰂃i

1 + (󰂃i/mec2) (1− cosα)
(3.10)

or in terms of photon wavelength we obtain the famous formula

λf − λi = λC(1− cosα) (3.11)

where λC = h/mec is the Compton wavelength. Note that λf > λi for all angles α, in other

words the photon always loses energy in the collision.
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3.3. Inverse Compton scattering

If the electron is moving with velocity v, energy can be transferred from the electron

to the photon, which is known as inverse Compton scattering. In the electron rest frame,

our previous result holds, but now written in terms of rest-frame variables which we indicate

with a prime:

󰂃′f =
󰂃′i

1 + (󰂃′i/mec2) (1− cosα′)
. (3.12)

The angle α′ = θ′f − θ′i is the scattering angle in the rest frame.

We just need to transform back into the lab frame. The angle θi is the initial angle

between the electron and photon propagation directions, so that

P̃i =
󰂃i
c
(1, cos θi, sin θi, 0) . (3.13)

The Lorentz transform is

P̃ ′
i =

󰀳

󰁃
γ −βγ 0

−βγ γ 0

0 0 1

󰀴

󰁄 P̃i (3.14)

giving

P̃ ′
i =

󰂃i
c
(γ(1− β cos θi),−γβ + γ cos θi, sin θi, 0) (3.15)

and

󰂃′i = 󰂃iγ(1− β cos θi). (3.16)

The limits of this expression are (1) for θi ≈ π (head on collision) 󰂃′i = 󰂃iγ(1+β) or for large

γ, 󰂃′i ≈ 2γ󰂃i, and (2) for θi ≈ 0 (photon approaches from behind) we get 󰂃′i = 󰂃iγ(1 − β) =

󰂃i/(γ(1 + β)) or for large γ, 󰂃′i ≈ 󰂃i/2γ. Similarly, the reverse transform gives

󰂃f = 󰂃′fγ(1 + β cos θ′f ). (3.17)

We see that the maximum energy we can expect is therefore 󰂃f,max = 4γ2󰂃i.

The general rule is that the photon energies before scattering, in the electron rest frame,

and after scattering are roughly in the ratios 1 : γ : γ2. A photon scattering from a relativistic

electron can therefore undergo a tremendous increase in frequency, scattering radio photons

into the optical to X-ray range for example, depending on the value of γ.

As well as being boosted in energy, the photon distribution is strongly beamed in the rest

frame. Writing P̃ ′
i = (󰂃′i/c)(1, cos θ

′
i, sin θ

′
i, 0), we see that cos θ′i󰂃

′
i/c = (󰂃i/c)(−γβ + γ cos θi)

which gives the standard aberration formula (e.g. RL 4.86)

cos θ′i =
cos θi − β

1− β cos θi
. (3.18)
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(The same expression gives θ′f in terms of θf .) Consider an isotropic distribution of photons

in the lab frame. Half the photons have θi between π (head on collision) and π/2. In the

rest frame, equation (3.18) gives cos θ′i = −β for θi = π/2, or writing δ = π − θ′i, we find

that these same photons lie in a cone of half angle δ given by sin δ = 1/γ. Therefore for

relativistic electrons most of the photons are close to head on in the rest frame.

If the rest frame photon energy satisfies 󰂃′i ≪ mec
2, equivalent to γ󰂃i ≪ mec

2 in the lab

frame, we can simplify the calculations by assuming elastic (Thomson) scattering in the rest

frame. Then 󰂃′f = 󰂃′i, giving

󰂃f = γ2󰂃i(1 + β cos θ′f )(1− β cos θi) = 󰂃i
(1− β cos θi)

(1− β cos θf )
. (3.19)

For a head-on scattering with θi = π and θf = 0, i.e. the photon turns around after

scattering, we get 󰂃f/󰂃i = (1 + β)/(1− β) = γ2(1 + β)2 ≈ 4γ2.

3.4. Power radiated in inverse Compton scattering

As a moving electron scatters photons, its energy decreases. Let’s calculate the energy

loss rate.

We assume that the scattering in the rest-frame of the electron is elastic (γhν ≪ mec
2).

Then in the rest frame of the electron, the power radiated is given by equation (3.4),

dE ′

dt′
= σT cU

′
rad (3.20)

but since dE/dt is a Lorentz invariant, this is also the power radiated in the lab frame.

Following Blumenthal and Gould (1970), RL use the fact that dn/󰂃 is a Lorentz invari-

ant7 to write U ′
rad in terms of the lab frame energy density Urad. The argument is

U ′
rad =

󰁝
󰂃′dn′ =

󰁝
󰂃′2

dn′

󰂃′
=

󰁝
󰂃′2

dn

󰂃
=

󰁝
󰂃2γ2(1− βµ)2

dn

󰂃
. (3.21)

7This is related to the fact that the phase space density dN/d3󰂓pd3󰂓x is invariant; see RL 7.2.
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Averaging over angles gives (assume isotropic radiation field)

1

2

󰁝 1

−1

dµ(1− βµ)2 = 1 +
β2

3
(3.22)

and

U ′
rad = Uradγ

2

󰀕
1 +

β2

3

󰀖
. (3.23)

There is another way to find U ′
rad, which is to transform the incident electric field

into the rest frame. For an EM wave/photon travelling at angle θ relative to the electron,

Ex = −E sin θ, Ez = E cos θ, and By = −E (since 󰂓B = 󰂓n × 󰂓E). Now transform these

fields into the rest frame: E ′
x = Ex = −E sin θ, E ′

z = γ(Ez + βB) = γE(cos θ − β). The

time-averaged energy density is

E ′2

8π
=

E2

8π

󰀃
1− µ2 + γ2(µ− β)2

󰀄
=

E2

8π
γ2(1− µβ)2 (3.24)

which is the same as previously.

Equation (3.20) gives the power in scattered photons which are added to the radiation

field, but the scattering also removes energy from the radiation field at a rate σT cUrad for an

isotropic photon distribution8. The difference between these two rates must be supplied by

the energy of the electron. Therefore the rate of energy loss of the electrons is given by

−dEe

dt
= σT c (U

′
rad − Urad) (3.25)

or

−dEe

dt
= σT cUrad

󰀗
γ2

󰀕
1 +

β2

3

󰀖
− 1

󰀘
=

4

3
γ2β2σT cUrad, (3.26)

where we use γ2 − 1 = γ2β2. This result is independent of the photon spectrum; applies for

an isotropic distribution and Thomson scattering in the rest frame. The average fractional

increase in photon energy is (4/3)γ2β2.

When the energy transfer in the electron rest frame becomes significant, Blumenthal

and Gould (1970) showed that

−dEe

dt
=

4

3
γ2β2σT cUrad

󰀗
1− 63

10

γ

mec2
〈󰂃2〉
〈󰂃〉

󰀘
, (3.27)

8You might wonder whether this formula would apply to an electron not at rest. Blumenthal and Gould

1970 show that the rate of scatterings for photons moving at angle θ with respect to the electron is dn(θ)σT (c−
v cos θ). The cos term drops out when averaging over angles for an isotropic photon distribution.
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where the averages 〈〉 are over the photon spectrum (so now we do care about the photon

spectrum; the reason is that the amount of recoil depends on the photon energy).

For a power law distribution of electron energies, the total power is given by summing

over the distribution of γ

Ptot =

󰁝
dE

dt
(γ)N(γ)dγ (3.28)

and if N(γ) = Cγ−p between γmin ≤ γ ≤ γmax then

Ptot =
4

3
σT cUrad

C

3− p

󰀃
γ3−p
max − γ3−p

min

󰀄
. (3.29)

For a thermal distribution of non-relativistic electrons, the total power is

Ptot =

󰀕
4kBT

mec2

󰀖
cσTneUrad (3.30)

(which you can see since for a thermal gas 〈β2〉 = 3kBT/mec
2 and for non-relativistic particles

γ ≈ 1).

3.5. The inverse Compton spectrum for single scattering of monochromatic

photons

Previously, we derived the total power from inverse Compton across all frequencies. Now

we turn to the spectrum of the scattered photons. For an isotropic monoenergetic photon

distribution, Blumenthal and Gould (1970) calculate the spectrum in the ultrarelativistic

limit γ ≫ 1. In this limit, it is a good approximation to take the photons in the electron rest

frame as having θi = π because of relativistic beaming. This means that there is only one

angle to consider, the scattering angle in the rest frame α′. Each value of scattering angle

maps onto a different final photon energy.

Using the distribution of scattering angles for Thomson scattering, and transforming

back into the lab frame gives

dN

dtd󰂃f
= σT cn(󰂃i)d󰂃i

3f(x)

4γ2󰂃i
(3.31)

where f(x) = 2x ln x + x + 1 − 2x2 and x = 󰂃f/4γ
2󰂃i. The function f(x) is plotted in RL

Figure 7.3b: it decreases smoothly from unity at x = 0 to zero at x = 1. This makes sense:

we saw previously that the maximum photon energy is 󰂃f = 4γ2󰂃i. Note that
󰁕
f(x)dx = 1/3

and
󰁕
xf(x)dx = 1/9, so that we recover the correct expressions for the scattering rate dN/dt

and power dE/dt on integrating over 󰂃f .
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The spectrum of the scattered photon is therefore flat at low photon energies 󰂃f ≪ 4γ2󰂃i,

with a cutoff at 󰂃f = 4γ2󰂃i (x = 1). (The spectrum for arbitrary γ, Klein-Nishina cross-

section, and including the energy loss in the rest frame is given by Jones 1968).

If the electrons have a power law energy distribution, N(γ) ∝ γ−pdγ, the spectrum of

the scattered photons is given at each final photon energy 󰂃f by summing the contributions

from each γ
dN

dtd󰂃f
∝

󰁝

γmin

γ−pdγγ−2 ∝ γ−p−1
min ∝ 󰂃

−(p+1)/2
f , (3.32)

where we use the fact that only electrons with γ > γmin = (󰂃f/4󰂃i)
1/2 have enough energy

to contribute scattered photons with energy 󰂃f . The photon number spectrum is therefore a

power law spectrum with index (p+1)/2. The energy spectrum is then Fν ∝ ν−(p−1)/2 or an

index (p− 1)/2. We’ll see later that the same result applies to synchrotron emission from a

power law distribution of electrons.

3.6. Multiple scatterings

If multiple scatterings occur, the photon energy spectrum can be significantly affected.

This is known as Comptonization. An important parameter is the Compton y parameter

which measures whether a photon will significantly change its energy when traversing a

medium.
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Let’s look at each term separately. We saw previously that the average fractional change

in photon energy on scattering is (4/3)γ2β2. For a thermal gas of non-relativistic electrons,

this is 4kBT/mec
2 (since me〈v2〉/2 = 3kBT/2). However, this ignores electron recoil (we

assumed elastic scattering in the rest frame). We can estimate this from our earlier result

󰂃′f =
󰂃′i

1 + (󰂃i/mec2)(1− cosα′)
≈ 󰂃′i

󰀕
1− 󰂃′i

mec2
(1− cosα′)

󰀖
. (3.33)

Averaging over angles gives ∆󰂃/󰂃 ≈ −󰂃/mec
2. Therefore,

∆󰂃

󰂃
=

󰀕
4kBT

mec2
− 󰂃

mec2

󰀖
. (3.34)

In the ultra-relativistic limit (γ ≫ 1), ∆󰂃/󰂃 ≈ (4/3)γ2 (the recoil term is negligible in this

limit).

The number of scatterings depends on the optical depth. We found in the section on

radiative transfer that the number of scatterings is max(τ, τ 2), where τ ≈ ρκesR ≈ neσTR.

Therefore for a thermal gas of non-relativistic electrons

y =
4kBT

mec2
max(τ, τ 2). (3.35)

How do multiple scatterings change the photon energy? If we start with a photon with

initial energy 󰂃0 ≪ kBT , then after N scatterings,

󰂃 = 󰂃0

󰀕
1 +

4kBT

mec2

󰀖N

≈ exp

󰀕
4kBT

mec2
N

󰀖
≈ exp (y) . (3.36)

When the photon energy reaches 󰂃 = 4kBT , equation (3.34) shows that the photon energy

will no longer increase, that is we reach an equilibrium. By setting τ 2 = N and 󰂃 = 4kBT in

equation (3.36), we find the optical depth required to reach equilibrium is

τ =

󰀗
mec

2

4kBT
ln

󰀕
4kBT

󰂃0

󰀖󰀘1/2
. (3.37)

Because we are dealing with a fixed number of photons (scattering conserves photon

number), we expect the equilibrium distribution of photons to be a Bose-Einstein distribution

with a non-zero chemical potential µ, that is with energy density

Uνdν =
8πhν3

c2

󰀗
exp

󰀕
hν

kBT
+ µ

󰀖
− 1

󰀘−1

dν. (3.38)
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The equivalent expression for a Planck distribution is Uν = 4πBν/c, identical except µ = 0

in that case. In a blackbody enclosure for example, photons can be created or destroyed as

needed (e.g. by interaction at the walls) in order to reach thermal equilibrium, which gives

µ = 0.

The photon distribution is shown in the following plot. Except for small values of µ close

to zero, the exponential term dominates, giving an overall suppression of the distribution by

a factor e−µ, and a different scaling ∝ ν3 at low frequency instead of ∝ ν2.

For non-zero µ, the photon distribution is then∝ 󰂃2e−󰂃/kBT , in which case it is straightforward

to show that 〈󰂃〉 = 3kBT and 〈󰂃2〉 = 12(kBT )
2. The average change in photon energy on

scattering is 〈∆󰂃〉 = (4kBT/mec
2)〈󰂃〉 − 〈󰂃2〉/mec

2 = 0, showing that this is indeed the

equilibrium distribution.

Another case mentioned by RL (§7.5) that is interesting is multiple scattering by rel-

ativistic electrons with low optical depth, which is a way to produce a power law spec-

trum from a non-power law electron distribution! The energy amplification per scattering is

A = (4/3)γ2 = 16(kBT/mec
2) for a relativistic thermal gas. After k scatterings, 󰂃k = 󰂃0A

k.

For τ ≪ 1, the probability of having k scatterings is τ k. Therefore the emergent spectrum

is I(󰂃k) = I(󰂃0)τ
k = I(󰂃0)(󰂃k/󰂃0)

−α, where the power law index is α = − ln τ/ lnA.

3.7. The Kompaneets equation

We discussed the expected equilibrium photon distribution for scattering in a thermal

gas. Let’s think about the approach to equilibrium. Write the number of photons with

energy between 󰂃 and 󰂃+ d󰂃 as N(󰂃). Now ask, how does this distribution evolve with time
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as the scatterings occur? For each scattering, we can write down a probability distribution

for a change in the photon energy 󰂃 → 󰂃+∆, i.e. P (󰂃,∆)d∆ is the probability that a photon

with energy 󰂃 changes its energy by an amount ∆. The normalization is
󰁕
d∆P (󰂃,∆) = 1

(the photon must change its energy by some amount).

Then the evolution of the photon distribution is given by

N(󰂃, t+ δt)−N(󰂃, t) =

󰁝
d∆ [N(󰂃−∆, t)P (󰂃−∆,∆)−N(󰂃, t)P (󰂃,∆)] (3.39)

where the timescale δt is a scattering timescale δt = ts = 1/neσT c. For small ∆, we can

expand

N(󰂃−∆, t) ≈ N(󰂃, t)−∆
∂N

∂󰂃
+

∆2

2

∂2N

∂󰂃2
+ ... (3.40)

P (󰂃−∆,∆) ≈ P (󰂃,∆)−∆
∂P

∂󰂃
+

∆2

2

∂2P

∂󰂃2
+ ... (3.41)

which gives

N(󰂃, t+ ts)−N(󰂃, t) = − ∂

∂󰂃

󰁝
d∆NP∆+

1

2

∂2

∂󰂃2

󰁝
d∆NP∆2. (3.42)

Using this result and expanding N(t + ts) ≈ N(t) + ts∂N/∂t, we obtain the Fokker-Planck

equation

ts
∂N

∂t
= − ∂

∂󰂃
(〈∆〉N) +

1

2

∂2

∂󰂃2
󰀃
N〈∆2〉

󰀄
. (3.43)

This is an advection-diffusion equation in energy space.

For a thermal distribution of electrons,

〈∆〉 = 󰂃

󰀕
4kBT

mec2
− 󰂃

mec2

󰀖
〈∆2〉 = 󰂃2

󰀕
2kBT

mec2

󰀖
. (3.44)

The second result is computed in RL §7.6 (compare RL eq. 7.54). Substituting these in and

simplifying gives

ts
∂N

∂t
= − ∂

∂󰂃

󰀗󰀕
2󰂃N − 󰂃2

∂N

∂󰂃

󰀖󰀕
kBT

mec2

󰀖
− 󰂃2N

mec2

󰀘
(3.45)

Now to agree with RL, we switch notation to n(ω) where ω2n(ω) ∝ N(󰂃), and define

x = 󰄁ω/kBT . The result is

ts
∂n

∂t
=

󰀕
kBT

mec2

󰀖
1

x2

∂

∂x

󰀗
x4

󰀕
∂n

∂x
+ n

󰀖󰀘
. (3.46)
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The equilibrium solution (∂n/∂t = 0) is n ∝ e−x or N ∝ 󰂃2e−󰂃/kBT . This is the relativistic

Maxwell-Boltzmann distribution we discussed earlier.

Why didn’t we find the equilibrium distribution to be the Bose-Einstein distribution

n = (ex+α − 1)−1? We should have included extra (1 + n) factors to account for the fact

that photons tend to mutual occupation of the same state (see RL eq. 7.48), i.e. the RHS

of equation (3.39) should be

󰁝
d∆ [N(󰂃−∆, t)P (󰂃−∆,∆)(1 +N(󰂃, t))−N(󰂃, t)P (󰂃,∆)(1 +N(󰂃−∆, t))] . (3.47)

As we discussed earlier the extra terms are only important for µ approaching zero, which

indicates that multiple occupation of states is important. For non-zero µ the occupation

number is small and the extra 1+n terms are no longer important. The particles then have

a Maxwell-Boltzmann distribution of energies.

With the extra terms, the analysis follows as before, but now the result is

ts
∂n

∂t
=

󰀕
kBT

mec2

󰀖
1

x2

∂

∂x

󰀗
x4

󰀕
∂n

∂x
+ n+ n2

󰀖󰀘
. (3.48)

This is the Kompaneets equation, which has the equilibrium solution n = (ex+α − 1)−1.

3.8. Example: Sunyaev-Zeldovich effect

The Sunyaev-Zeldovich or SZ effect is a small distortion of the spectrum of the cosmic

microwave background (CMB) radiation due to inverse Compton scattering of CMB photons

by hot electrons in Galaxy clusters (for a review see Carlstrom, Holder, and Reese 2002

ARAA).

We can calculate the effect by using the Kompaneets equation. Because Tgas ≫ Trad,

the ∂n/∂x term dominates on the RHS. To see this, note that x = hν/kBT ≪ 1, and then

you can show that ∂n/∂x ∼ n/x for a Planck spectrum n = (ex − 1)−1. The Kompaneets

equation we need to solve is therefore

1

c

∂n

∂t
=

󰀕
neσT

kBT

mec2

󰀖
1

x2

∂

∂x

󰀕
x4∂n

∂x

󰀖
. (3.49)

Following the path of a photon, dl = c dt, and so in terms of the Compton y parameter,

∂n

∂y
=

1

x2

∂

∂x

󰀕
x4∂n

∂x

󰀖
. (3.50)
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For cluster gas y =
󰁕
neσT (kBT/mec

2)dl ≪ 1, so we can calculate δn by inserting a Planck

spectrum on the RHS and writing δn ≈ y∂n/∂y, giving

δn

n
= (ex − 1)

y

x2

∂

∂x

󰀕
x4 ∂

∂x

󰀕
1

ex − 1

󰀖󰀖
= y

󰀕
xex

ex − 1

󰀖󰀓
x coth

󰀓x
2

󰀔
− 4

󰀔
, (3.51)

which is Zeldovich and Sunyaev’s original result. In the Rayleigh-Jeans part x ≪ 1, δn/n ≈
−2y, or

∆T

T
= −2

σTkB
mec2

󰁝
neT dl. (3.52)

For a path length of 1 Mpc and a density ne = 10−2 cm−3, I get a Thomson depth ∼ 10−2.

The kBT/mec
2 factor is 1/50 for kBT = 10 keV. Therefore ∆T/T ∼ 3× 10−4 or ∆T ∼ 10−3

for T = 3K. The expected temperature decrement is therefore ∆T ∼ mK. The integral in

equation (3.52) is proportional to the integrated gas pressure of the cluster. The redshift

independence of this signal makes it an important way to look for high redshift clusters. The

Carlstrom et al. ARAA article has references to calculations of relativistic corrections to our

formula, and also describes the “kinetic SZ” effect that is a temperature shift due to the

peculiar velocity of the cluster (the spectrum remains Planckian but with ∆T/T ≈ −τv/c).

3.9. The spectrum of thermal gas

We next discuss the spectrum of thermal gas in which both free-free and scattering

processes operate. See RL 7.7, Felten and Rees (1972), and Illarionov and Sunyaev (1972).

Recall that a finite region of gas emitting thermal Bremsstrahlung has a spectrum

At low frequencies, the region becomes optically thick (κff ∝ 1/ν2) and the spectrum is

Rayleigh-Jeans. At higher frequencies, the spectrum corresponds to optically thin bremsstrahlung,

i.e. roughly flat with an exponential cutoff determined by the temperature of the gas.

What happens to this spectrum when we include electron scattering? We already men-

tioned the idea of thermalization depth at the end of Part I of these notes. Let’s quickly

review what we discussed there. With scattering and absorption included, the mean free path

is lν = 1/(αν + σν), but only a fraction 󰂃ν = αν/(αν + σν) of encounters result in absorption
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of a photon. The mean free path to absorption is l󰂏ν =
√
Nνlν = lν/

√
󰂃ν = 1/

󰁳
αν(αν + σν).

If τ󰂏 ≪ 1, where τ󰂏 = L/l󰂏 is the effective optical thickness, we expect the luminosity to

be Lν ∼ 4πBνανV (all photons escape). If τ󰂏 ≫ 1 (optically thick to absorption) then the

photons come from a volume l󰂏A where A is the emitting area, and the resulting flux is

Fν ≈ πBν
√
󰂃ν , suppressed by a factor

√
󰂃ν compared to the flux from a blackbody.

How does this apply in this case? We start by assuming the electron scattering is elastic

(no change in photon energy). At low frequencies, we expect κff ≫ κes since κff/κes ∝
1/ν2), implying a Rayleigh-Jeans spectrum at low frequencies. However, for frequencies for

which κes > κff , we expect the emissivity to be reduced by a factor

√
󰂃ν =

󰀕
κff

κes + κff

󰀖1/2

≈
󰀕
κff

κes

󰀖1/2

∝ 1

ν
(3.53)

where the last step is for the limit κes ≫ κff . Therefore, as long as the material is optically

thick (τ󰂏 ≫ 1), we expect to see

(see Felten and Rees Fig 3a). This is known as a modified blackbody spectrum. Defining ν0
to be the frequency where κff (ν0) = κes, and writing Iν = 2Bν/(1 + 󰂃

−1/2
ν ), we get Iν ≈ Bν

for ν ≪ ν0 and Iν = IMBB
ν = 2Bν(κff/κes)

1/2 for ν ≫ ν0. The frequency dependence is

IMBB
ν ∝

󰀕
x3

ex − 1

󰀖󰀕
1− e−x

x3

󰀖1/2

∝ e−x/2

(ex − 1)1/2
x3/2 (3.54)

with x = hν/kBT . The limits are IMBB
ν ∝ x for x ≪ 1 and IMBB

ν ∝ x3/2 exp(−x) for x ≫ 1.

If the medium has a finite optical thickness then at high enough photon frequency it

will be optically thin to absorption. We define another frequency νt at which this transition

occurs, i.e. where l󰂏 = L, or τaτes = 1 (actually τa(τa+ τes) = 1 but we are assuming that we

are already in the regime where κes > κa at ν = νt). Since κff (ν0) = κes but κff (νt) = 1/κes,
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then (νt/ν0)
2 = τ 2es, or

νt ≈ ν0τes. (3.55)

Above this frequency, the source is optically thin, and the overall spectrum is

(Felten and Rees Fig 3c).

Now let’s consider the possibility of non-elastic scattering, so the photons change fre-

quency as they scatter. This will be important when y ≫ 1 or N(4kBT/mec
2) ≫ 1 for

N scatterings. Between absorptions, the number of scatterings is 󰂃−1
ν = (κff + κes)/κff ≈

κes/κff , which increases ∝ ν2 (assuming x < 1 so that κff ∝ ν−2). Therefore at high

enough frequency, non-elastic scattering will become important. Since κff (ν0) = κes then

(νcoh/ν0)
2(4kBT/mec

2) = 1 defines

νcoh = ν0

󰀕
mec

2

4kBT

󰀖1/2

(3.56)

above which photon energy changes are significant. Another way to say this is that for

ν > νcoh, the thermalization depth l󰂏 becomes larger than the lengthscale that makes y > 1.

(Note that if the y parameter for the whole medium τ 2es(4kBT/mec
2) < 1 then incoherent

scattering is never important at any frequency).

For ν > νcoh, the spectrum will saturate, and will take the Wien form Iν = IWν =

(2hν3/c2)e−αe−hν/kBT for α ≫ 1. The spectrum looks like:
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The photons on the left part of the spectrum come from τes ≲ (mec
2/4kBT )

1/2, and on the

right part of the spectrum from deeper regions with τes ≳ (mec
2/4kBT )

1/2. The total flux in

the Wien spectrum is

FW = π

󰁝
IWν dν =

12πe−α(kBT )
4

c2h3
, (3.57)

which is (90e−α/π4)σT 4. Roughly we can think of this as shifting all the bremsstrahlung

emitted photons to energies ≈ kBT or FW ≈ l󰂏kBT
󰁕
(󰂃ffν /hν)dν which allows the overall

normalization to be calculated.

The spectrum saturates as a Wien spectrum for y ≫ 1 and xcoh = hνcoh/kBT < 1. For

xcoh ≫ 1, inverse Compton effects are not important since all photons elastically scatter. In

the intermediate range xcoh ∼ 1, the Comptonization does not saturate to a Wien spectrum

when y ≫ 1. RL have an argument for this case, as follows. We write down a steady state

Kompaneets equation

0 =

󰀕
kBT

mec2

󰀖
1

x2

∂

∂x

󰀅
x4(n′ + n)

󰀆
+Q(x)− n

max(τ 2es, τes)
. (3.58)

In the first term, we neglect n2 compared to n for α ≫ 1. The second term represents a

source of photons with energy x, and the third term allows for escape of photons. For x ≫ 1,

n′ + n = 0 gives n ∝ e−x. For x ≪ 1, n′ ≫ n, and by balancing the first and third terms,

4n

y
=

1

x2

∂

∂x

󰀃
x4n′󰀄 . (3.59)

A power law solution n ∝ xm works with

m = −3

2
±

󰁵
9

4
+

4

y
. (3.60)
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For y ≫ 1 m = 0,−3 which gives either Iν ∝ x3 or constant. For y ≪ 1, Iν ∝ ν3+m.

See Pozdniakov, Sobol, and Sunyaev (1983) for Monte Carlo calculations of spectra in this

regime. I’ve included a Figure from their paper below. It shows the change in the spectrum

with increasing y. I’ve also included a cartoon from that paper that shows astrophysical

environments where Comptonization is likely to be important.
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Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

• Thomson scattering cross-section. σT = 8πr20/3, where r0 = e2/mec
2 is the clas-

sical electron radius. Differential cross-section for an unpolarized beam dσT/dΩ =

(1/2)r20(1 + cos2 α), where α is the scattering angle. Radiated power P = σT cUrad.

Klein-Nishina cross-section σ ∼ σT (mec
2/󰂃i) for initial photon energy 󰂃i ≫ mec

2.

• Thomson scattering opacity κes = σT (1 +X)/2mp = 0.2(1 +X) cm2 g−1.

• Kinematics of Compton scattering

󰂃f = 󰂃i

󰀗
1 +

󰂃i
mec2

(1− cosα)

󰀘−1

.

or λf − λi = λc(1− cosα) with Compton wavelength λc = h/mec.

• Inverse Compton scattering

󰂃′i = 󰂃iγ(1− β cos θi), 󰂃f = 󰂃′fγ(1 + β cos θ′f ).

Maximum photon energy 󰂃f,max = 4γ2󰂃i. For 󰂃
′
i ≪ mec

2 or γ󰂃i ≪ mec
2 can take σ = σT .

Power radiated per electron

P =
4

3
γ2β2σT cUγ,

or for thermal non-relativistic electrons P = (4kBT/mec
2)cσTUγ.

• Inverse Compton spectrum. For a single electron number spectrum is

dN

dtd󰂃f
= σT cn(󰂃i)

d󰂃i
󰂃i

3f(x)

4γ2

where f(x) = 2x ln x + x + 1 − 2x2, x = 󰂃f/4γ
2󰂃i. Flat number spectrum with cutoff

at x ∼ 1. Mean photon energy (4/3)γ2󰂃i. For a power law distribution of electrons

N(γ) ∝ γ−p, (dN/dV dtd󰂃f ) ∝ 󰂃
−(p+1)/2
f .

• Multiple scatterings. Compton y parameter, y = (∆󰂃/󰂃)max(τ, τ 2). Mean energy

change on scattering: ∆󰂃/󰂃 = (4kBT − 󰂃) (non-relativistic) or (4/3)γ2 (relativistic).

For 󰂃 ≪ 4kBT , photon energy grows by exp(y). Equilibrium distribution is Bose-

Einstein with finite µ. Kompaneets equation

ts
∂n

∂t
=

󰀕
kBT

mec2

󰀖
1

x2

∂

∂x

󰀗
x4

󰀕
∂n

∂x
+ n+ n2

󰀖󰀘
.
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• Applications. Sunyaev-Zeldovich effect: ∆T/T = −2
󰁕
neσT (kBT/mec

2)dl. Spectrum

of thermal gas including free-free and scattering processes. Modified blackbody spec-

trum.

Reading

• RL chapter 7. Longair.

• Kinematic of Compton: see Blumenthal & Gould 1970, Rev Mod Phys, 42, 237

• Inverse Compton spectrum: Jones (1968) Phys Rev 167, 1159

• Sunyaev (1980) Sv A Lett, 6, 213 one of the original papers on SZ effect. See also the

ARAA article by Carlstrom, Holder, & Reese (2002).

• Felten & Rees (1972), Illarionov & Sunyaev (1972) spectrum of thermal gas includ-

ing free-free and electron scattering. Unsaturated Compton spectra are calculated by

Pozdniakov, Sobol, & Sunyaev (1983).



– 68 –

4. Synchrotron Radiation

These are notes for part four of PHYS 642 Radiative Processes in Astrophysics. Syn-

chrotron radiation is radiation from particles accelerated by magnetic fields. For non-

relativistic electrons, the radiation is at the gyration frequency ω = eB/mec and is known

as cyclotron radiation. However, for relativistic particles, the emission extends to higher

frequencies, and we then describe the radiation as synchrotron radiation. We also include

a discussion of Fermi acceleration of high energy particles, and the evolution of the energy

spectrum.

4.1. Power radiated by a relativistic particle

First, we want to extend Larmor’s formula to relativistic electrons. To do this, recall

the “four-acceleration” ã = dũ/dτ where ũ = (c, 󰂓u) is the four-velocity, and dτ is the interval

of proper time, dτ = ds/c, ds2 = c2dt2 − |d󰂓x|2 = c2dt2/γ2.

Let’s evaluate ã in the rest frame of the particle, where dτ = dt′. First note that

dγ′/dt′ = 0 since

dγ′

dt′
=

d

dt′

󰀕
1− 󰂓u′ · 󰂓u′

c2

󰀖−1/2

=
γ3

2c2
d

dt′
(󰂓u′ · 󰂓u′) =

γ3

c2
󰂓u′ · d󰂓u

′

dt′
= 0 (4.1)

since 󰂓u′ = 0 in the rest frame. Therefore ã′ = dũ′/dt′ = (0,󰂓a′), and so Larmor’s formula

gives the power radiated in the rest frame

P =
2q2

3c3
|󰂓a′|2 = 2q2

3c3
ã′ · ã′. (4.2)

The norm of a four vector is Lorentz invariant (the same in all reference frames), meaning

that we can write the general form of Larmor’s formula as

P =
2q2

3c3
ã · ã (4.3)

where ã is the four-acceleration in the frame of interest.

In the lab frame,

ã · ã = −
󰀕
cγ

dγ

dt

󰀖2

+

󰀕
γ
d

dt
(γ󰂓u)

󰀖2

. (4.4)

Using dγ/dt = γ3󰂓u · 󰂓a/c2, this is

ã · ã = γ4 |󰂓a|2 + γ6 (󰂓u · 󰂓a)2

c2
. (4.5)
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Dividing the acceleration vector into components parallel and perpendicular to the velocity

󰂓a󰀂 = 󰂓u(󰂓a · 󰂓u)/u2 and 󰂓a⊥ = 󰂓a− 󰂓a󰀂 = 󰂓u× (󰂓a× 󰂓u)/u2, Larmor’s formula in the rest frame is

P =
2q2

3c3
γ4

󰀃
a2⊥ + γ2a2󰀂

󰀄
. (4.6)

4.2. Total synchrotron power

Now consider a particle with charge q moving in a magnetic field 󰂓B. The equations of

motion are
d

dt
(γm󰂓u) = q

󰂓u× 󰂓B

c
(4.7)

and
d

dt

󰀃
γmc2

󰀄
= q󰂓u · 󰂓E. (4.8)

If the electric field is 󰂓E = 0, usually the case in astrophysical applications, then the energy of

the particle is constant (γ is a constant) (recall that the magnetic field does no work on the

particle because the force is always perpendicular to the velocity). The solution to equation

(4.7) is helical motion: a constant velocity parallel to the magnetic field, u󰀂 = 󰂓u · 󰂓B/B, and

uniform circular motion in a plane perpendicular to 󰂓B, with gyration frequency

ωB =
qB

γmc
. (4.9)

The angle α is known as the pitch angle. The velocity perpendicular to the magnetic field is

u⊥ = u sinα, so that α = π/2 for pure circular motion (u󰀂 = 0).

The acceleration is a⊥ = u⊥ωB, so that the total power is

P =
2e2

3c3
γ4ω2

Bu
2
⊥ =

2

3c
r20u

2
⊥γ

2B2 (4.10)
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where r0 = (e2/mc2) is the classical electron radius. For a uniform distribution of pitch

angles, the total power is

P =
2

3
r20cγ

2β2B2

󰁝
sin2 α

dΩ

4π
. (4.11)

The integral is 2/3, and the Thomson cross-section is 8πr20/3, giving the famous result

P =
4

3
σT cβ

2γ2UB (4.12)

where UB = B2/8π is the magnetic energy density. Note the similarity to the inverse

Compton power; the only difference is that the equation for inverse Compton power has Uγ

rather than UB. One way to think about synchrotron radiation that explains this similarity

is as inverse Compton scattering of virtual photons in the magnetic field (see Blumenthal et

al.).

4.3. Angular distribution of received radiation

Before we can calculate the synchrotron spectrum, we have to think a little about what

the angular distribution of radiation from a relativistic particle looks like. As you might

expect, we’ll find that the radiation is strongly focussed or beamed in the forwards direction.

In the electron rest frame, the power radiated is

dP ′

dΩ′ =
e2a′2

4πc3
sin2 Θ′ (4.13)

whereΘ′ is the angle between the acceleration vector and the emitted radiation, cosΘ′ = 󰂓a′·󰂓n.
How does this transform back into the lab frame?

Photons emitted into angle θ′ in the rest frame travel at angle θ in the lab frame, where the

angles are related by the aberration formula we used for Compton scattering,

µ =
µ′ + β

1 + βµ′ → dµ =
dµ′

γ2(1 + βµ′)2
. (4.14)
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The energies are related by dW = γ(dW ′ + cdp′x) = γ(1 + βµ′)dW ′. Therefore,

dW

dΩ
=

dW ′

dΩ′ γ
3 (1 + βµ′)

3
(4.15)

and
dP

dΩ
=

dP ′

dΩ′

󰀕
dt′

dt

󰀖
γ3 (1 + βµ′)

3
. (4.16)

We need to relate the time interval in the lab frame dt to the time interval in the

rest frame dt′. This is actually a subtle point. One way to do this would be to use time

dilation: γdt′ = dt (the radiation is emitted over a longer time interval as viewed in the lab

frame). The resulting dP/dΩ is then known as the emitted power. However, because the

particle is moving, a stationary observer in the lab frame actually measures a time interval

dtA = γ(1−βµ)dt′. This is the same argument as led us to the κ factor in Compton scattering

(recall the argument about measurements of a moving train). This choice gives the received

power and is the one we’ll use here.

Substituting dt′/dtA into equation (4.16) and using 󰂓a′ · 󰂓a′ = ã′ · ã′ = ã · ã gives

dP

dΩ
=

e2

4πc3
a2⊥ + γ2a2󰀂
(1− βµ)4

sin2 Θ′. (4.17)

What is Θ′ in the lab frame? It helps to consider limiting cases. For acceleration parallel to

the velocity, sin2 Θ′ = sin2 θ′ = sin2 θ/γ(1− βµ)2, and so

dP󰀂

dΩ
=

e2

4πc3
a2󰀂 sin

2 θ

(1− βµ)6
. (4.18)

For acceleration perpendicular to the velocity, cosΘ′ = sin θ′ cosφ′, and

dP⊥

dΩ
=

e2a2⊥
4πc3

1

(1− βµ)4

󰀗
1− sin2 θ cos2 φ

γ2(1− βµ)2

󰀘
. (4.19)

For large γ, these expressions can be rewritten using µ ≈ 1 − θ2/2, β ≈ 1 − 1/2γ2,

γ(1− βµ) ≈ (1 + (γθ)2)/2γ, as

dP󰀂

dΩ
=

16e2a2󰀂
πc3

γ10 (γθ)2

(1 + (γθ)2)6
(4.20)

dP⊥

dΩ
=

4e2a2⊥
πc3

γ81− 2(γθ)2 cos 2φ+ (γθ)4

(1 + (γθ)2)6
. (4.21)



– 72 –

The important point is that these expressions depend on θ only through the combination

γθ and drop rapidly to zero for γθ > 1. The radiation is beamed into a cone of half angle

∼ 1/γ.

For parallel and perpendicular acceleration the emission pattern looks like:

4.4. Simple treatment of synchrotron spectrum

We now use some simple arguments to get the basic form of the synchrotron spectrum

from a relativistic electron with energy γ. The basic point is that the beaming gives rise to

a broad frequency spectrum because we see only a short pulse of radiation each orbit when

the beam is pointing at us.

To calculate the duration of the pulse, we first need to find the radius of curvature a of the
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orbit. Then the distance travelled by the particle while the line of sight lies in the cone of

emission is ∆s = a∆θ = 2a/γ. To find a, we go back to the equation of motion. The velocity

change is |∆󰂓u| = u∆θ during a time ∆t = ∆s/u. Therefore,

γmu2∆θ

∆s
=

euB

c
sinα. (4.22)

But ∆θ/∆s = 1/a giving

a =
u

ωB sinα
(4.23)

and therefore

∆t =
2

γωB sinα
. (4.24)

The observed time for a stationary observer is ∆tobs = (1− β)∆t = ∆t/2γ2, giving

∆tobs =
1

γ3ωB sinα
. (4.25)

Note the observed duration of the pulse is shorter than the orbital time by a factor of γ3:

one power of γ from the beaming angle, and another two powers of γ from the train effect

(duration of observed pulse).

The fact that the pulse has a short duration much smaller than the gyration time means

that we can expect a broad frequency spectrum. The pulse looks like

and the spectrum is a function of x = ω/ωc where

ωc =
3

2
γ3ωB sinα ∝ γ2. (4.26)
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The low and high frequency behavior is shown in the figure.

Often, the electrons emitting the synchrotron radiation have a power-law distribution

of energies, N(E)dE ∝ E−pdE or N(γ)dγ ∝ γ−pdγ (we’ll discuss the origin of such non-

thermal distributions later). In this case, the spectrum is given by an integral over the

electron energy distribution

P (ω) ∝
󰁝

dγγ−pF

󰀕
ω

ωc

󰀖
. (4.27)

Integrals like this come up a lot, and the way to deal with them is to change variables from

γ to x = ω/ωc ∝ γ−2. The integral then becomes a dimensionless integral over x, i.e. just a

number. If we do that here, we find

P (ω) ∝ ω−(p−1)/2. (4.28)

The slope of the spectrum is the same as for inverse Compton scattering from a power-law

distribution of electrons.
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4.5. Detailed treatment of synchrotron spectrum

If you’ve looked in the books at the derivation of the synchrotron spectrum, you may

be a little nervous. Shu warns “The formal manipulations required for synchrotron theory

can get formidable” and Longair states ”I am not aware of any particularly simple way

of deriving [the synchrotron spectrum]..”. In fact it’s not that bad: in this section, we

outline the detailed derivation of the synchrotron spectrum, focussing on the methodology

and skipping a lot of the algebra. Here I follow the derivation given in Rybicki and Lightman

6.4, which in turn follows Jackson 14.6. Longair (volume 2) goes through it filling in more

of the steps. The classic paper is Westfold (1959) ApJ.

We start with the expressions for the radiation fields we derived earlier,

󰂓Erad =
q

c

󰀥
󰂓n× (󰂓n− 󰂓β)× 󰂓β

κ3R

󰀦
󰂓Brad = 󰂓n× 󰂓Erad (4.29)

where the notation [...] means evaluate at the retarded time t = t′+R/c and κ = 1−󰂓n ·󰂓u/c.
Then

dW

dΩ
=

󰁫
R2󰂓n · 󰂓S

󰁬
=

c

4π

󰁫
R 󰂓E

󰁬2
, (4.30)

and the Fourier component at frequency ω is

dW

dωdΩ
=

q2

4π2c

󰀏󰀏󰀏󰀏
󰁝 󰁫

(󰂓n× (󰂓n− 󰂓β)× 󰂓β)κ−3
󰁬
eiωtdt

󰀏󰀏󰀏󰀏
2

. (4.31)

Previously, we worked in the limit β ≪ 1, but now we need to keep the relativistic factors.

A standard trick is to integrate by parts. First, change variables in the integral to

t′ = t−R(t′)/c. Since the source is very far from the observer, we can write R ≈ R0−󰂓n ·󰂓r(t′).
Then dt = dt′(1− 󰂓n · 󰂓β) = κdt′, and the integral is

dW

dωdΩ
=

q2

4π2c

󰀏󰀏󰀏󰀏󰀏

󰁝
(󰂓n× (󰂓n− 󰂓β)× 󰂓β)

κ2
eiω(t

′−󰂓r·󰂓n/c)dt′

󰀏󰀏󰀏󰀏󰀏

2

. (4.32)

Now we can integrate by parts using

d

dt′

󰀣
󰂓n× (󰂓n× 󰂓β)

1− 󰂓β · 󰂓n

󰀤
=

󰂓n× ((󰂓n− 󰂓β)× 󰂓β)

(1− 󰂓β · 󰂓n)2
(4.33)

to get
dW

dωdΩ
=

q2

4π2c

󰀏󰀏󰀏󰀏
󰁝

dt′ eiω(t
′−󰂓r·󰂓n/c) 󰂓n× (󰂓n× 󰂓β)

󰀏󰀏󰀏󰀏
2

(4.34)
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which depends only on β(t) and not β̇(t). This equation is the starting point for RL section

6.4.

Now we need to understand the particle path and can plug 󰂓β(t) into equation (4.34) to

evaluate the spectrum. The diagram is

The orbital plane of the particle is instantaneously (at t′ = 0) in the x-y plane in this

diagram, the acceleration is in the y direction at this moment, and the vector 󰂓n points to

the observer. We have defined a set of orthogonal axes 󰂓󰂃󰀂 = 󰂓n × 󰂓󰂃⊥. We will discuss the

polarization in terms of these directions. The projected direction of the B field is along 󰂓󰂃󰀂.

The vector product 󰂓n × (󰂓β × 󰂓n) is the component of 󰂓β perpendicular to 󰂓n, which for

β = 1 is

󰂓n× (󰂓β × 󰂓n) = 󰂓󰂃⊥ sin

󰀕
ut′

a

󰀖
− 󰂓󰂃󰀂 cos

󰀕
ut′

a

󰀖
sin θ (4.35)

This formula is non-intuitive: for example if we take θ = 0 (observer in the plane of the

orbit) it vanishes (and therefore there is no contribution to the integral) when the particle

is pointing directly at the observer (t′ = 0).

The next step is to expand the angular factors since the cone of emission is very small

for a relativistic particle. For example,

t′ − 󰂓n · 󰂓r(t′)
c

= t′ − a

c
cos θ sin

󰀕
ut′

a

󰀖
≈ 1

2γ2

󰀗󰀃
1 + (γθ)2

󰀄
t′ +

c2γ2t′3

3a2

󰀘
. (4.36)

Except for θ < 1/γ and ct′ < a/γ, this factor in the exponent oscillates rapidly and its

contribution to the integral vanishes. Therefore, we can integrate over the full particle path

and only the contribution from small angles is included. Equation (4.35) can be expanded
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similarly, and the result is
dW

dωdΩ
=

dW⊥

dωdΩ
+

dW󰀂

dωdΩ
(4.37)

where
dW⊥

dωdΩ
=

q2ω2

4π2c

󰀏󰀏󰀏󰀏
󰁝

ct′

a
exp

󰀗
iω

2γ2

󰀕
θ2γt

′ +
c2γ2t′3

3a2

󰀖󰀘
dt′

󰀏󰀏󰀏󰀏
2

(4.38)

dW󰀂

dωdΩ
=

q2ω2θ2

4π2c

󰀏󰀏󰀏󰀏
󰁝

exp

󰀗
iω

2γ2

󰀕
θ2γt

′ +
c2γ2t′3

3a2

󰀖󰀘
dt′

󰀏󰀏󰀏󰀏
2

(4.39)

and we define the notation θ2γ = 1 + (θγ)2.

These results can be put into the form of standard functions if the integration limits go

to ±∞, which is okay because the integrand dies away quickly for t′ > a/γc. The result is

dW⊥

dωdΩ
=

q2ω2

3π2c

󰀕
aθ2γ
cγ2

󰀖2

K2
2/3(η) (4.40)

dW󰀂

dωdΩ
=

q2ω2

3π2c
θ2

󰀕
aθ2γ
cγ

󰀖2

K2
5/3(η) (4.41)

where η = ωaθ3γ/3cγ
3.

Now integrate over the solid angle. The emission is in a cone

The solid angle integral is therefore
󰁕
dΩ →

󰁕∞
−∞ 2π sinαdθ, where once again we take

the integration limits to be ±∞ on θ. This gives the total energy per orbit; the power is the

energy per orbit multiplied by the orbital frequency ωB/2π. This gives the power in each

polarization

P⊥(ω) =

√
3q3B sinα

4πmc2
[F (x) +G(x)] (4.42)
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P󰀂(ω) =

√
3q3B sinα

4πmc2
[F (x)−G(x)] (4.43)

where x = ω/ωc, F (x) = x
󰁕∞
x

dξK5/3(ξ) and G(x) = xK2/3(x). The total power in both

polarizations is

P (ω) =

√
3q3B sinα

2πmc2
F (x). (4.44)

The following integrals of F (x) and G(x) are useful

󰁝 ∞

0

xµF (x)dx =
2µ+1

µ+ 2
Γ

󰀕
µ

2
+

7

3

󰀖
Γ

󰀕
µ

2
+

2

3

󰀖
(4.45)

󰁝 ∞

0

xµG(x)dx = 2µΓ

󰀕
µ

2
+

4

3

󰀖
Γ

󰀕
µ

2
+

2

3

󰀖
. (4.46)

For a power-law distribution of electron energies N(γ) = N(γ1)(γ/γ1)
−p, the frequency

spectrum is given by
dP

dV dω
=

󰁝 γ2

γ1

N(γ)dγ
dP

dω
. (4.47)

For γ2 ≫ γ1 and p > 1, the number density of electrons is ne = N(γ1)γ1/(p− 1), giving

dP

dV dω
=

√
3q3B sinα

2πmc2
(p− 1)ne

γ1

󰁝 󰀕
γ

γ1

󰀖−p

F (x)dγ. (4.48)

Now as we discussed earlier, changing integration variable from γ to

x =
ω

ωc

= γ−2

󰀕
2ωmc

3eB sinα

󰀖
(4.49)

gives
dP

dV dω
∝ B(p+1)/2ω−(p−1)/2. (4.50)

4.6. Important features of synchrotron radiation and some applications

Let’s briefly highlight here some important aspects of synchrotron radiation. These are

worked out in more detail in HW4.

• Polarization. One of the distinguishing features of synchrotron radiation is that it

is strongly-polarized. For cyclotron emission, this is straightforward to see from the

following diagram



– 79 –

For synchrotron, since we only see the radiation when the particle is moving within

1/γ of towards us, we see linear polarization with the dominant component being the

polarization perpendicular to 󰂓B. For a single electron, 7 times more power is radiation

in the perpendicular than in the parallel polarization. For a power law electron energy

distribution, the degree of polarization is Π = (P⊥ − P󰀂/P⊥ + P󰀂) = (p+ 1)/(p+ 7/3).

An application of this is to map out the magnetic fields of spiral galaxies.

• Energetics. Radio galaxies show strong synchrotron emission in radio (ν ≲ 300 GHz

or λ ≳ 1 mm). Jets from the central AGN terminate in huge radio lobes which have

luminosities L ∼ 1045 erg s−1. The total energy implied for a lobe of ≈ 50 kpc across

is ∼ 1060 erg in particles and fields.

An important result is the minimum energy argument of Burbidge (1959). For a given

synchrotron luminosity, you can show that the minimum energy requires corresponds

to the case where the energies of particles and fields are roughly equal, known as

equipartition of energy between particles and fields.

• Cooling. The cooling time for the radio lobes in radio galaxies is very short, ∼ 107

years, implying that the energy must be continuously replenished. An important com-

petition occurs between synchrotron and inverse Compton, the ratio of the power

emitted from each process is just the ratio of magnetic and photon energy densities

Psynch/PIC = UB/Uγ. Synchrotron self-Compton is the process in which inverse Comp-

ton scattering of synchrotron photons occurs by the same electrons that radiated the

synchrotron photons. An inverse Compton catastrophe is believed to occur when Uγ
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exceeds UB, which corresponds to a brightness temperature of ∼ 1012 K (e.g. Readhead

1994; Kelleman and Pading-Toth 1969).

• The transition from cyclotron to synchrotron. We have assumed relativistic

electrons here γ ≫ 1 so that the radiation is strongly beamed. As we mentioned

earlier for non-relativistic electrons the emission is at the cyclotron frequency. As v/c

increases, the harmonics of the cyclotron frequency are excited, eventually merging to

produce the synchrotron spectrum we have calculated (see Rybick and Lightman 6.6).

4.7. Synchrotron self-absorption

First, a reminder of Einstein coefficients. Consider a 2-level system

The three Einstein coefficients that describe transitions between the two levels are: A21 the

rate (probability per unit time) of spontaneous emission of a photon, B12J̄ is the rate of

absorption of a photon, B21J̄ is the rate of stimulated emission, where

J̄ =

󰁝 ∞

0

Jνφ(ν)dν (4.51)

is the integral of the mean intensity over the line profile φ(ν) (
󰁕
dνφ(ν) = 1). Now, in

thermal equilibrium, the rates of downwards transitions (2 to 1) must balance the upwards

transitions (1 to 2) or

n1B12J̄ = n2A21 + n2B21J̄ . (4.52)

But in thermal equilibrium, J̄ = Bν (the line profile is narrow compared to the scale on which

Bν varies) and n2/n1 = (g2/g1)e
−hν/kBT . These three conditions imply relations between the

Einstein coefficients,

A21 = B21
2hν3

c2
g1B12 = g2B21. (4.53)

Although thermal equilibrium is assumed in deriving these relations, it is not required for

them to hold.

The absorption coefficient αν and emission coefficient jν can be written in terms of the

Einstein coefficients. First, the emission coefficient which describes the rate at which photons
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are added to the radiation field independent of the incident radiation we relate to A21

jν =
hν

4π
n2A21φ(ν). (4.54)

Since the stimulated emission is proportional to J̄ , we include it in the absorption coefficient

as a negative absorption term. The net absorption is

n1B12J̄

󰀕
1− n2

n1

B21

B12

󰀖
= n1B12J̄

󰀃
1− e−hν/kBT

󰀄
, (4.55)

where in the last step we use the level populations in thermal equilibrium. Note that this

does not require full thermal equilibrium to be valid, but only LTE; we assume that the level

densities are thermally-populated but the matter does not have to be in equilibrium with

the photons. Therefore it is often a good assumption. The term in brackets is referred to

as the correction for stimulated emission. We have seen it previously in the expression for

free-free absorption. The absorption coefficient is then

αν =
hν

4π
n1B12φ(ν)(1− e−hν/kBT ). (4.56)

Now we can apply these ideas to synchrotron absorption. The idea is to use the Einstein

relations to obtain the synchrotron absorption coefficient from the emission coefficient that

we have already calculated. The main difference is that rather than a two-level system,

in this case we must consider transitions between states in the continuum. The emission

coefficient can be written

jν =
1

4π

󰁝
d3󰂓pf(p)Pν(p) (4.57)

where f(p) is the density of states as a function of electron momentum p, and Pν(p) is

the power emitted at frequency ν by an electron with momentum p (something we have

calculated in previous sections). Then applying the Einstein relations, we get the absorption

coefficient

αν =
c2

8πhν3

󰁝
d3󰂓p [f(󰂓p󰂏)− f(󰂓p)]Pν(p) (4.58)

where p󰂏 is the electron momentum corresponding to an energy 󰂃+ hν.

As a check, we can put in a thermal (Maxwell-Boltzmann) distribution for the electron

distribution, f(p) = Ce−󰂃/kBT . Then f(p󰂏) = Ce−󰂃/kBT ehν/kBT , which gives

αν =
c2

2hν3
(ehν/kBT − 1)

1

4π

󰁝
d3󰂓pf(p)Pν(p) =

jν
Bν

. (4.59)

And so we see that we recover Kirchoff’s law jν = ανBν . You may recall that we used

Kirchoff’s law directly to get the free-free absorption coefficient from the free-free emissivity.
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For synchrotron, we have to be more careful because the electron population is not necessarily

in thermal equilibrium.

Now let’s evaluate αν for a power law distribution of electron energies, N(E) ∝ E−p.

We will assume that hν ≪ γmec
2, γ ≫ 1 and that f(p) is isotropic. First we change variables

in the integral from momentum to energy E = pc, N(E)dE = f(p)4πp2dp,

αν =
c2

8πhν3

󰁝
E2dEPν(E)

󰀗
N(E − hν)

(E − hν)2
− N(E)

E2

󰀘
. (4.60)

For hν ≪ E, we Taylor expand the first term in the square brackets, to get

αν = − c2

8πν2

󰁝
E2dEPν(E)

∂

∂E

󰀕
N

E2

󰀖
. (4.61)

Evaluating this for N(E) = E−p gives

αν =
(p+ 2)c2

8πν2

󰁝
dEPν(E)

N

E
. (4.62)

But jν =
󰁕
dEPν(E)N(E), so the source function is

Sν =
jν
αν

=
2ν2

c2
1

p+ 2

󰁕
dEN(E)Pν(E)󰁕

dEN(E)Pν(E)/E
. (4.63)

Now put in the expression for Pν(E) ∝ F (x) and change integration variables from E =

γmec
2 to x = ω/ωc as we did earlier. This makes the integrals dimensionless, and shows us

the scaling with ν,

Sν =
2ν2

c2
mc2

p+ 2

󰀕
4πνmc

3eB sinα

󰀖1/2 󰁕
dxx(p−3)/2F (x)󰁕

dxx(p−3)/2F (x)x1/2
∝ ν5/2. (4.64)

The overall synchrotron spectrum therefore looks like
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turning over from the optically thin scaling ∝ ν−(p−1)/2 at high frequency to ∝ ν5/2 at low

frequencies where the source becomes optically thick to synchrotron self-absorption.

By comparing this with Sν = (2ν2/c2)kBTb, we see that the brightness temperature is

kBTb

mec2
=

󰀣
ω

3
2

eB
mec

sinα

󰀤1/2 󰀝
1

p+ 2

󰁕
dxx(p−3)/2F (x)󰁕

dxx(p−3)/2F (x)x1/2

󰀞
. (4.65)

If we look at frequency ω, that emission is primarily coming from electrons with energy γω
such that ω = ωc = γ2

ω(3eB/2mec) sinα, so we can write

kBTb

mec2
= γω

󰀝
1

p+ 2

󰁕
dxx(p−3)/2F (x)󰁕

dxx(p−3)/2F (x)x1/2

󰀞
. (4.66)

This then gives us a way to think of the self-absorbed spectrum. At each frequency, we

calculate the γ of the electrons that radiate the peak of their spectrum at that frequency,

i.e. we calculate γω. The brightness temperature at that frequency is then given by kBT ≈
γωmec

2 ∝ ν1/2 and therefore Sν ∝ ν5/2. This is the back of the envelope understanding of

the spectrum that is often given in the books.

Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

• Cyclotron radiation from non-relativistic electrons. Cyclotron frequency ωc = eB/mec =,

or fc = 2.8 MHz (B/G).

• Synchrotron. Relativistic gyration frequency ωB = eB/γmec. Power radiated per

electron P = (4/3)γ2β2σT cUB. Distinction between “emitted” and “received” power.

Angular distribution of radiation from a relativistic charge – beaming into angle 1/γ.

Characteristic frequency of radiation ωc = (3/2)γ3ωB sinα (roughly 1/pulse duration).

Broad spectrum ∝ x1/3 (x = ω/ωc ≪ 1) or x1/2e−x (x ≫ 1), peaks at x ≈ 0.3. Exact

form

P⊥(ω) =

√
3e3B sinα

4πmec2
[F (x) +G(x)] P⊥(ω) =

√
3e3B sinα

4πmec2
[F (x)−G(x)]

• For a power law distribution of electrons, dP/dV dω ∝ B(p+1)/2ω−(p−1)/2. Typically,

p ≈ 2.5 giving α = (p− 1)/2 ≈ 0.7.
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• Einstein coefficients. A21 = B21(2hν
3/c2), g1B12 = g2B21. Correction to absorption co-

efficient for stimulated emission. jν = (hν/4π)n2A21φ(ν), αν = (hν/4π)n1B12φ(ν)(1−
e−hν/kBT ).

• Synchrotron self-absorption. Sν ∝ ν5/2, kBTb ≈ γmec
2 where γ is such that ωc = ω.

• Important features of synchrotron radiation. Polarization as a characteristic feature of

synchrotron radiation. Minimum energy argument. Cooling timescales for synchrotron

and inverse Compton. The inverse Compton catastrophe. Application to radio galax-

ies, magnetic fields of spiral galaxies.

Reading

• Synchrotron derivation: RL section 6.4, Jackson 14.6, Longair volume 2. Westfold

(1959) ApJ.

• Minimum energy argument, Burbidge 1959. Inverse Compton catastrophe, Readhead

1994, Kelleman & Pauliny-Toth 1969.
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5. Fermi Acceleration and Plasma Effects

These are notes for part five of PHYS 642 Radiative Processes in Astrophysics. We

discuss two distinct topics: the origin of power-law distributions of particle energy, in partic-

ular Fermi acceleration in strong shocks as a generic origin of power-law distributions, and

propagation of electromagnetic waves through plasma, including the effects of dispersion and

Faraday rotation.

5.1. General way to make a power law spectrum of particle energies

A characteristic spectral index for synchrotron is α ≈ 0.7 (Fν ∝ ν−0.7) which implies

p ≈ 2.5 (N(γ) ∝ γ−2.5) (recall that α = (p − 1)/2). This raises the question of why the

electron distribution is a power law and in particular why p has this value.

We already have a clue as to how get a power law from our discussion of Compton

scattering by optically thin relativistic electrons (see also Rybicki and Lightman 7.5). There,

the photon energy increased by the same fractional amount ∆󰂃/󰂃 on each scattering, but

each subsequent scattering is less likely by a factor of the optical depth τ . The resulting

spectrum is a power law.

Here the idea is similar: imagine a scattering process for particles in which the energy

of the particle changes by ∆󰂃/󰂃 = B on average, but there is also a probability per collision

that the particles escape Pesc. If the mean time between collisions is tc, then the particle

energy obeys d󰂃/dt = 󰂃B/tc or 󰂃 = 󰂃0e
Bt/tc . On the other hand, the number of particles drops

according to dN/dt = −NPesc/tc so that N = N0e
−tPesc/tc . Dividing these distributions gives

the energy distribution

dN

d󰂃
=

dN

dt

dt

d󰂃
∝ e−Pesct/tce−Bt/tc ∝ e−(Bt/tc)(1+Pesc/B) ∝

󰀕
󰂃

󰂃0

󰀖−(1+Pesc/B)

. (5.1)

A power law distribution of energies is the result, with index p = 1 + Pesc/B.

5.2. Second order Fermi acceleration

Originally, Fermi suggested a mechanism in which particles would be accelerated on

colliding from moving clouds of gas. For example, consider the collision of a particle with a

cloud moving with velocity V to the right. The particle travels to the left with velocity v

and makes an angle θ with respect to the normal to the surface.
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The way to analyze this collision is to move into the frame of the cloud. The cloud

is much more massive than the particle and so in that frame we can think of the particle

reversing it’s momentum but not changing its energy. The incoming energy and momentum

in the rest frame of the cloud are E ′ = γV (E + pV cos θ) and p′x = γV (p cos θ + V E/c2),

where γV refers to γ calculated using the velocity V of the cloud. In the collision, the energy

is unchanged, but the x-component of momentum reverses. Now transforming back, the

energy of the particle post-collision in the original frame is E ′′ = γV (E
′ + V p′x) or

E ′′ = Eγ2
V

󰀗
1 + 2

pV

E
cos θ +

V 2

c2

󰀘
(5.2)

or to second order in V/c,

∆E

E
=

2vV

c2
cos θ + 2

󰀕
V

c

󰀖2

. (5.3)

To average over angles, we note that the rate of encounters of the particle with a cloud

depends on whether the collision is a trailing collision or head-on collision. Specifically, the

rate of encounters is ∝ 1 + (V/c) cos θ). Therefore

〈∆E

E
〉 =

󰁕 1

−1
dµ(1 + (V/c)µ)(2(V/c)2 + (2V v/c2)µ)

󰁕 1

−1
dµ(1 + (V/c)µ)

(5.4)

which for v = c is 〈∆E/E〉 = (8/3)(V/c)2, second order in V/c.

The fact that the acceleration is only second order makes it inefficient, but perhaps a

more important objection to this mechanism is that the values of Pesc and B, and therefore

the power law index p, are not expected to be generic. They would presumably depend on

the environment that the particle happens to find itself in.

5.3. First order Fermi acceleration by strong shocks

This is a mechanism in which particles scatter back and forth across a shock. Consider

a strong shock9 in gas with γ = 5/3. You may recall that in the frame of the shock, the

incoming supersonic matter is slowed by the shock to a speed us/4, and compressed by a

factor of 4 (ρ2 = 4ρ1). Here is a picture of the shock in the lab frame and in the frame

moving with the shock:

9These results come from applying conservation of mass, momentum and energy across the shock. Mass

conservation is ρ1u1 = ρ2u2. For a strong shock, the force balance is P2 ≈ ρ1u
2
1.
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The idea is that a relativistic particle which has an isotropic momentum distribution on one

side of the shock (ie. is “at rest” on average relative to the fluid) moves across the shock.

What does it see? If we draw a picture of the shock in a frame moving with the upstream

or with the downstream fluid, we see

The particle that crosses the shock encounters fluid moving towards it with speed 3us/4 no

matter which direction it crosses the shock. This is the key to this mechanism: the particle

always undergoes a head-on collision, and so the resulting acceleration is first order. After

crossing the shock, the particle scatters and becomes isotropic in the new fluid, and in doing

so gains energy.

To calculate the energy gain, we can use our results for second order Fermi acceleration,

but allowing for the fact that p′x vanishes after the scattering rather than being reversed. The

first order term is therefore ∆E/E = (V v/c2) cos θ where here V corresponds to 3us/4, the

velocity of the incoming fluid. We assume the particle is relativistic, and set v = c. Averaging

over angles
󰁕 1

0
dµ2µ(V µ/c) = 2V/3c (the factor of 2 in the integral comes from normalizing

the probability over incoming angles). For a round trip crossing from the downstream region

into the upstream region, and back again, the energy gain is B = δE/E = 4V/3c = us/c.

The escape probability Pesc comes from the probability that a particle will be swept

downstream from the shock rather than crossing the shock again. The rate at which particles

cross the shock is (1/2)
󰁕 1

0
dµNcµ = Nc/4 in either direction. The rate at which particles
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are advected away is Nus/4. Therefore Pesc ≈ us/c.

Putting these values of B and Pesc into our result for the particle spectrum, we predict

N(E)dE ∝ E−2dE (5.5)

very close to observed values (which are p ≈ 2–3). The importance of this mechanism is that

it provides a generic way to make a power law distribution with about the right index, that

should apply across many astrophysical environments (shocks are ubiquitous). Corrections

to the index p come from changing the shock compressibility (for example a radiative shock

can have ρ2 ≫ ρ1) or from including the effect of the pressure of the accelerated particles on

the shock itself.

5.4. Evolution of the particle spectrum

The evolution of the particle spectrum is described by a diffusion loss equation

dN(E)

dt
=

d

dE
[b(E)N(E)] +Q(E, t) +D∇2N(E) (5.6)

where the particles are injected at a rate Q(E), cool according to dE/dt = −b(E), and the

diffusion term represents spatial diffusion, for example diffusion of particles away from a

source. A derivation can be found in Longair (I am using his notation and following his

approach here), it is similar to our derivation of the Kompaneet’s equation earlier.

Now let’s solve this equation and look for a steady-state solution (dN/dt = 0) for a

spatially uniform distribution of sources (so that we can ignore the spatial diffusion term).

We take the injection term to be Q(E) = κE−p. Then d(bN)/dE = −Q(E) has a solution

(assuming N → 0 for large energies)

N(E) =
κE−(p−1)

(p− 1)b(E)
. (5.7)

If synchrotron losses set the cooling rate of particles, b(E) ∝ E2, and we expect N(E) ∝
E−(p+1). Therefore for particles that have had sufficient time to cool, the energy spectrum of

the particles will be steeper than the initial spectrum by one power of E. For lower energy

particles that have not yet had time to cool, the spectrum will correspond to the injection

spectrum. Therefore we expect a break:
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The energy of the break tells you about the lifetime of a given source.

5.5. Propagation of electromagnetic waves in a plasma: dispersion

We now turn to a different topic and consider the propagation of EM waves through

plasma. In other words, we begin to ask what effect does intervening gas have on the radiation

from an astrophysical source as it propagates towards us? First consider an unmagnetized

plasma. In that case, there are two effects: only waves with frequencies larger than the

plasma frequency can propagate, and the group velocity depends on the frequency, leading

to dispersion.

To see what electromagnetic waves look like in a plasma, we must solve Maxwell’s

equations, in particular

∂ 󰂓E

∂t
= c󰂓∇× 󰂓B − 4π 󰂓J

∂ 󰂓B

∂t
= −c󰂓∇× 󰂓E. (5.8)

For a plasma, we must include the term 4π 󰂓J in Ampere’s law since the electric field in the

wave drives a current. We will see that this leads to a difference in the speed of the wave

compared to in vacuum. We will look for a solution 󰂓E = 󰂓exExe
−iωtei

󰂓k·󰂓r.

To determine the current density 󰂓J , we write the equation of motion for the electrons

−iωmevx = −eEx which gives vx = −ieEx/meω. We ignore the motion of the ions, which

is valid since Amp ≫ me and the corresponding velocity is much lower. The current is
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󰂓J = −ene󰂓ve, or

Jx = i
nee

2

meω
Ex. (5.9)

Note that the current and electric field are π/2 out of phase, and therefore 〈 󰂓J · 󰂓E〉 = 0: there

is no net work done on the plasma by the wave. Therefore the wave propagates without

dissipation.

The next step is to write 󰂓∇× 󰂓B ∝ 󰂓E using the fact that 󰂓J ∝ 󰂓E,

i󰂓k × 󰂓B =
4π 󰂓J

c
− iω 󰂓E

c
= − iω

c
󰂃 󰂓E (5.10)

where we have introduced the dielectric constant of the plasma 󰂃,

󰂃 = 1− 4πnee
2

me

1

ω2
= 1−

ω2
p

ω2
(5.11)

which defines the plasma frequency ω2
p = 4πnee

2/me.

Now we solve for the disperson relation for the wave. Maxwell’s equations are

i󰂓k × 󰂓B = − iω

c
󰂃 󰂓E i󰂓k × 󰂓E =

iω

c
󰂓B (5.12)

which gives

󰂓k × (󰂓k × 󰂓E) = −
󰀓ω
c

󰀔2

󰂃 󰂓E (5.13)

which is the dispersion relation for a transverse wave (󰂓k. 󰂓E = 0) with ω2 = c2k2/󰂃, or

k =
1

c

󰁴
ω2 − ω2

p. (5.14)

We see that for ω > ωp, k is real and the wave propagates, but for ω < ωp, k is imaginary

and the wave evanesces. Physically, what’s going on is that at high frequency, the electrons

don’t have time to accelerate, and therefore the current is small and has little effect on the

wave. At low frequencies, a significant current can build up during a wave period that acts

to “short out” the wave (recall that there is no static electric field inside a conductor, ie. the

electric field vanishes in the limit ω → 0). Putting in numbers, we get a useful formula

fp =
ωp

2π
= 9.0 kHz

󰀓 ne

cm−3

󰀔1/2

. (5.15)

A terrestrial application is to the Earth’s ionsphere in which ne ∼ 104 − 105 cm−3 and radio

waves with frequencies below a few MHz are reflected back towards the Earth’s surface.
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The dispersion relation gives the wave phase speed as ω/k = c/
√
󰂃 = c/n > c where the

refractive index n =
√
󰂃. The group velocity is ∂ω/∂k = cn < c, and depends on frequency.

Therefore electromagnetic waves in a plasma are dispersive, and waves of different frequencies

from a source will arrive at different times. This effect is quantified by the dispersion measure

DM, which is defined as follows. First we write down the travel time of a wave from a source

at distance d,

t =

󰁝 d

0

dl

cn
≈

󰁝 d

0

dl

c

󰀕
1 +

1

2

󰀓ωp

ω

󰀔2
󰀖

(5.16)

where we take ω ≫ ωp. The delay due to the plasma is

∆t =
2πe2

mec

1

ω2

󰁝 d

0

dl ne =
2πe2

mec

1

ω2
DM ≈ 3 ms

󰀕
DM

pc cm−3

󰀖󰀕
1 GHz

ν

󰀖2

(5.17)

where DM is the dispersion measure, the integrated electron density along the line of sight.

The units of dispersion measure are usually taken to be cm−3 pc.

This effect is seen in the arrival times of pulses from radio pulsars, and is often used as

a measure of distance to the pulsar. Given a model to the electron density in the Galaxy,

the distance can be inferred from the measured DM.

5.6. Faraday rotation

Now we include a magnetic field in the plasma. We choose our axes so that the magnetic

field lies in the z-direction, and consider a wave propagating in the x-z plane

The equations of motion for an electron are

−iωmevx = −eEx −
evyB

c
− iωmevy = −eEy +

evxB

c
− iωmevz = −eEz (5.18)

where 󰂓E is the electric field in the wave, and 󰂓B is the magnetic field in the plasma. We

assume that the magnetic field in the wave 󰂓B′ is much smaller than the field in the plasma.
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We solve for the current as before, and find

Jx =
ω2
p

4π

1

ω2
c − ω2

(−iωEx − ωcEy)

Jy =
ω2
p

4π

1

ω2
c − ω2

(−iωEy + ωcEx)

Jz =
i

ω

ω2
p

4π
Ez (5.19)

where ωp is the plasma frequency and ωc = eB/mec is the cyclotron frequency.

The effect of the magnetic field is that 󰂓J is no longer in the same direction as 󰂓E because

of deflections by the magnetic field. Instead of a scalar dielectric constant, we instead must

introduce a dielectric tensor such that

i󰂓k × 󰂓B′ =
4π 󰂓J

c
− iω 󰂓E

c
= − iω

c
󰂃 · 󰂓E (5.20)

where

󰂃 =

󰀳

󰁃
S −iD 0

+iD S 0

0 0 P

󰀴

󰁄 (5.21)

with

S = 1−
ω2
p

ω2 − ω2
c

D = −
ω2
pωc

ω(ω2 − ω2
c )

P = 1−
ω2
p

ω2
. (5.22)

(Note that for no magnetic field (ωc = 0), S = P and D = 0, reducing to the result we had

earlier.)

What does this mean for wave propagation? Consider an electromagnetic wave prop-

agating along the magnetic field, 󰂓k = k󰂓ez, Ez = 0. The dispersion relation is given by
󰂓k × (󰂓k × 󰂓E) = −(ω2/c2)󰂃 · 󰂓E, which in components is

−k2Ex = −ω2

c2
(SEx − iDEy) − k2Ey = −ω2

c2
(iDEx − SEy) (5.23)

or in terms of n = ck/ω,

(S − n2)Ex = iDEy (S − n2)Ey = −iDEx (5.24)

giving

(n2 − S)2 = D2 ⇒ n2
± = S ±D. (5.25)

There are two different solutions for n. Writing them out in terms of the various frequencies,

n2
+ = 1−

ω2
p

ω(ω − ωc)
n2
− = 1−

ω2
p

ω(ω + ωc)
. (5.26)
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To see what these two modes look like, plug each value of n back into equations (5.24). The

mode with n = n+ has Ex = −iEy and the mode with n = n− has Ex = +iEy.

We see therefore that the modes are left and right circularly polarized waves travelling

with different speeds. Physically, this is because the electrons “want to” spiral around the

field line in a particular direction. The wave that rotates in the right direction propagates

more easily.

For ω ≫ ωc,ωp, we can expand

n± ≈ 1− 1

2

ω2
p

ω2

󰀓
1± ωc

ω

󰀔
. (5.27)

As the two polarizations propagate they build up a phase difference

∆φ =

󰁝
dl∆k =

󰁝
dl

ω

c
∆n =

󰁝 d

0

dl

c

ωcω
2
p

ω2
. (5.28)

The effect on a linearly polarized wave is that the angle of polarization rotates by an angle

∆φ/2. It is easiest to see this geometrically, as in the following diagram:

We define the rotation measure RM as a measure of this rotation. The plane of polarization

rotates by

∆θ =
1

2

󰁝 d

0

dl

c

ωcω
2
p

ω2
=

e3

2πm2
ec

2

1

ν2

󰁝 d

0

dl neB󰀂 (5.29)

where we write B󰀂 because although here we have consider only propagation along the

direction of B, the result holds more generally in which case the component of the magnetic

field along the line of sight B󰀂 appears in the integral. The rotation measure RM is defined so

that ∆θ = RMλ2. It gives a measure of the electron-density-weighted line of sight magnetic

field.
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Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

• Origin and evolution of electron spectrum. How to generate a power law energy dis-

tribution. Fermi acceleration. Scattering across a strong shock front gives p ≈ 2. A

break in the electron spectrum indicates the energy where the cooling time equals the

age of the population.

• Electromagnetic waves in a plasma. Plasma frequency ω2
p = 4πnee

2/me, or fp =

9 kHz n
1/2
e . Refractive index n2 = 1 − ω2

p/ω
2. Dispersion ∆t = (2πe2/mec)(DM/ω2),

where DM =
󰁕
ne dl. Faraday rotation. Rotation measure ∆θ = RMλ2, RM ∝󰁕

neB󰀂 dl.

Reading

• Electron spectrum: good discussions are in Longair and Kulsrud 12.7.

• Electron model for Galaxy used to interpret DM measurements: Taylor & Cordes 1993
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6. Atoms and Molecules

These are notes for part six of PHYS 642 Radiative Processes in Astrophysics. We now

turn to bound electrons in atoms and molecules.

6.1. The Saha equation

We first want to understand the level of ionization of different species in thermal equi-

librium for different temperature and density conditions. Consider the ionization and recom-

bination of hydrogen10

The ionization potential is χH = 13.6 eV = (mp + me − mH)c
2 (for now, we ignore levels

other than the ground state and assume that recombination occurs into the ground state

only).

In equilibrium, the chemical potentials satisfy11

µ+ + µ− = µ0. (6.1)

For an ideal gas of particles the chemical potential is

µ = kBT ln

󰀕
n

gnQ

󰀖
+mc2, (6.2)

where “n-quantum” is

nQ =

󰀕
2πmkBT

h2

󰀖3/2

(6.3)

10It’s worth reminding ourselves of the astronomical notation here: the neutral hydrogen atom H0 is

referred to as HI, singly ionized hydrogen H+ is known as HII, etc.

11In general for a chemical reaction

aA+ bB ⇌ cC + dD

in which a particles of species A react with b particles of B to make c particles of C and d particles of D,

aµA + bµB = cµC + dµD in equilibrium. To see this, start with the Gibbs free energy G = E − TS + PV

which gives dG = −SdT + V dP + µdN . In equilibrium dG = 0 at constant pressure and temperature gives󰁓
µidNi = 0 from which the relation between the chemical potentials follows.
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and g is a degeneracy factor that counts the spin states (or other internal states of the

particles).

Therefore,

(me +mp)c
2 + kBT ln

󰀗
ne

genQ,e

np

gpnQ,p

󰀘
= mHc

2 + kBT ln

󰀕
nH

gHnQ,H

󰀖
(6.4)

or rearranging we find

nenp

nH

=
gpge
gH

󰀕
2πmekBT

h2

󰀖3/2

exp

󰀕
− χH

kBT

󰀖
(6.5)

which is the Saha equation. For hydrogen ionization, the spin degeneracy factors cancel,

since ge = 2, gp = 2 and gH = 4 (the hydrogen atom has 4 possible spin states; 3 triplet and

1 singlet state).

The half-ionization point is when the ionization fraction y = n+/n = 1/2. Since the

plasma is neutral ne = n+, so that

y2

1− y
=

1

n

󰀕
2πmekBT

h2

󰀖3/2

e−χH/kBT =
4× 10−9

ρ
T 3/2e−1.6×105/T . (6.6)

For high temperatures kBT ≫ χH y → 1 and the hydrogen is fully ionized; for low temper-

atures kBT ≪ χH y → 0 and the hydrogen is neutral. The plot below taken from Hansen

and Kawaler shows the half-ionization point as a function of ρ and T .

It is important to note that 13.6 eV corresponds to a temperature of T = 1.6 × 105 K.

Typically, the half-ionization point is a factor of ten below that value, T ≈ 104 K. The
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reason for this is that there is a large entropy gain in ionizing the atom, since two particles

are created rather than one. Even though there is an energy cost for ionizing the atom, the

free energy of the system E − TS is lowered because of the large entropy increase.

We considered only the ground state here, but in general we must include all the energy

levels of the atom. The chemical potential is then of the same form as equation (6.2) but

the factor g is replaced by the partition function12 summed over all internal energy levels

Z =
󰁓

k gke
−βEk where Ek is the energy and gk the degeneracy of level k. For ionization of

an atom between ionization states i and i+ 1, the Saha equation is then

ni+1ne

ni

=
2Zi+1

Zi

󰀕
2πmekBT

h2

󰀖3/2

e−χi/kBT (6.7)

which is the form in which it is usually given. Here χi is the energy required to ionize species

i and form species i+ 1 by removing an electron from the ground state of species i.

An immediate application of the Saha equation is to understand the sequence of spectral

types. Stars are divided into spectral types based on the species whose absorption lines

appear in their spectra.

12To see this, use the fact that the occupation number of a classical gas is e−(󰂃i−µ)/kBT (the classical limit

of the Fermi-Dirac or Bose-Einstein distributions). Then

N = V eµ/kBT

󰁝
4πp2dp

h3
e−p2/2mkBT

󰁛

i

gie
−Ei/kBT

where the sum over i is over internal energy levels Ei with degeneracies gi. This can be integrated and solved

for µ.
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6.2. Line profiles and curve of growth

Several different processes determine the shape of spectral lines. An excellent and

detailed discussion is in Mihalas “Stellar Atmospheres” chapter 9. Here we briefly discuss

three contributions.

The first is natural linewidth which arises due to the finite lifetime of a state. One way

to think of it is in terms of the uncertainty principle ∆E ∼ 󰄁/∆t. The line profile is a

Lorentzian profile13

φ(ν) =
Γ/4π2

(ν − ν0)2 + (Γ/4π)2
(6.8)

where ν0 is the frequency of the line center (the normalization here is
󰁕
dνφ(ν) = 1).

Collisions between particles give rise to collisional broadening. This also has a Lorentzian

profile, in which Γ → Γ+2νc where νc is the collision frequency, and is only important if the

time between collisions is shorter than the natural lifetime of the state. A simple model is to

assume that collisions lead to abrupt phase changes in the emitted radiation. The emitted

radiation is made up of pieces with finite length T , which have a Fourier transformed electric

field

E(ω, T ) =

󰁝 T

0

ei(ω0−ω)tdt =
exp [i(ω0 − ω)T ]− 1

i(ω − ω0)
. (6.9)

The idea is then to average over a probability distribution of collision times to get the power,

P (ω) ∝ 1

2π

󰁝 ∞

0

E󰂏E Prob(T )dT (6.10)

and with Prob(T )dT ∝ e−T/τdT this gives a Lorentzian profile with Γ = 2/τ . More sophis-

ticated theory is discussed in Mihalas’ book. For example, the kind of interactions occurring

(van der Waals, Stark effect etc.) must be included. There is also a line shift which is not

predicted by the Lorentz model but is treated by more sophisticated models.

Doppler broadening occurs because a moving atom absorbs at a slightly different fre-

quency than an atom at rest because of Doppler shifts. We should write

φ(ν) ∝ 1

(ν(1− µv/c)− ν0)
2 + (Γ/4π)2

(6.11)

13One way to get this is to repeat the calculation we did for the Thomson cross-section but for an electron

in a harmonic potential (see Rybicki and Lightman). You may also be familiar with the Lorentzian form of

cross-sections in particle or nuclear physics in which a reaction proceeds via a short-lived excited state that

decays into different channels.
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where the photon frequency seen by the atom is ν(1−µv/c). Averaging this expression over

a Maxwellian velocity distribution gives the Voigt profile. We first simplify by writing

ν
󰀓
1− vµ

c

󰀔
− ν0 = ν − ν0

󰀓
1 +

vµ

c

󰀔
− (ν − ν0)

vµ

c
(6.12)

and drop the last term which is second order in v/c. Effectively, this says that to first order

in v/c we just need to Doppler shift the line center. Then average over the particle velocity

and direction

φ(ν) =

󰀕
Γ

4π

󰀖
1√
2π

󰀕
m

kBT

󰀖3/2 󰁝 ∞

0

󰁝 1

−1

e−mv2/2kBTv2dvdµ

(ν − ν0 − ν0vµ/c)2 + (Γ/4π)2
(6.13)

(which is a convolution of a Maxwellian and Gaussian). We write the result as

φ(ν) =
1√

π∆νD
H

󰀕
a,

ν − ν0
∆νD

󰀖
(6.14)

where ∆νD = ν0(2kBT/mc2)1/2 ∼ ν0〈v〉/c is the Doppler width, a = Γ/4π∆νD compares the

two widths, and

H(a, u) =
a

π

󰁝 ∞

−∞

e−y2dy

a2 + (u− y)2
(6.15)

is the Voigt function. This gives the general shape of spectral lines.

The line shape gives rise to a distinctive curve of growth, which is a plot of the equivalent

width of a spectral line against the column of absorbers. The equivalent width is a measure

of the total absorption or emission in a line, and is calculated as the width of the underlying

continuum that would be needed to make up the emission or absorption in the line.

As the number of absorbers increases along the line of sight, measured by the number of

absorbers per unit area N , the absorption increases, as in the following plot:
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The curve of growth is a plot of EW against N which has a distinct shape determined by

the Voigt profile.

The EW at first increases linearly with N , but then flattens off as the line becomes satu-

rated (EW∝
√
lnN), later rising again as the Lorentzian wings of the Voigt profile become

important (EW∝
√
N).

6.3. A reminder of hydrogen-like atoms

Let’s give a few reminders about hydrogen-like atoms that are useful for estimates. The

binding energy is

χH =
1

2
α2Z2mec

2 = 13.6 eV Z2, (6.16)
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the Bohr radius is

a0 =
󰄁

mec

1

Zα
=

0.53 Å

Z
(6.17)

where

α =
e2

󰄁c
=

1

137
(6.18)

is the fine structure constant. The classical electron radius is r0 = α2Za0 The spacing

between energy levels is

∆Enm = χH

󰀕
1

n2
− 1

m2

󰀖
. (6.19)

Also, now is a good time to remind ourselves of the absorption line series of hydrogen.

The Lyman series corresponds to transitions to n = 1. The Ly limit is 912Å, Lyα (n = 2

to n = 1) is 1216Å, Lyβ (n = 3 to n = 1) is 1025Å. The Balmer series corresponds to

transitions to n = 2. The Balmer limit is 364.6 nm, Hα (n = 3 to n = 2) is 656.3 nm, Hβ

(n = 4 to n = 2) is 486.1 nm.

6.4. Calculation of radiative transitions

In this section, we summarize the main steps in calculating radiative transitions in

atoms. We start with Fermi’s Golden Rule from time-dependent perturbation theory in

non-relativistic quantum mechanics. We consider two eigenstates of the Hamiltonian |i〉 and

|f〉 , e.g. Ĥ0 |i〉 = E0
i |i〉 , and perturb the Hamiltonian Ĥ = Ĥ0 + Ĥ1. The transition rate

from state i to f is

Rif =
2π

󰄁

󰁝 󰁜

k

d3pk
h3

󰀏󰀏󰀏〈f | Ĥ1 |i〉
󰀏󰀏󰀏
2

δ

󰀣
E0

i − E0
f −

󰁛

k

Ek

󰀤
δ

󰀣
󰂓p0i − 󰂓p0f −

󰁛

k

󰂓pk

󰀤
(6.20)

where the product k is over all final state particles, and the delta-functions enforce energy

and momentum conservation. This is often abbreviated as

Rif =
2π

󰄁
|Mfi|2 ρ(E) (6.21)

where Mfi is the matrix element connecting the initial and final states, and ρ(E) represents

the phase space of the outgoing particles.

To write down Ĥ1 for radiative transitions, we need the Hamiltonian of a (non-relativistic)

charged particle in an electromagnetic field,

H =
(󰂓p− q 󰂓A/c)2

2m
+ qφ (6.22)
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where 󰂓A and φ are the vector and scalar potentials. This Hamiltonian recovers the correct

equations of motion for the charged particle. Expanding the first term, we write

Ĥ0 =
p̂2

2m
− eφ (6.23)

and

Ĥ1 =
ep̂ · Â
mec

+
e2

2mec2
Â · Â (6.24)

(here we have chosen the Coulomb gauge 󰂓∇· 󰂓A = 0 so that [Â, p̂] = 0). These terms represent

one and two photon processes. Their ratio is (nγa0)
−1/2 where nγ is the photon density, so

that the first term dominates as long as the number of photons per atom is small.

The Hamiltonian for the electromagnetic field is

HEM =
1

8π

󰁝
d3󰂓r

󰀃
E2 +B2

󰀄
=

1

8π

󰁝
d3󰂓r

󰀥󰀕
−1

c

∂A

∂t

󰀖2

+
󰀓
󰂓∇× 󰂓A

󰀔2
󰀦
. (6.25)

The photon field is quantized by writing

Â =
󰁛

󰂓k,λ

󰀕
2π󰄁c2

ω

󰀖1/2 󰁫
â󰂓k,λ󰂓󰂃

󰀓
󰂓k,λ

󰀔
ei(

󰂓k·󰂓r−ωt) + â†󰂓k,λ󰂓󰂃
󰀓
󰂓k,λ

󰀔
e−i(󰂓k·󰂓r−ωt)

󰁬
(6.26)

where â and â† are annilation and creation operators, satisfying [â󰂓k,λ, â
†
󰂓k,λ

] = δ󰂓k,󰂓k′δλ,λ′ . Here,

󰂓k is the photon wavevector and λ is the spin. This should be familiar to you if you think back

to the harmonic oscillator. Just as in that case, in terms of these operators, the Hamiltonian

is

Ĥ =
󰁛

󰂓k,λ

󰄁ω
󰀕
â󰂓k,λâ

†
󰂓k,λ

+
1

2

󰀖
, (6.27)

and we also have

â󰂓k,λ

󰀏󰀏󰀏n󰂓k,λ〉 =
󰁳

n󰂓k,λ

󰀏󰀏󰀏n󰂓k,λ − 1〉 â†󰂓k,λ

󰀏󰀏󰀏n󰂓k,λ〉 =
󰁴

n󰂓k,λ + 1
󰀏󰀏󰀏n󰂓k,λ + 1〉 . (6.28)

The idea then is that the annhilation and creation operators inside the Â factors in the

perturbing Hamiltonian Ĥ1 couple the photon states in |i〉 and |f〉 . For example, 〈1 | 〈φn |
Ĥ1 |φm〉 |0〉 represents spontaneous emission from statem to n with the emission of a photon.

Now we make a dipole approximation. Substituting our expression for Â into Ĥ1, we see

that we have to evaluate

〈f | e−i󰂓k·󰂓r󰂓󰂃 · p̂ |i〉 (6.29)
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where we drop the prefactor, including the â and â† operators that couple the photon states.

The approximation is to recognize that kr ∼ (ω/c)a0 ∼ Zα/2 ≪ 1 and so ei
󰂓k·󰂓r ∼ 1. Just as

in the classical dipole approximation, we ignore phase changes across the source. Secondly,

we write

󰂓󰂃 · 〈f | p̂ |i〉 = m󰂓󰂃 · 〈f | dr̂
dt

|i〉

=
im

󰄁
󰂓󰂃 · 〈f | [Ĥ, r̂] |i〉

=
im

󰄁
(E0

f − E0
i )󰂓󰂃 · 〈f | r̂ |i〉

= imω󰂓󰂃 · 〈f | r̂ |i〉 . (6.30)

Now we have everything we need to evaluate the rate. We discuss two aspects: first,

the spatial integrals which give rise to selection rules for the transitions, and then estimate

the rate of bound-bound transitions.

6.5. Selection rules from the spatial integral

If the initial and final states are hydrogen-like states, then we need to evaluate

〈ψm | 󰂓󰂃 · 󰂓r |ψk〉 =

󰁝 ∞

0

dr r2 R󰂏
nf lf

(r) r Rnili(r)

󰁝
dΩY 󰂏

lfmf
(θ,φ)󰂓󰂃 · 󰂓er Ylimi

(θ,φ). (6.31)

For the angular integral, it is useful to write

󰂓󰂃 · 󰂓er = 󰂃x sin θ cosφ+ 󰂃y sin θ sinφ+ 󰂃z cosφ

=

󰁵
4π

3

󰀕
󰂃zY1,0 +

−󰂃x + i󰂃y√
2

Y1,1 +
󰂃x + i󰂃y√

2
Y1,−1

󰀖
, (6.32)

which reduces the angular integral to an integral of three Ylm’s,

󰁝
dΩY 󰂏

lf ,mf
(θ,φ)Yl,mYli,mi

(θ,φ). (6.33)

Selection rules arise because these integrals are non-vanishing only for particular combi-

nations of initial and final quantum numbers. For example, the azimuthal angular integration

is 󰁝
dφ e−imfφeimφeimiφ = 2πδ(m−mf +mi) (6.34)
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which tells us that mf −mi = m = 1, 0, or −1. Choosing our z axis to lie along the photon

propagation direction, 󰂃z = 0, we see that m = ±1 only, or

∆m = mf −mi = ±1 (6.35)

which is our first selection rule. For example a transition to the ground state has mf = 0 and

therefore must have m = −mi. If mi = 1 then m = −1 and the photon has a polarization

󰂃x + i󰂃y (third term in eq. [6.32]), carrying away the angular momentum of the initial state.

Another selection rule that is simple to see is that the parity must change so that the

radial integral is non-vanishing
󰁕
d3󰂓r ψ󰂏

f󰂓rψi. Since the parity is (−1)l, we conclude that l

must change, and the angular integral gives the constraint

∆l = ±1 (6.36)

(e.g. you could check the simple case lf = 0 and use the fact that Y0,0 = 1/
√
4π =constant).

Selection rules for multi-electron atoms are more complex; see Rybicki and Lightman

for details. It is important to note that the selection rules we derived here can be violated

by higher order processes, e.g. magnetic dipole or electric quadrupole transitions.

6.6. Bound-bound transitions

We can now use our results so far to estimate a typical bound-bound transition rate:

Rif ∼ 2π

󰄁

󰀥
e

mec

󰀕
2π󰄁c2

ω

󰀖1/2

αmec

󰀦2
4π(󰄁ω)2

c3h3
(6.37)

where we use equation (6.26) to estimate the size of Â, and p ∼ αmec for hydrogen, and

ignore the overlap integrals; we’re just trying to estimate the magnitude here. The final

factor is the phase space for the outgoing photon. Cancelling factors gives

Rif ∼ 2α2ωe2

󰄁c
∼ 2α3ω. (6.38)

Now assume a transition to the hydrogen ground state to get the energy scale, i.e. 󰄁ω ∼
(1/2)α2mec

2. Therefore

Rif ∼ α5mec
2

󰄁
∼ α4 c

a0
∼ 1010 s−1. (6.39)

If we had kept the Z scalings, we would find Rif ∝ Z4.
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A concrete example is the 2p → 1s transition in hydrogen (Lyα). The energy is 󰄁ω21 =

(3/8)α2mec
2. The radial integral in that case is

󰁝 ∞

0

R󰂏
10(r)R21(r)r

3dr =
24√
6

󰀕
2

3

󰀖5

a0 (6.40)

where we use R10(r) = 2e−r/a0/a
3/2
0 and R21 = re−r/2a0/(

√
24a

5/2
0 ). Averaging over m states

(1/3)
󰁓1

m=−1 R2p→1s(m) gives the final result

R2p→1s = A21 =

󰀕
2

3

󰀖8
mec

2

󰄁
α5 = 0.6× 109 s−1 (6.41)

(the Einstein A coefficient for the 2p → 1s transition). This is just over an order of magnitude

below our simple estimate.

The Einstein relations allow us to get the cross-section for the reverse process, bound-

bound absorption. Using the results we wrote down relating jν to the Einstein coefficient

A and αν to the Einstein coefficient B (see the section on synchrotron self-absorption), we

have

σ12 =
hν

4π
φ(ν)B12 =

g2
g1
φ(ν)

c2

8πν2
A21 =

g2
g1
φ(ν)

λ2

8π
A21 (6.42)

where we use the Einstein relations to relate B12 to A21. Substituting in our expression for

A21 and ν21 gives

σ12 = f
πe2

mec
φ(ν) (6.43)

where the oscillator strength f = (g2/g1)(2
13/310).

We expect the same scalings for A and σ for other transitions, but the prefactor will be

different, depending on the overlap of the wavefunctions. For example, for transitions to the

ground state, f1n ∝ 1/n3.

6.7. Bound-free transitions: photoelectric effect

Now consider absorption of a photon that excites an electron into the continuum, the

photoelectric effect. Fermi’s Golden Rule for this case is

R =
2π

󰄁

󰁝
d3󰂓pe
h3

|Mfi|2 δ
󰀕
󰄁ω − χ− p2e

2m

󰀖
(6.44)

where we integrate over the phase space of the outgoing electron, and χ is the ionization

energy. This can be simplified if we write d3󰂓p = dΩp2dp = dΩmpedEe, and integrate over
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energy using the delta function, giving

R =
2π

󰄁

󰁝
dΩ

mpe
h3

|Mfi|2 (6.45)

where pe = 2m
√
󰄁ω − χ. Writing dR/dΩ = cdσ/dΩ, we obtain an expression for the differ-

ential cross-section
dσ

dΩ
=

2π

󰄁c
mpe
h3

|Mfi|2 . (6.46)

The matrix element is the same as previously,

Mfi =
e

mec

󰀕
2π󰄁c2

ω

󰀖1/2 󰁝
d3󰂓r ψ󰂏

f 󰂓󰂃 · 󰂓p ei
󰂓k·󰂓r ψi. (6.47)

As an example, let’s take the initial state to be the hydrogen ground state,

ψi =
1√
π

󰀕
1

a0

󰀖3/2

e−r/a0 (6.48)

and we represent the electron part of the final state as a plane wave (Born approximation)

ψf ∝ ei󰂓pe·󰂓r/󰄁, (6.49)

giving

〈f | 󰂓󰂃 · p̂ei󰂓k·󰂓r |i〉 = 󰂓󰂃 · 󰂓pe〈f | ei
󰂓k·󰂓r |i〉 , (6.50)

or

|Mfi|2 =
󰀕

e

mec

󰀖2
2π󰄁c2

ω

1

πa30
(󰂓󰂃 · 󰂓pe)2

󰀏󰀏󰀏󰀏
󰁝

d3󰂓r ei(
󰂓k−󰂓pe/󰄁)·󰂓re−r/a0

󰀏󰀏󰀏󰀏
2

. (6.51)

The integral is 󰁝
d3󰂓r e−i󰂓∆·󰂓re−mur =

8πµ

(µ2 +∆2)2
, (6.52)

which gives (after simplifying)

dσ

dΩ
= 32a20

󰀓pec
󰄁ω

󰀔󰀕
󰂓󰂃 · 󰂓pe
mec

󰀖2
1

(1 + a20∆
2)4

. (6.53)

where

󰄁󰂓∆ = 󰄁󰂓k − 󰂓pe (6.54)

is the momentum transfer and recall that energy conservation implies Ee = p2e/2me = 󰄁ω−χ.

A simplification can be made if we assume 󰄁ω ≫ χ or Ee ≈ 󰄁ω, then

dσ

dΩ
= 2

√
2α8a20

󰀕
Ee

mec2

󰀖−7/2
sin2 θ

(1− ve cos θ/c)
4 (6.55)
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where the photon direction defines the z-axis (θ = 0). Keeping the scaling with Z for

hydrogen-like atoms, we find dσ/dΩ ∝ Z5. Integrating over angles we find the total cross-

section is

σbf =
28π

3
αa20

󰀓 χ

󰄁ω

󰀔7/2

(6.56)

(which agrees with Rybicki and Lightman eq. [10.53]). The general integrated cross-section

is written in terms of the semi-classical result derived by Kramers with a multiplying Gaunt

factor (Karzas and Latter 1961)

σbf =
64π

3
√
3
ngbfα

󰀓a0
Z

󰀔2 󰀓ωn

ω

󰀔3

(6.57)

where n is the energy level, 󰄁ωn = χn = α2mec
2Z2/2n2, and gbf is the bound-free Gaunt fac-

tor. We might have guessed σ ∼ (πa20)α (geometrical cross-section multiplied by interaction

strength), but there is also an additional correction term

󰀕
ω

ωn

󰀖−3

∼
󰀕

v2e
α2Z2c2

󰀖−3

(6.58)

which comes from the overlap between the two wavefunctions. The factor inside the brackets

is roughly the velocity of the ejected electron divided by the orbital velocity.

As a function of frequency, the cross-section looks like

Note that the rough scaling between absorption edges is σbf ∝ 1/ν3 which is the same as

the free-free cross-section σff . This means that the thermally-averaged opacity is also a

Kramers’ opacity κbf ∝ ρT−7/2.
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6.8. Bound-free transitions: recombination and the Milne relation

The inverse of the photoelectric effect is recombination. To calculate this we can use

considerations of thermal equilibrium just as we did when deriving the Einstein relations.

We start by deriving the Milne relation,

σbf

σfb

=
󰀓mcv

hν

󰀔2 geg+
2gn

. (6.59)

To see this, first write down the number of recombinations per unit time and volume

n+neσfbvf(v)dv (6.60)

and the rate of photoionizations per unit volume

nnσbfc

󰀗
4πIν
hνc

󰀘 󰀃
1− e−hν/kBT

󰀄
dν (6.61)

where the factor in square brackets is the photon number density, and we include a correction

for stimulated emission or “stimulated recombination” in this case. In thermal equilibrium,

they must be equal

1 =
n+ne

nn

σfb

σbf

cvhν

4π

f(v)

Iν

dv

dν
. (6.62)

Now we use results for thermal equilibrium, Iν = Bν (Planck for photons),

f(v) = 4π

󰀕
m

2πkBT

󰀖3/2

v2e−mv2/2kBT (6.63)

(Maxwell-Boltzmann for the electrons), the Saha equation for n+ne/nn, and since mv2/2 =

hν − χ, mvdv = hdν and therefore dv/dν = h/mv. Simplifying, we arrive at the Milne

relation, equation (6.59).

We can apply this relation to get σfb from σbf . The quantity usually given is the

recombination coefficient (units are cm3 s−1)

〈vσfb〉 =
󰁝

vf(v)σfbdv. (6.64)

Using the expression for σbf and the Milne relation with gn = 2n2, ge = 2, g+ = 1, gives

〈vσfb〉 = 3.262× 10−6 M(n, T ) (6.65)

where

M(n, T ) =
eχn/kBT

n3T 3/2
E1

󰀕
χn

kBT

󰀖
(6.66)
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(see Cillié 1932) or summed over levels n,

〈vσfb〉 = 5.197× 10−14 λ1/2

󰀕
0.4288 +

1

2
lnλ+ 0.469λ−1/3

󰀖
cm3 s−1 (6.67)

where λ = 13.6 eV/kBT = 1.579× 105 K/T (Seaton 1959).

6.9. Summary of bound-bound and bound-free cross-sections

Let’s summarize our results so far in a form that is useful for making simple estimates

of quantities. First, bound-bound transitions. We have

A21 ≈ Z2α3ω ≈ Z4α5mec
2

󰄁
≈ 1010Z4 s−1, (6.68)

although we saw that the wavefunction overlap makes this an overestimate, for example

2p → 1s in hydrogen is 6× 108 s−1. The absorption cross-section is

σ =
g2
g1
φ(ν)A21

λ2

8π
(6.69)

or at the line center,

σ ≈ λ2

8π

A21

∆ν
(6.70)

where ∆ν is the width of the line. For example, for Lyα (n = 1–2) λ = 1216Å. If we take

∆ν ≈ A21, then σ ∼ λ2/8π = 6× 10−12 cm2.

For bound-free absorption, we have

σbf ∼ α

n5

󰀓a0
Z

󰀔2 󰀓ωn

ω

󰀔3

≈ 7× 10−18 cm2

n5

󰀓ωn

ω

󰀔3

. (6.71)

The recombination coefficient is 〈vσfb〉 ∼ 10−13 cm3 s−1 and the cross-section is

σfb ≈ 10−22 cm2
󰀓ωn

ω

󰀔󰀕
󰄁ωn

mv2/2

󰀖
1

n3
. (6.72)

6.10. Application: stellar opacities

We are now (almost) in a position to understand stellar opacities. Both free-free and

bound-free absorption have κν ∝ 1/ν3 which leads to a Kramers type opacity law, κ ∝
ρT−7/2. Although not obvious why, bound-bound transitions also have a Kramers type
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opacity law. The one opacity we have not talked about is H− opacity which is important in

the atmospheres of stars with about a solar mass.

The handouts show the main contributions to opacity as a function of density and

temperature.

6.11. Application: X-ray absorption by the ISM

X-rays are absorbed while travelling through the ISM by the photoelectric effect on

metals. The papers to look at are Morrison and McCammon (1983) and Wilms, Allen, and

McCray (2000). Using our earlier results, we expect

σbf (1 keV) ∼ 10−17 cm2

󰀕
10 eV

1 keV

󰀖3
Z4

n5
∼ 3× 10−23 cm2Z

4

n5
. (6.73)

For carbon, Z4 ∼ 1000 but its abundance relative to hydrogen by number is ∼ 10−3, so we

expect ∼ 3× 10−23 cm2 at 1 keV (per hydrogen) which agrees well with Figure 1 of Wilms

et al. (2000). This doesn’t work out so well for iron, which has Z4 ∼ (26)4 ∼ 106 and a

number abundance ∼ 10−4, which gives ∼ 3× 10−21 at 1 keV. Iron absorption is important

at several keV and above, but the number at 1 keV is the one to compare against the Wilms

et al. plot, again it compares reasonably well.

In X-ray astronomy, the absorption is measured in terms of the hydrogen column (with

assumed metal abundances). We see that σ ∼ 10−22 cm2 giving order unity optical depth

for NH ∼ 1022 cm−2.

Dust also contributes to the absorption – see the discussion in Wilms et al. (2000) who

conclude that it is not a large factor.

6.12. Application: Strömgen sphere; HII regions

Consider a hot star (O or B spectral type) in a region of constant density gas. The

radiation from the star ionizes the surrounding gas to form an HII region.
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To calculate the size of the HII region, first consider the different components of the ionizing

radiation field (ν > ν1 where hν1 = χH). The stellar radiation has a flux

Fsν =
Lν

4πr2
e−τν (6.74)

where τν is the optical depth to photoionization,

dτν = (1− x)nHσbfdr (6.75)

where x is the ionization fraction and nH is the number density of hydrogen atoms (ionized

or neutral). This flux satisfies

1

r2
d

dr

󰀃
r2Fsν

󰀄
= −(1− x)nσbfcUsν . (6.76)

The diffuse ionizing radiation from captures onto the n = 1 level satisfies

1

r2
d

dr

󰀃
r2Fdν

󰀄
= −(1− x)nHσbfcUdν + 4πjdν . (6.77)

Now add these two components and integrate
󰁕∞
ν1

dν/hν

1

r2
d

dr

󰀕
r2

󰁝 ∞

ν1

dν

hν
(Fdν + Fsν)

󰀖
= 4π

󰁝 ∞

ν1

jdν
hν

dν − (1− x)nHc

󰁝 ∞

ν1

dνσbf
(Udν + Usν)

hν
. (6.78)

On the RHS the first term is xnenHα1 where α1 is the recombination rate onto the ground

state. The second term is the photoionization rate. In steady state, the rate of ionizations

must be balanced by the rate of recombinations,

(1− x)nHc

󰁝
σbfUν

hν
dν = nHxneα (6.79)

where now we write α, the recombination coefficient for recombination onto all levels, rather

than α1. In other words, the photoionizations that occur in a steady-state HII region are all
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balanced by a recombination, but not all recombinations are to the ground state. The flux

of ionizing photons satisfies

1

r2
d

dr

󰀕
r2

󰁝 ∞

ν1

dν

hν
(Fdν + Fsν)

󰀖
= −xnHneα2 (6.80)

where α2 is the recombination coefficient for recombination onto all levels n ≥ 2. If all

recombinations were to the ground state, the number of ionizing photons would be con-

served as the photons were destroyed by photoionization and produced by recombination;

recombinations to levels other than the ground state are the sink of ionizing photons.

The radius of the HII region is the radius at which all of the ionizing photons produced

by the star have been absorbed and converted into diffuse photons. The integral of equation

(6.80) is
4π

3
R3

SnenHα2 = Ṅγ (6.81)

where Ṅγ is the rate at which the central star produces ionizing photons, and we’ve assumed

x = 1 and α2 is constant inside the HII region. This gives the radius of the Strömgen sphere

RS =

󰀣
3Ṅγ

4παbfn2

󰀤1/3

=
7 pc

(n/100)2/3

󰀕
10−13

α2

󰀖1/3
󰀣

Ṅγ

5× 1049 s−1

󰀤1/3

(6.82)

where we’ve used a value of Ṅγ appropriate for an O5 main sequence star.

For the photons with ν < ν1 produced by recombinations into the n = 2 and higher

levels, there are two limiting cases that are usually discussed. The first, case A is when the

HII region is optically thin to line photons. The second, case B is when the HII region is

optically thick to Ly series photons (corresponding to a transition from n = 1 to a higher

level). The other series escape since the populations of levels n = 2, 3, ... are tiny compared

to the population of the ground state.



– 113 –

6.13. Collisional excitation and deexcitation

If the electron density is high enough, collisions of atoms with electrons can cause

transitions between atomic levels. We write the rate of collision-induced transitions from j

to k Rjk = neγjk where γjk has units cm3 s−1. Now include these processes in the argument

for the Einstein relations. In steady-state,

nj

󰀥
󰁛

k

neγjk +
󰁛

k

BjkJ̄ +
󰁛

k<j

Ajk

󰀦
=

󰁛

k

nk

󰀃
neγkj +BkjJ̄

󰀄
+
󰁛

k>j

nkAkj. (6.83)

In thermal equilibrium, the terms involving collisions must balance, and since nk/nj =

(gk/gj)e
−Ejk/kBT we must have

γjk
γkj

=
gk
gj
e−Ejk/kBT . (6.84)

The coefficient γjk is an average of σv over the velocity distribution of the electrons

γjk = 4π

󰀕
m

2πkBT

󰀖3/2 󰁝 ∞

0

v3σjk(v)e
−mv2/2kBTdv. (6.85)

In thermal equilibrium we must have detailed balance

njf(uj)dujujσjk = nkf(uk)dukukσkj (6.86)

where uj is the velocity before the collision and uk < uj the velocity after the collision,

(1/2)mu2
k = (1/2)mu2

j − Ejk, which gives

gju
2
jσjk = gku

2
kσkj (6.87)

analogous to the Milne relation.

The cross-section is written in terms of the collision strength Ω(j, k) as

σjk =
π

gj

󰀕
󰄁

meuj

󰀖2

Ω(j, k) (6.88)

where Ω(j, k) comes from a QM calculation of the cross-section and is typically of order

unity. We can get the scalings from a classical argument which is similar to the idea of

gravitational focusing. Consider an electron approaching an ion with charge Z and radius

a0. The impact parameter b is such that the electron just hits the ion.
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Conservation of angular momentum and energy conservation gives

bvi = avf v2f = v2i +
2Ze2

ma0
. (6.89)

The cross-section is

σ = πb2 = πa20

󰀕
1 +

2Ze2

ma0v2i

󰀖
. (6.90)

The second term in the brackets dominates: using a0 = (󰄁/mec)(1/Zα), we find it is

2Z2α2c2/v2i ∼ 10Z2(T/104 K)−1, where we write vi ≈ (3kBT/me)
1/2 = 6.7 km s−1T 1/2.

The cross-section is then

σ ≈ πa20

󰀕
2Ze2

ma0v2i

󰀖
= 2π

󰀕
󰄁

mevi

󰀖2

. (6.91)

Averaging over the electron velocity distribution using
󰁕∞
0

udue−l2u2
= 1/2l2 gives the

deexcitation rate as

γkj =
h2Ω(j, k)

gk(2πme)3/2(kBT )1/2
= 8.63× 10−6 cm3 s−1Ω(j, k)

gkT 1/2
. (6.92)

The excitation rate coefficient is given by14 gjγjk = gkγkje
−Ejk/kBT .

6.14. Line diagnostics of temperature and density

Consider a two-level system. In equilibrium,

n1neγ12 + n1B12J̄ = n2neγ21 + n2A21 + n2B21J̄ (6.93)

which gives
n2

n1

=
neγ12 +B12J̄

neγ21 +B21J̄ + A21

=
neγ12/A21 +B12J̄/A21

1 + J̄B21/A21 + neγ21/A21

. (6.94)

Now using the Einstein relations B21/A21 = c2/2hν3, B12/A21 = (g2/g1)(c
2/2hν3) and γ12 =

γ21(g2/g1)e
−E12/kBT , we get

n2

n1

=
(g2/g1)e

−E12/kBT
󰀃
neγ12/A21 + eE12/kBT c2J̄/2hν3

󰀄

1 + c2J̄/2hν3 + neγ21/A21

. (6.95)

14Using the relation in eq. [6.84] that we derived using arguments about thermal equilibrium. You can also

directly average the excitation cross-section over the electron velocity distribution, but be careful - if you do

that you must take into account the fact that a minimum energy (1/2)mv2 = Ejk is required to excite the

transition. Including this as a lower limit on the range of velocities considered gives the factor of e−Ejk/kBT

that we deduced from thermal equlibrium.
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In an HII region, we expect Uν ∼ Bν(T ≈ 104 K)(R󰂏/r)
2 where the dilution factor

(R󰂏/r)
2 ∼ (1011 cm/1018 cm)2 ∼ 10−14, which implies that the J̄ terms will be small. Then,

n2

n1

≈ g2
g1
e−E12/kBT 1

1 + A21/neγ21
. (6.96)

When collisions dominate, n2/n1 → (g2/g1)e
−E12/kBT which is the correct thermal equilib-

rium ratio. However, when the spontaneous emission rate is much greater than the collision

deexcitation rate, A21 ≫ neγ21, then

n2

n1

→ g2
g1
e−E12/kBT neγ21

A21

. (6.97)

For an optical transition (e.g. Lyα), A21 ∼ 108 s−1, and γ12 ∼ 10−5/T 1/2 ∼ 10−6 then

neγ21/A21 ∼ 10−14ne ≪ 1, so n2 ≪ n1. The much faster decay rate due to spontaneous

emission compared to the collision rate means that it is an excellent approximation to assume

that the upper levels are not populated.

Next, consider the three level system

and neglect induced radiative transitions and also neglect 3 to 2 transitions. The ratio of

intensities in the 3 → 1 to 2 → 1 transitions is

I31
I21

=
n3A31hν31
n2A21hν21

=
g3A31ν31
g2A21ν21

󰀗
1 + A21/neγ21
1 + A31/neγ31

󰀘
e−E23/kBT . (6.98)

If ne is large enough, then
I31
I21

=
g3A31ν31
g2A21ν21

e−E23/kBT , (6.99)

so that collisions maintain a thermal population of levels. However, if ne is small, then

I31
I21

=
g3
g2
e−E23/kBT ν31

ν21

γ31
γ21

=
ν31
ν21

γ13
γ12

(6.100)

or in words every collisional excitation produces a photon.

This gives a method for determining the density of ionized gas. A famous example is

the OII doublet
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For ne < 102 cm−3 the expected intensity ratio is I31/I21 = 2/3 (the ratio of the collision

strengths Ω(1, 2) and Ω(1, 3)), whereas for ne > 104 cm−3 the expected ratio is 2.9 (an

additional factor of the ratio of A’s). Notice that the A’s for these transitions are very small

∼ 10−4 s corresponding to lifetimes of hours! This is because these transitions are forbidden

under electric dipole selection rules. They are known as forbidden transitions and the lines

as forbidden lines. It is not possible to see these transitions in the lab because collisional

deexcitation always dominates. Nebulae are very bright in these forbidden lines as they are

the mechanism by which decay to the ground state occurs. Bowen (1928) showed that the

bright emission lines of nebulae, originally attributed to a hypothetical element “nebullium”,

were in fact forbidden transitions of this kind.

In general we can define a critical electron density ncr =
󰁓

i<k Aki/
󰁓

i ∕=k γki above

which collisional excitation/deexcitation gives rise to a thermal population of energy levels,

and below which radiative deexcitation dominates and the upper levels have a much smaller

population than in LTE.

6.15. Application: The cooling function

Line emission is crucial for understanding the cooling function of gas below ∼ 106 K.

For higher temperatures, the gas is ionized and thermal bremsstrahlung is the main cooling

mechanism, for 104 K ≲ T ≲ 106 K, electron collisions excite electronic levels of neutral or

ionized components, while for T ≲ 104 K electron or neutral collisions (depending on the

ionization fraction) excite fine structure levels of the ground state. The general shape of the

cooling function Λ looks like



– 117 –

where the quantity Λ plotted has units erg cm3 s−1 so the cooling rate per unit volume is

n2
HΛ (see Dalgarno & McCray 1972; Sutherland & Dopita 1993 for detailed calculations).

The cooling rate is set by the collision rate which we saw earlier could be written as γ12 ≈
10−5 cm2 s−1 Ω(1, 2)/

√
T . For the fine structure lines, we can take an excitation temperature

Te ∼ 100 K (or photon energy ≈ 10−2 eV), giving

Λ ∼ Yiγ12kBTe ∼ 10−24 erg cm3 s−1

󰀕
104 K

T

󰀖1/2

Ω(1, 2)

󰀕
Te

100 K

󰀖󰀕
Yi

10−3

󰀖
(6.101)

where Yi is the abundance of the metal ion in question. This is about the right order of

magnitude. Above 104 K the important lines are electronic levels which have kBTe ∼ 1 eV,

and so we expect a jump in Λ of order 100 as we cross from below to above 104 K, in good

agreement with the detailed calculations.

The non-monotonic nature of the cooling function means that in general there are

multiple steady-state solutions in which heating balances cooling, which gives rise to different

phases of the ISM, for example stable phases of hot low density gas and cold high density gas

can exist in pressure equilibrium. The classical papers are Field (1965) on thermal stability,

Field, Goldsmith and Habing (1969) on the 2 phase ISM, and McKee and Ostriker (1977) on

the three-phase model of the ISM. To get the basic idea, write the balance between heating

and cooling as H = nΛ where H is the heating rate per ion from for example cosmic ray

collisions. Because Λ is non-monotonic, multiple solutions are possible. Field et al. (1969)

plotted the pressure against number density for the stable solutions. At a given pressure,

there are three possible solutions F, G, and H.
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However, phase G is thermally unstable. To see this, perturb the equilibrium T → T + δT ,

and let’s assume the heating rate H is a constant. Then the response of the gas will be

dδT

dt
∝ −nδT

∂Λ

∂T
(6.102)

which implies that the perturbed gas cools back to the equilibrium state if ∂Λ/∂T > 0

(stable) but will undergo a thermal runaway if ∂Λ/∂T < 0 (unstable). Therefore the phases

F and H are stable, but G is not.

6.16. Absorption and emission by dust

We close with a few words about dust. Dust consists of small particles, ranging from

large molecules to µm size particles. The dominant composition is graphite which shows an

emission feature at 2175Å, silicates (e.g. (MgFe)2SiO4) which are responsible for features

at 9.7 µm and 18 µm due to Si−O bending and stretching modes, and polycyclic aromatic

hydrocarbons (PAHs) such as napthalene (C10H8 with two benzene rings). The typical dust

to gas mass ratio is ∼ 10−2. The typical linear size distribution is n(a)da ∝ a−3.5da so

that the mass is in the large grains, but the area (important for extinction) is in the small

grains. Typical dust temperatures are a few tens of K, giving thermal emission in the IR.

Dust is extremely important: it is the dominant opacity source for non-ionizing photons,

dust grains lock up a substantial fraction of heavy elements, there is important surface

chemistry e.g. molecule formation on the surface of dust grains, and dust plays an important
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role in energy balance. Here, we focus on how to understand the typical dust absorption

cross-section, and the dust temperature.

The dust optical depth is generally written as

τ = L

󰁝 a+

a−

n(a)daσd(a)Qext(λ, a)L (6.103)

where L is the path length, σd = πa2 is the geometric cross-section for a sphere, and “ext”

refers to extinction which can be due to absorption or scattering (when the dust lies along

the line of sight to an object scattering removes photons from the beam), so that

Qext(λ, a) = Qabs(λ, a) +Qsca(λ, a). (6.104)

In astronomy, the extinction in magnitudes at a given wavelength Aλ = −2.5 log10(e
τλ) =

1.086τλ. Commonly dust extinction will be measured in AV the visual extinction. This is

related to the hydrogen column,

NH ≈ 5.9× 1021 cm−2 mag−1 EB−V (6.105)

where EB−V = AB −AV is the difference between the B and V band extinctions. The slope

of the extinction curve near V band is RV = AV /EB−V with RV commonly taken to be 3.1

(can be as large as 5 for lines of sight into dense clouds).

For calculations of the optical properties of grains, cross-sections and dust temperatures

see Draine and Lee (1984). To calculate the absorption and scattering cross-sections from

first principles requires understanding the optical properties of the grains, in other words the

refractive index n or dielectric constant 󰂃 = n2. The dielectric constant is complex in general,

and the solutions for scattering and absorption by small particles are known as Mie theory.

For spherical particles, and in the long-wavelength limit x = 2πa/λ ≪ 1, the cross-sections

are

Qsca =
8

3
x4

󰀏󰀏󰀏󰀏
󰂃− 1

󰂃+ 2

󰀏󰀏󰀏󰀏
2

∝ 1

λ4
(6.106)

(Rayleigh scattering) and

Qabs = 4x Im

󰀕
󰂃− 1

󰂃+ 2

󰀖
∝ 1

λ
. (6.107)

For short wavelength photons x ≫ 1, Qsca → 1 and Qabs → 1. We’ve written the wavelength

scalings here for constant 󰂃. In fact, 󰂃 depends on frequency in general which changes the

scaling. The extinction cross-section is usually written

Qext = Q0

󰀕
λ0

λ

󰀖β

(6.108)
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with β = 1–2. For graphite and silicates the long wavelength emission has β ≈ 2.

We can get the cross-sections in equations (6.106) and (6.107) from a straightforward

calculation along the lines of the classical derivation of the Thomson cross-section. A di-

electric sphere in a uniform electric field has an induced dipole moment 󰂓p = α󰂓E, where

the polarizability α = 4π󰂃0a
3(󰂃 − 1/󰂃 + 2) (SI units). Plugging this into Larmors formula

P = (1/2)(ω4p2/6π󰂃0c
3) and dividing by the incoming flux c󰂃0E

2/2 gives the scattering

cross-section in equation (6.106). The absorption cross-section is obtained by calculating

the work done 󰂓J · 󰂓E, where 󰂓J is the polarization current

∂ 󰂓P

∂t
=

iω󰂓p

4πa3/3
. (6.109)

The power dissipated is
󰀓
󰂓J · 󰂓E

󰀔󰀕
4

3
πa3

󰀖
= iω󰂓p · 󰂓E = iωαE2 (6.110)

or taking a time average
ω

2
Im(α)E2. (6.111)

Again, dividing by the incoming flux in the wave gives the cross-section, which agrees with

equation (6.107).

The equilibrium dust temperature is given by balancing heating with cooling. The

heating rate is

4πa2
󰁝

πJλQabs(λ, a)dλ. (6.112)

For short wavelength UV and optical photons which are responsible for most of the heating,

Qabs ∼ 1 in which case we can write the heating rate as 4π2a2JUV where JUV is the mean

intensity of the photons with wavelengths shorter than typical dust sizes. The cooling or the

dust emissivity we can get from Kirchoff’s law, giving

4πa2
󰁝

πBλ(Td)Qabs(λ, a)dλ (6.113)

where Td is the dust temperature. The dust temperature is therefore given by

JUV =

󰁝
Bλ(Td)Qabs(λ, a)dλ. (6.114)

For typical dust temperatures Td ≈ 20 K, we need the absorption cross-section near λ =

0.29 cm/T ≈ 200 µm. Writing Qabs = Q0(λ0/λ)
β = (2πa/λ)(λ0/λ)

β−1 gives

JUV =

󰁝
2πa

λ

󰀕
λ0

λ

󰀖β−1
2hν3

c2
1

ehν/kBT − 1

dν

dλ
dλ =

4πaλβ−1
0 h

c2+β

󰀕
kBTd

h

󰀖4+β 󰁝
x3+β dx

ex − 1
(6.115)
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or Td ∝ (JUV /a)
1/(4+β). For 0.1 µm size grains, the temperatures are ≈ 20K.

An interesting situation arises for small grains (Purcell 1976). A 100Å grain at 20 K has

a thermal content of ∼ 1 eV. Partly this is due to the (T/ΘD)
3 suppression of the specific

heat at low temperatures, where the Debye temperature ΘD is typically hundreds of K.

The temperature of these grains is time-dependent since absorption of a photon significantly

changes the thermal energy, followed by rapid cooling. The observed emission of small grains

can therefore be at significantly higher temperature, e.g. 50K (see Purcell 1976).

Summary and Further Reading

Here are the main ideas and results that we covered in this part of the course:

• Saha equation. Ionization of hydrogen at T ≈ 104 K. Application to stellar spectral

types.

• Line profiles. Natural line width Λ. Collisional broadening. Doppler broadening

∆ν/ν ≈ 〈v〉/c. Voigt function. Definition of equivalent width. Curve of growth.

• Hydrogen-like atoms. χ = (1/2)Z2α2mec
2, a0 = (󰄁/mec)α

−1Z−1, Enm = χ(n−2−m−2).

• Calculation of radiative transitions. Fermi’s Golden Rule. Hamiltonian for a charged

particle in an electromagnetic field. Origin of selection rules in the spatial integrals.

• Bound-bound transitions. Einstein A coefficients: A ∼ (mc2/󰄁)α5. Lyα has A =

0.6 × 109 s−1. Bound-bound absorption cross-section: σ12 = f(πe2/mec)φ(ν) or ≈
(λ2/8π)(A21/∆ν), where ∆ν is the linewidth.

• Bound-free (photoionization) cross-section

σbf = α
πa20
Z2

󰀓ωn

ω

󰀔3 64

3
√
3
ngbf

Absorption edges. κbf ∝ ρT−3.5. Milne relations. Recombination coefficient 〈σfbv〉 ∼
10−14 cm3 s−1. Application to HII regions. The Stromgen sphere. Case A and case B.

Application to X-ray absorption by the ISM.

• Collisional excitation and dexcitation. Cross-section σjk = (π/gj)(󰄁/mev)
2Ω(j, k).

Averaging over a Maxwell-Boltzmann distribution of velocities gives the deexcitation

rate coefficient

γkj =
8.6× 10−6 Ω(j, k)

gkT 1/2
cm3 s−1.
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The excitation rate coefficient is then γjk = (gk/gj)e
−Ejk/kBTγkj. The critical density

ne,c = A21/γ21. Application: the use of forbidden line ratios as a probe of density. The

importance of line emission in the cooling function.

• Dust. Sizes, composition, dust to gas ratio, temperatures, importance. The basic

idea of scattering and absorption by small particles. For λ ≫ a, σ ∝ 1/λ4 (Rayleigh

scattering, constant 󰂃). Generally, Qext ∝ λ−β with β = 1–2.

Reading

• RL chapter 10. The calculation of radiative transitions is covered at the end of most

introductory quantum books, e.g. the books by Gasiorowicz and Townsend. Shu also

has a lot of detail on this.

• Radial integrals of hydrogen-like wavefunctions: Gordon (1929) Ann Phys 2, 1031.

• Osterbrock ”Astrophysical Gaseous Nebulae” is the classic book to look up cross-

sections and transition rates etc. A classic but somewhat dated book on ISM physics

is by Spitzer. Recombination coefficients: Cillié 1932, MNRAS, 92, 820. Seaton 1959,

MNRAS, 119, 81.

• X-ray absorption by the ISM: Wilms, Allen, & McCray (2000), Morrison & McCammon

(1983).

• Cooling function: Dalgarno & McCray (1972), Sutherland & Dopita (1993). Thermal

stability and multi-phase interstellar medium: Field (1965), Field, Goldsmith & Habing

(1969), McKee & Ostriker (1977).

• Dust: Mathis (1990 ARAA), Draine & Lee (1984 ApJ).
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7. Problem Set 1 with Solutions

1. (a) Question. A sphere of material with radius R has constant emissivity jν , absorption

coefficient αν , and source function Sν . Calculate Iν at the surface of the sphere and show

that the flux is

Fν = πSν

󰀗
1− 2

τ 2
󰀃
1− e−τ

󰀄
+

2e−τ

τ

󰀘
, (6.116)

where τ = 2ανR. Sketch the angular dependence of Iν for different values of τ . Check that

Iν and Fν make sense in the limits τ ≪ 1 and τ ≫ 1.

Solution: At a given point on the surface, a ray emerging at angle θ with respect to

the normal to the surface has traversed a distance 2R cos θ = 2Rµ.

PHS 642 Radiative Processes Assignment 1

October 10, 2006

Solutions by Weiwei Zhu and Hugo Olivares

1 question 1

1.1 1.a

R

R

2Rµ

!

Iv

Define τ = 2Rα, the radiative transfer equation is

Iv(µ) = Iv,0e
−τµ +

∫ τµ

0
e−(τµ−τ ′)Svdτ ′ (1)

where µ = cos θ. Here Sv is constant, then we can solve the equation and get
special intensity :

Iv(µ) = S(1 − e−τµ). (2)

The angular distribution is showed in figure 1.1.
Flux is the integration of Iv over all solid angle:

Fv =
∫

Iv(θ) cos θdΩ = 2πSv

∫ 1
0 (1 − e−τµ)µdµ

= πSv − 2πSv
τ2

∫ τ
0 xe−xdx = πSv + 2πSv

τ2 (xe−x|τ0 +
∫ τ
0 e−xdx)

= πSv(1 + 2e−τ

τ + 2(e−τ
−1)

τ2 )

(3)

When τ >> 1, Iv ≃ Sv is isotropic, Fv ≃ πSv(1 − 2
τ2 ) ∼ πSv.

When τ << 1, Iv ≃ Sτµ, by integrate it we get 2π
∫ 1
0 µIvdµ = 2π

∫ 1
0 τµ2Svdµ =

2πSτ
3 = 4πRj

3 . in the optical thin limit we can expect that all photons are free to
leave the sphere. So the flux should be F = (4πj)(4πR3/3)/(4πR2) = 4πjR/3

1

Defining the optical depth τν = 2ανR, the general solution to the radiative transfer equation

for constant source function Sν gives

Iν(µ) = Sν

󰀃
1− e−τνµ

󰀄
(6.117)

The flux is given by integrating over outgoing rays F = 2π
󰁕 1

0
dµµIν(µ)

Fν = 2πSν

󰁝 1

0

dµµ(1− eτνµ) = πSν

󰀕
1− 2

τ 2ν
+ 2e−τν

(1 + τν)

τ 2ν

󰀖
. (6.118)

The large and small τ limits are τ ≫ 1 Fν → πSν as expected for an optically thick source.

For τ ≪ 1, Fν → 2πSντν/3. The luminosity is 4πR2F = (4πjν)(4πR
3/3) as expected for an

optically thin source, since all photons leave.

(b) Question. Now consider a large area slab of the same material with thickness H.

Defining τ = ανH for this case, show that the flux at the surface is

Fν = πSν [1− 2E3(τ)] , (6.119)

where

En(τ) =

󰁝 ∞

1

dx x−ne−τx. (6.120)
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Sketch the angular dependence of Iν for different τ . Check that the τ ≪ 1 and τ ≫ 1 limits

for Iν and Fν make sense.

Solution. This is similar to the previous question, but now the path length of the

emerging ray increases with angle from the normal to the surface, H/ cos θ = H/µ. Writing

τν = ανH, the solution to the radiative transfer equation is

Iν(µ) = Sν

󰀃
1− e−τν/µ

󰀄
. (6.121)

The flux is

Fν = 2πSν

󰁝 1

0

dµµ
󰀃
1− e−τν/µ

󰀄
= 2πSν

󰁝 ∞

1

dx

x3

󰀃
1− e−τνx

󰀄
= πSν(1− 2E3(τν)). (6.122)

When τ ≫ 1, E3(τ) → e−τ/τ → 0 and Fν → πSν , the correct limit for an optically thick

medium. When τ ≪ 1, 2E3(τ) ≈ 1 − 2x, giving Fν = 2πSντν = (1/2)(4πjν)H. The factor

of 1/2 comes in because there are two sides to the slab.

The following plots show the angular distributions in the two cases, labelled by log10 τ .

The radiation from the sphere is concentrated in the forward direction, whereas for the slab

the intensity is largest for rays travelling parallel to the surface.

Figure 1: Angular distribution of Iv for uniform sphere. The number labeled
on the line is log10 τ .

1.2 1.b

H θ

R/µ

Define τ = Hα, the radiative transfer equation is

Iv(µ) = Iv,0e
−τ/µ +

∫ τ/µ

0
e−(τ/µ−τ ′)Svdτ ′. (4)

Here Sv is constant, then we can solve the equation and get special intensity :

Iv(µ) = S(1 − e−τ/µ). (5)

The angular distribution is showed in figure 1.2.
Flux can be integrated (omit foot label v) by replaceing 1/µ by new variable

x:
F = 2π

∫ 1
0 µS(1 − e−τ/µ)dµ = πS(1 − 2

∫
∞

1
e−τx

x3 dx)
= πS(1 − 2E3(τ)).

(6)

2

Figure 2: Angular distribution of Iv for uniform slab. The number labeled on
the line is log10 τ .

Check limit, τ >> 1, Iv ∼ Sv isotropic. Fv ∼ πSv(1 − 2e−τ/τ) ∼ πSv.

When τ << 1, Iv ∼ Svτ/µ, Fv = 2π
∫ 1
0 µIvdµ = 2πSvτ = 2πjvH . If all

photons go out in optical thin limit, Fv = 4πjvH∆S
2∆S = 2πjvH .

1.3 1.c

In isothermal limit temperature T is a constant, then Sv = Bv(T ) is independent
on τ . For the grey atmosphere the flux provided by material above a certain
optical depth τ can be written as (omit foot note v) :

F = 2πS
∫ τ
0 E2(τ ′)dτ ′ = 2πS

∫ τ
0 dτ ′

∫
∞

1 dx e−τ′x

x2

= 2πS
∫
∞

1 dxx−2
∫ τ
0 e−τ ′x = 2πS

∫
∞

1 dxx−3e−τ ′x|τ0
= 2πS

∫
∞

1 x−3(1 − e−τx) = πS(1 − 2E3(τ)).

(7)

it’s exactly the same function as the flux powered by uniform slab.

1.4 1.d

A comparison of blackbody and grey atmosphere spectra is showed in figure 1.4.
It’s easy to see that in high energy band , grey atmosphere’s normalized flux
is higher than blackbody, while in low energy band it’s lower. This must be a
result of the temperature distribution of grey atmosphere. A simple numerical
evaluation of E2(τ) ∗ (3/4)(τ) + 2/3 may show why. It’s integration between
τ = 0 to τ = 2/3 is approximately 0.064, where the true temperature is lower
than that of blackbody, while its integration between τ = 2/3 and τ = ∞

3

(c) Question. In class, we derived the flux at the surface of a grey atmosphere,

Fν = 2π

󰁝 ∞

0

Bν (τ
′)E2 (τ

′) dτ ′, (6.123)

where Bν is a function of τ through the dependence of temperature on τ . Show that in the

isothermal limit, this result reduces to equation (2).

Solution. This question is poorly worded. What I had in mind was to replace the

upper limit on the integration in equation (6.123) by a finite value τ instead of integrating
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all the way to ∞. For an isothermal atmosphere, Bν is a constant and can be taken outside

the integral. Then use the result E2(x) = −dE3(x)/dx to do the integral,

Fν = −2πBν

󰁝 τ

0

dE3(τ
′)

dτ ′
dτ ′ = −2πBν (E3(τ)− E3(0)) = πBν(1− 2E3(τ)) (6.124)

(since E3(0) = 1/2). This answer agrees with part (b).

(d)Question. Plot the normalized flux νFν/σT
4
eff against normalized frequency hν/kTeff

for both blackbody and grey atmospheres. For the grey atmosphere, assume a temperature

profile given by the Eddington approximation, T 4 = T 4
eff(3/4)(τ + 2/3), and numerically

evaluate the integral in equation (6.123). How do the grey and blackbody spectra differ, and

why?

Solution. First normalize the Planck spectrum as suggested, which gives

νπBν

σT 4
eff

=
15

π4

x4

exTeff/T − 1
, (6.125)

where x = hν/kBTeff . The normalized grey atmosphere flux is then given by equation (6.123)

νFν

σT 4
eff

(x) =
30

π4

󰁝 ∞

0

x4

exTeff(τ ′)/T − 1
E2(τ

′)dτ ′ (6.126)

with the temperature profile specified as a function of optical depth. In the Eddington

approximation, we found (T/Teff)
4 = (3/4)(τ + 2/3).

The grey atmosphere spectrum is plotted in the Figure (solid curve), compared with a

blackbody spectrum with T = Teff (dashed curve).
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We can see that the grey atmosphere is harder than the blackbody, in other words it is

brighter at high photon frequencies and fainter at low photon frequencies. As the integral in

equation (6.123) shows, the spectrum is a result of summing blackbody spectra over depth

in the atmosphere, each at a temperature given by the local temperature, and each weighted

by the optical depth, with emission at large optical depth being exponentially suppressed.

One way to try to understand what’s going on is to look at the low and high frequency

limits. For low frequencies below the peak, x ≪ 1, the ratio of grey atmosphere flux to

blackbody flux is

Fν

πBν(T )
≈

󰁝 ∞

0

󰀕
3

4

󰀖1/4 󰀕
τ ′ +

2

3

󰀖1/4

2E2(τ
′)dτ ′. (6.127)

Compared to the isothermal case at T = Teff which would give the blackbody spectrum,

the integrand is weighted towards lower optical depths and therefore smaller temperatures,

which results in less emission at these low frequencies. (The mean brightness temperature

is smaller than Teff .)

The high frequency limit (x ≫ 1) is

Fν

πBν

≈
󰁝 ∞

0

exp

󰀕
x

󰀗
1− 1

(3/4)1/4(τ ′ + 2/3)1/4

󰀘󰀖
2E2(τ

′)dτ ′. (6.128)
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The grey atmosphere becomes increasingly brighter compared to the blackbody as x in-

creases.

[The following properties of En(x) are useful in this question:

En(x) → e−x/x x → ∞

E1(x) → ln(1/x) x → 0

(n− 1)En(x) = e−x − xEn−1(x)

dEn(x)/dx = −En−1(x).

If you have time, you might like to try and prove these results.]
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8. Problem Set 2 with solutions

1. More on the bremsstrahlung derivation.

(a) Question. In class, we calculated the radiation spectrum from a single collision

of an electron and ion using only the perpendicular component of the acceleration. Repeat

this calculation for the parallel component. You should find that the spectrum from the

parallel component depends on the modified Bessel function K0 rather than K1. Plot the

total radiation spectrum and the contribution from the two components.

Solution. We follow the same procedure as in the notes, but now take the parallel

component of the acceleration. The integral is

u̇󰀂(ω) =
1√
2π

󰁝 ∞

−∞
eiωtdt

Ze2

m

ut

(b2 + u2t2)3/2
(6.129)

=
1√
2π

Ze2

mub

󰁝 ∞

−∞

dx xeixωb/u

(1 + x2)3/2
. (6.130)

The trick is to now integrate by parts to get the integral into a form that looks like the

integral representation of a modified Bessel function.

u̇󰀂(ω) =
i√
2π

Ze2

mub

ωb

u

󰁝 ∞

−∞

dx eixωb/u

(1 + x2)1/2
(6.131)

=

󰁵
2

π

Ze2

mub
iyK0(y) (6.132)

where y = ωb/u. This is the same as the perpendicular acceleration, but with yK1(y)

replaced by iyK0(y). The factor of i indicates that the two components of acceleration are

π/2 out of phase, which makes sense since the perpendicular acceleration is maximum at the

distance of closest approach, but the parallel component of acceleration is zero there.

Again following the notes, the total spectrum is proportional to |u̇⊥|2+
󰀏󰀏u̇󰀂

󰀏󰀏2 ∝ y2(K0(y)
2+

K1(y)
2). Here is a plot of each component and the total. Neglecting the parallel acceleration

gives a ≈ 20% reduction in the emissivity.
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(b) Question. In class we discussed the different choices for bmin and bmax. Use these

to roughly check the analytic expressions given in Fig. 5.2 of RL (for the lower half of this

figure, or hν < kBT ). Approximate the thermal averaging by replacing v with the thermal

velocity. You won’t get the ζ factor [optional: what is this? Maybe look up the Novikov and

Thorne article]. Longair states (Vol. 1, p77) that for radio wavelengths,

π√
3
gff =

1

2

󰀗
ln

󰀕
8(kBT )

3

π2mee4ν2Z2

󰀖
−√

γ

󰀘
(6.133)

is the appropriate Gaunt factor to use, whereas for X-ray wavelengths

π√
3
gff = ln

󰀕
kBT

hν

󰀖
. (6.134)

Does this make sense? (Don’t worry about order unity factors, e.g. ignore the
√
γ factor,

which comes from a more careful derivation of the Gaunt factor. The constant γ = 0.577...

is Euler’s constant.)

Solution. The idea here is to write

gff =

√
3

π
ln

󰀕
bmax

bmin

󰀖
(6.135)

and use the different approximations from the notes for bmax and bmin. First bmax = v/ω

(photon discreteness). For bmin, we noted that there were two possible choices, “classical”

bmin = 2Ze2/mv2 or “quantum” bmin = 󰄁/mev, with the quantum result being applicable at

high electron energies exceeding Z2 Ry and the classical result at lower energies. The final

ingredient we need is to recognize that after the thermal averaging over the electron velocity

distribution, the electron velocity will be replaced by v ≈ (3kBT/me)
1/2 (I’ve put a 3 in there
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because the mean value of (1/2)mv2 for a classical gas is (3/2)kBT , but in the Gaunt factor

that 3 will be some other number that depends on the weighting during the averaging, so we

shouldn’t trust the prefactor in our results. Let’s just see if we can get the scalings right.)

Now let’s check the figure. In the lower left, the electron energy≈ kBT is small compared

to Z2Ry so we need the classical bmin. Therefore bmax/bmin = mv3/2Ze2ω. Next replace v

with the thermal velocity and use the result that Ry= α2mec
2 where α = 1/137 = e2/󰄁c is

the fine structure constant. I get

gff ≈
√
3

π
ln

󰀥
33/2

2

kBT

hν

󰀕
kBT

Z2Ry

󰀖1/2
󰀦

(6.136)

which agrees with the Figure apart from the numerical prefactor. Note that the Figure has

a typo compared to the original version in the Novikov and Thorne article: the square root

should be on the last term inside the log, as we have derived here, and not on the whole log.

On the lower right, we use the quantum estimate for bmin. This time I get

gff ≈
√
3

π
ln

󰀗
3
kBT

hν

󰀘
. (6.137)

Again we agree up to the prefactor.

Now looking at the Longair formulas, we see that the radio wavelength formula is using

the classical bmin whereas the X-ray formula is using the quantum bmin. What this seems to

be saying is that if I have gas emitting thermal bremsstrahling in radio, then kBT ≪ Z2Ry

and the classical result applies. For X-ray gas, kBT ≫ Z2Ry putting us in the quantum

regime (X-ray photon energies ∼keV’s).

2. Thermal bremsstrahlung from cluster gas. The X-ray emission from hot gas in

galaxy clusters is powered by thermal Bremsstrahlung. Look at the paper by Jeltema et

al. (2001, ApJ 562, 124).

(a) Question. First derive equation (1) in the paper. To do this, assume that kBT =

GM/R (as we did in class to get the temperature at the center of the Sun). The critical

density today is given by ρc = 3H2
0/8πG, and increases with redshift z proportional to

(1 + z)3. The parameter h = H0/100 km s−1 Mpc measures the Hubble constant H0 as

measured locally. Use the mass-temperature relation and the fitted temperature for this

cluster to estimate the mass of the cluster in dark matter.

Solution. First, estimate the radius R from kBT ∼ GMmp/R (the formula in the

question has a missing mp). It’s good to check the number that comes out to see if it makes
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sense. I get

R = 4.5 Mpc

󰀕
M

1015 M⊙

󰀖󰀕
kBT

10 keV

󰀖−1

. (6.138)

The density is ρ = 200ρ0 which gives n = ρ/mp = 2.3× 10−3 cm−3 h2(1 + z)3.

The simplest estimate is to take a constant density sphere with radius R, which gives a

mass

M =

󰀕
3

4πρ

󰀖1/2 󰀕
kBT

Gmp

󰀖3/2

= 2.1× 1014 M⊙

󰀕
kBT

10 keV

󰀖3/2

h−1(1 + z)−3/2. (6.139)

The scalings agree with equation (1) of Jeltema et al, but the prefactor is too low by almost

an order of magnitude.

For the cluster in that paper, z = 0.83 and T = 10.4 keV. Using the prefactor from the

paper, the mass derived is 6.4× 1014 M⊙h
−1.

(b) Question. Now calculate the total X-ray luminosity expected from the cluster.

Assume that the mass in gas is a fraction f of the total cluster mass. Compare your prediction

with the observed luminosity. What do you deduce about the fraction of mass in gas?

Solution. The thermal bremsstrahlung emissivity is

󰂃ff = 1.4× 10−27 erg cm−3 s−1 (T/K)1/2(n/cm−3)2 (6.140)

where for simplicity we set the Gaunt factor to unity, ne = ni, and Z = 1. Using the

number density n and radius R from part (a) gives an emissivity per gram of 󰂃ff/ρ =

0.020 erg g−1 s−1, which for a mass 6.4× 1014 M⊙h
−1 is a total luminosity

LX = 2.6× 1044 erg s−1

󰀕
f

0.1

󰀖2 󰀕
T

108 K

󰀖2

h(1 + z)3/2. (6.141)

The observed bolometric luminosity is 1.2× 1045 erg s−1h−2 which requires f ≈ 20%.

(c) Question. What relation do you predict between the X-ray luminosity of a cluster

and its temperature? In fact, the observed correlation is different. What are some of the

ideas to explain the discrepancy? [For example, see Holden et al. (2002, AJ 124, 33) and

other papers in the literature. The simple relation was originally derived by Kaiser (1986).]

Solution. The predicted relation is LX ∝ T 2. In fact the observed relation is steeper

than this, closer to T 3.

3. Free-free absorption.
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(a) Question. Compare the free-free opacity with the Thomson scattering opacity for

conditions at the center of the Sun. Which form of opacity do you expect to dominate in

very massive stars and in low mass stars (compared to the solar mass)? [Assume that radius

R is proportional to mass M for all stars].

Solution. At the center of the Sun, ρ = 150 g cm−3 and T = 1.5 × 107 K. Using the

expression for κff ∝ ρT−7/2 from the notes, and setting the composition factors and Gaunt

factor to unity, I get κff ≈ 0.9 cm2 g−1. This is the same order of magnitude as the Thomson

scattering opacity, κes = 0.2(1 + X) cm2 g−1 (where X is the hydrogen mass fraction). So

for the Sun, these opacity sources are comparable to each other.

To estimate the scaling with stellar mass, note that hydrostatic balance (or virial the-

orem) suggests kBT ∼ GMmp/R or T ∝ M/R or in other words a roughly constant tem-

perature if M ∝ R. The density ρ ∝ M/R3 ∝ M−2 decreases with mass. Therefore, we

predict that κff decreases with mass ∝ M−2, whereas κes remains roughly constant, so that

electron scattering will dominate for M > M⊙ and free-free absorption for M < M⊙. (This

is a very rough argument — given the sensitivity of κff to T one might worry that a better

estimate of the temperature scaling with mass could change the answer. Our conclusion is

however correct and agrees with stellar models.)

You may recall that the Sun is a switching point in mass not only for opacity but also

for the type of nuclear burning. Hydrogen burns by the pp-chain for M ≲ M⊙ and by the

CNO cycle for M ≳ M⊙. The fact that both opacity and nuclear burning sequence change

at M ≈ M⊙ is a coincidence.

(b) Question. Calculate the scaling of luminosity with mass for two cases: (1) a star in

which the opacity is set by Thomson scattering and (2) in which the opacity is from free-free

absorption. [Use the radiative diffusion equation, and approximate all derivatives by ratios

as we did in class. Concentrate on the scaling, not on the prefactor.] Use your results to

plot a prediction for the luminosity-mass relation for main sequence stars.

Solution. This is a classic question in back of the envelope stellar structure. The idea

is to write the thermal diffusion equation

L = −4πr2
4acT 3

3κρ

dT

dr
(6.142)

which gives L ∝ RT 4/κρ ∝ M3/κ (where we take ρ ∝ M/R3 and T ∝ M/R). For constant

opacity, which applies for electron scattering, we find L ∝ M3, our prediction for stars more

massive than the Sun.

For free-free, κ ∝ ρT−7/2 ∝ (M/R3)(M/R)−7/2 which is ∝ M−2 if we assume M ∝ R.

Therefore, we predict the steeper dependence L ∝ M5 for M < M⊙.
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4. Thermal bremsstrahlung spectrum including self-absorption. Consider a spher-

ical HII region with radius 0.5 pc, uniform temperature 8000 K, and uniform density

ne = 1000 cm−3. The distance to the HII region is 500 pc. Assume the gas is pure hy-

drogen, and is in LTE.

(a) Question. Show that for radio observations, hν is safely much smaller than kBT .

In this case, we are always in the Rayleigh-Jeans part of the spectrum.

Solution. For T = 8000 K, the frequency corresponding to hν = kBT is ∼ 1015 Hz.

This is well above radio frequency (∼GHz).

(b) Question. A useful quantity, especially when observing in the Rayleigh-Jeans part

of the spectrum, is the brightness temperature TB, defined by

Tb =
c2

2ν2kB
Iν . (6.143)

Show that the general solution of the radiative transfer equation can be written

Tb = Tb(0)e
−τν + T (1− e−τν ). (6.144)

If Tb(0) = 0, what are the optically thick and thin limits of equation (6)?

Solution. This is just a straightforward rewrite of the general solution to the radiative

transfer equation, using the fact that Iν ∝ Tb and Bν ∝ T in the Rayleigh-Jeans part of the

spectrum. The limits are Tb → T for τ ≫ 1, and Tb ≈ (1− τ)Tb(0) + τT for τ ≪ 1.

(c) Question. Calculate the optical depth to free-free absorption across the HII region.

Remember that hν ≪ kBT allowing you to expand the stimulated emission correction factor.

Above what frequency does the HII region become optically thin?

Solution. From the notes, the free-free absorption coefficient in the Rayleigh Jeans

part of the spectrum is αff
ν = 0.018 cm−1 (T/K)−3/2Z2(neni/cm

−6)(ν/Hz)−2. The optical

depth is Lαν where L is the size of the region, here 0.5 pc. This gives unity optical depth

for ν = ν0 = 0.2 GHz.

(d) Question. Calculate the radio spectrum you expect, and plot Fν against ν. For

Fν , use units of Janskys (where 1 Jy = 10−23 erg cm−2 s−1 Hz−1). Plot also the brightness

temperature as a function of frequency.

Solution. The rough picture is as follows. For ν < ν0, the HII region is optically

thick, the free-free emission is self-absorbed. The spectrum will then be a blackbody in

the Rayleigh-Jeans limit I ∝ ν2. For ν > ν0 the spectrum will be that of optically thin

free-free emission, that is a roughly flat spectrum in frequency (up to an exponential cutoff

at hν ≈ kBT but this is well out of the radio band).
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To calculate this in detail, you can use the result from HW1 question 1(a) which tells

you the flux at the surface of a sphere as a function of τ , which you know from part (c).
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9. Problem Set 3 with solutions

Inverse Compton spectrum for single scattering: Monte Carlo calculation.

Question. A simple way to calculate the spectrum for inverse Compton from a single

electron is to use a Monte Carlo numerical method. Assume that all of the “seed” photons

have the same energy. First, choose a random photon direction in the lab frame. Make sure

you use the correct probability distribution for cos θ: note that the incoming flux of photons

at angle θ to the direction of the electron’s motion is ∝ 1− β cos θ. Calculate the energy of

this photon in the electron rest frame. Choose a random scattering angle assuming that the

scattering is isotropic and elastic in the rest frame. Transform back into the lab frame to

find the final photon energy. Repeat this calculation many times to build up a distribution

of final photon energies. Check that this distribution agrees with the analytic result given

in RL equation (7.24).

Solution. This part is quite straightforward. The trickiest part is to make sure that you

use the right probability distribution when choosing the direction of the incoming photon.

If the electron was at rest and the photon distribution was isotropic, then µ = cos θ would

be uniformly distributed between −1 and 1. (The probability of being at a particular θ

and φ is dΩ/4π = sin θdθdφ = dφdµ). However, for a moving electron, we need to choose

µ proportional to the flux of photons in direction µ, i.e. we need to choose µ from the

probability distribution P (µ)dµ = (1− βµ)dµ. One way to do this is to define the variable

y = −(1 − βµ)2/2β which gives dy = dµ(1 − βµ). Choosing y from a uniform distribution

between (1− β)2/2β and (1 + β)2/2β and then obtaining µ from µ = (1−
√
2βy)/β gives µ

distributed in the desired way. (You can read more about this “transformation method” in

Numerical Recipes section 7.2).

The procedure is then to first choose a value of µ = cos θ for the incoming photon, then

use this to get the energy of the photon in the rest frame 󰂃′f = 󰂃′i = 󰂃iγ(1 − βµ) (elastic

scattering).

Because we assume in this part that the scattering is isotropic, the outgoing photon

direction is uniformly distributed on the sky for any incoming photon direction. So we don’t

need to keep track of what the incoming photon direction is in the rest frame, we just need

to pick an outgoing photon direction uniform on the sky, or in other words choose µ′ = cos θ′f
uniformly distributed between −1 and 1. Then the final photon energy in the lab frame is

󰂃f = 󰂃′fγ(1 + βµ′).

You can then compare a histogram of 󰂃f values with the analytic formulas from equation

(7.24) of Rybicki and Lightman.
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Question. Now repeat this calculation using the angular distribution appropriate for

Thomson scattering of an unpolarized beam. Compare your answer with RL equation (7.27)

in the limit γ ≫ 1.

Solution. This part is more difficult because we must now keep track of the various

angles in the rest frame. For a scattering angle α, the Thompson cross-section is ∝ 1+cos2 α.

This means that the angle α should be chosen so that y = cosα has a distribution P (y)dy =

(1 + y2)dy. One way to do this is the “rejection method” (Numerical Recipes section 7.3):

choose two uniformly distribution variables x and y where x is in the range 0 to 2 and y is

in the range −1 to 1. If x is smaller than 1 + y2 then use the value of y, otherwise reject

these values and try again.

The outgoing photon lies somewhere on a cone with opening angle α centered on the

incoming photon direction. We must also choose a value of the angle around the cone φ

(uniformly distributed between 0 and 2π).

Then some trigonometry gives

µ′ = cos θ′f = cosα cos θ′i − sin θ′i sinα cosφ. (6.145)

Two limits are φ = 0 or π means that the outgoing photon is in the same plane as the

incoming photon direction and the electron velocity; in that case θ′f = α± θ′i.

Then 󰂃f = 󰂃′fγ(1+βµ′) as before. A histogram of the 󰂃f values agrees well with Rybicki

and Lightman’s formula in the limit γ ≫ 1.

I’ve put my IDL code compton.pro on the website which you can try. To run it type

compton, gamma, n where gamma is the gamma factor of the electron and n is the number

of photons to calculate. The routine compton iso is the same but for isotropic scattering

(part a). These routines automatically display a histogram and the Rybicki and Lightman

formulas to compare against.
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pro compton, gamma,n

beta=sqrt(1d0-1d0/gamma^2)

print, ’beta=’, beta

seed=120L

; choose the incoming angle at random in the lab frame

; We need to choose mu=cos theta from the probability distribution

; Prob(mu) d mu = (1-beta mu) dmu

; (i.e. incident flux is propto 1-beta mu)

; Use the substitution method

y1=(1d0-beta)^2/(2d0*beta)

y2=(1d0+beta)^2/(2d0*beta)

y=y1+(y2-y1)*randomu(seed,n)

cos_theta=(1d0-sqrt(2d0*beta*y))/beta

; this is the photon energy in the rest frame

ef_p=gamma*(1d0-beta*cos_theta)

; the photon direction in the rest frame

cos_theta_p=(cos_theta-beta)/(1d0-beta*cos_theta)

; now choose the scattering angle

; isotropic

; cos_alpha_p=-1d0+2d0*randomu(seed,n)

; Thomson Prob(mu) = 1+mu^2 dmu where mu=cos alpha

; use a rejection method to select from the Prob distribution

cos_alpha_p=dindgen(n)

for i=1L,n-1 do begin

x=-1d0+2d0*randomu(seed)

y=2d0*randomu(seed)

while (y ge 1d0+x^2) do begin

x=-1d0+2d0*randomu(seed)

y=2d0*randomu(seed)

endwhile

cos_alpha_p[i]=x

endfor

; phi is uniformly distributed

cos_phi_p=cos(randomu(seed,n)*2d0*!dpi)

; now calculate the outgoing angle

sin_theta_p=sqrt(1d0-cos_theta_p^2)

sin_alpha_p=sqrt(1d0-cos_alpha_p^2)
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; outgoing cos theta

cos_theta_p2=cos_theta_p*cos_alpha_p-sin_alpha_p*sin_theta_p*cos_phi_p

; calculate the photon energy in the lab frame

ef=ef_p*gamma*(1d0+beta*cos_theta_p2)

; and plot the distribution

hist_plot_linear, ef,/normalize

; plot the analytic result from RL for isotropic scattering

y=dindgen(100)*0.01*(1.0-(1.0-beta)/(1.0+beta))+(1.0-beta)/(1.0+beta)

ef=(1+beta)*y-(1-beta)

oplot, y,ef/(2.0*beta)

y=dindgen(100)*0.01*4.0*gamma^2+1.0

ef=(1+beta)-(1-beta)*y

oplot, y,ef/(2.0*beta)

; plot the analytic result for Thomson scattering when gamma>>1

y=(dindgen(100)+1.0)*0.01

ef=2*y*alog(y)+y+1-2*y^2

oplot, y*4.0*gamma^2,ef/ef[0]

end

pro compton_iso, gamma,n

beta=sqrt(1d0-1d0/gamma^2)

print, ’beta=’, beta

seed=120L

; choose the incoming angle at random in the lab frame

y1=(1d0-beta)^2/(2d0*beta)

y2=(1d0+beta)^2/(2d0*beta)

y=y1+(y2-y1)*randomu(seed,n)

cos_theta=(1d0-sqrt(2d0*beta*y))/beta

; this is the photon energy in the rest frame

ef_p=gamma*(1d0-beta*cos_theta)
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; now choose the outgoing angle in the rest frame

cos_theta_p=-1d0+2d0*randomu(seed,n)

; calculate the photon energy in the lab frame

ef=ef_p*gamma*(1d0+beta*cos_theta_p)

hist_plot_linear, ef,/normalize

; plot the analytic result from RL

y=dindgen(100)*0.01*(1.0-(1.0-beta)/(1.0+beta))+(1.0-beta)/(1.0+beta)

ef=(1+beta)*y-(1-beta)

oplot, y,ef/(2.0*beta)

y=dindgen(100)*0.01*4.0*gamma^2+1.0

ef=(1+beta)-(1-beta)*y

oplot, y,ef/(2.0*beta)

end

pro hist_plot_linear, data, min=min_value, max=max_value, binsize=binsize, \

normalize=normalize, fill=fill, errstyle=errstyle,errcolor=errcolor,\

errorbars=errorbars, _extra=extra_keywords

if (n_params() ne 1) then message, ’Usage: hist_plot, data’

if (n_elements(data) eq 0) then message, ’data is undefined’

if (n_elements(min_value) eq 0) then min_value=min(data)

if (n_elements(max_value) eq 0) then max_value=max(data)

if (n_elements(binsize) eq 0) then binsize=(max_value-min_value)*0.01

binsize=binsize > ((max_value-min_value)*1.0e-5)

hist=histogram(float(data),binsize=binsize,min=min_value,max=max_value)

hist=[hist,0L]

nhist=n_elements(hist)

histerr=sqrt(float(hist))

histmax=float(max(hist))

;if keyword_set(normalize) then hist=hist/float(n_elements(data))

if keyword_set(normalize) then hist=float(hist)/histmax
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if keyword_set(normalize) then histerr=float(histerr)/histmax

bins=lindgen(nhist)*binsize+min_value

x=fltarr(2*nhist)

x[2*lindgen(nhist)]=bins

x[2*lindgen(nhist)+1]=bins

y=fltarr(2*nhist)

y[2*lindgen(nhist)]=hist

y[2*lindgen(nhist)+1]=hist

y=shift(y,1)

plot, x,y ,_extra=extra_keywords

if keyword_set(errorbars) then oploterror, bins+0.5*binsize, hist, histerr,/nohat \

psym=3,errstyle=errstyle,errcolor=errcolor

if keyword_set(fill) then polyfill, [x,x[0]],[y,y[0]],_extra=extra_keywords

end
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10. Problem Set 4 with solutions

1. Polarization of synchrotron radiation.

(a) Question. Show that a single electron radiates 7 times as much power polarized

perpendicular to the projected magnetic field direction than parallel to it.

Solution. Taking the ratio of P⊥(ω) and P󰀂(ω) using the expressions from class, inte-

grating each of them over frequency, we get
󰁕
dx(F (x) +G(x))󰁕
dx(F (x)−G(x))

.

The integrals are (using the identities in the notes or in Rybicki and Lightman)

󰁝
dxF (x) = Γ

󰀕
7

3

󰀖
Γ

󰀕
2

3

󰀖 󰁝
dxG(x) = Γ

󰀕
4

3

󰀖
Γ

󰀕
2

3

󰀖
,

and using the identity Γ(n+ 1) = nΓ(n), the ratio simplifies to 7 as required.

(b) Question. Show that the degree of polarization Π = (P⊥ − P󰀂)/(P⊥ + P󰀂) =

(p+ 1)/(p+ 7/3) for a power law distribution of electrons N(γ)dγ = γ−pdγ.

Solution. This time we need to integrate over the electron energy distribution. Since

P⊥ − P󰀂 ∝ G(x) and P⊥ + P󰀂 ∝ F (x) with the same constant of proportionality, we just

need to integrate 󰁕
G(x)γ−pdγ󰁕
F (x)γ−pdγ

.

As we do several times in the notes, change variables in the integral from γ to x ∝ γ−2. This

gives 󰁕
G(x)x(p−3)/2dx󰁕
F (x)x(p−3)/2dx

which can be evaluated using the identities giving integrals of F (x) and G(x). The result is

(p + 1)/(p + 7/3) as required. Note that we integrated over γ here but not over frequency,

so this result is true frequency by frequency.

2. Synchrotron energetics.

(a) Question. For a power law distribution of electrons N(γ)dγ = γ−pdγ between γ1
and γ2, show that the total energy density in the electrons is approximately

Ue =

󰀕
p− 1

p− 2

󰀖
γ1nemec

2, (6.146)
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where ne is the total number density of electrons and we have assumed that γ2 ≫ γ1 and

p > 2.

Solution. Write N(γ) = N(γ1)(γ/γ1)
−p. The normalization N(γ1) we can get from

ne =

󰁝 γ2

γ1

N(γ1)

󰀕
γ

γ1

󰀖−p

dγ

which gives

N(γ)dγ =
ne(p− 1)

γ1

󰀕
γ

γ1

󰀖−p

dγ.

Then

Ue =

󰁝 γ2

γ1

dγN(γ)γmec
2 = nemec

2γ1
p− 1

p− 2
.

(b) Question. Show that for p = 2.5, the cooling time due to synchrotron or inverse

Compton can be written

tcool ≈
1010 yrs
√
γ1γ2

󰀕
U

10−10 erg cm−3

󰀖−1

(6.147)

where U = UB = B2/8π for synchrotron, or U = Uγ the photon energy density for inverse

Compton.

Solution. The total power radiated is

P =
4

3
σT cU

󰁝 γ2

γ1

dγN(γ)γ2,

where we assume the electrons are relativistic (β = 1), and where U = UB for synchrotron

and U = Uγ for inverse Compton. The integral gives

P =
4

3
neσT cU

󰀕
p− 1

3− p

󰀖
γ3
2

γ1

󰀕
γ2
γ1

󰀖−p

=
4

3
neσT cU

󰀕
p− 1

3− p

󰀖
γ
1/2
2 γ

3/2
1 ,

where we use the fact that p = 2.5 which means that the upper limit dominates the integral.

The cooling time is

tcool =
Ue

P
=

3

4

mec

σT

1
√
γ1γ2

1

U
≈ 1010 yrs

√
γ1γ2

󰀕
U

10−10 erg cm−3

󰀖−1

.

(c) Question. Calculate the cooling time for electrons due to inverse Compton scat-

tering of CMB photons. Show that for large enough redshift, inverse Compton cooling from
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CMB photons is significant even if the electrons are non-relativistic (take TCMB ∝ 1 + z,

and age of universe t ∝ (1 + z)−3/2).

Solution. First calculate the energy density in CMB photons. The CMB temperature

is Tγ = T0(1 + z) where T0 = 2.7 K is the temperature today. The energy density is

Uγ = aT 4
γ = 4.0× 10−13 erg cm−3 (1 + z)4.

For non-relativistic electrons, the energy density is Ue = (3/2)nekBTe and the inverse

Compton power is P = (4kBTe/mec
2)neσT cUγ, giving a cooling time

tcool =
Ue

P
=

3

8

mec

σT

1

Uγ

.

Take the age of the universe at redshift z as tage = t0(1 + z)−3/2 where t0 ≈ 13 Gyrs is

the current age.

Then setting tcool = tage gives

1 + z =

󰀗
3

8

mec

σT t0aT 4
0

󰀘2/5

which gives tcool = tage for z ≈ 5. At higher redshift the cooling time becomes shorter than

the age of the universe, implying that this is a significant source of cooling for hot electrons.

At lower redshift, the cooling time becomes much longer than the timescale on which the

universe is evolving.

(d) Question. An object is observed to have a total synchrotron luminosity L. Show

that the total energy of the system is minimized when Ue ≈ UB, i.e. the electrons and

magnetic field are close to equipartition.

Solution. The synchrotron luminosity is

L =
4

3
neσT c〈γ2〉UB

where 〈γ2〉 is an average of γ2 over the electron distribution. If we write U2
e ∝ 〈γ2〉 and UB =

Utot−Ue then L ∝ U2
e (Utot−Ue) which is a maximum for Ue = (2/3)Utot, i.e. approximately

equipartition. The result then follows because if we moved Ue away from equipartition, a

greater Utot would be required to match the observed luminosity.

(e) Question. The radio lobes of the radio galaxy Cyg A are roughly 50 kpc across

and have a total luminosity ≈ 1045 erg s−1 observed at radio frequencies of several GHz.

Assuming a typical magnetic field B ≈ 10−4 G what else can you deduce about the physical

conditions of the plasma? What is the cooling time of the electrons?
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Solution. Since we know the magnetic field, the first quantity we can calculate is the

γ factor of electrons that radiate at several GHz in a 10−4 G magnetic field. The non-

relativistic cyclotron frequency is fc = eB/2πmec = 280 Hz (B/10−4 G). We need to boost

this by a factor of 107 to get it to a few GHz, which implies that γ ∼
√
107 ∼ 3000.

With this γ factor, the power radiated per electron is (4/3)γ2σT cUB ≈ 10−16 erg s−1

which implies that we’re looking at ≈ 1061 electrons. The number density is 1061/(50 kpc)3 ≈
10−8 cm−3.

The energy density in the magnetic field is B2/8π = 4 × 10−10 erg cm−3. Using the

values of ne and γ that we inferred already, the electron energy density is neγmec
2 = 3 ×

10−11 erg cm−3, about an order of magnitude smaller than UB.

The total energy in the electrons is ∼ (50 kpc)2(3× 10−11 erg cm−3) ≈ 1059 erg. There-

fore the cooling time is ∼ 1059 erg/1045 erg s−1 ∼ 3 × 106 years. The total energy in the

magnetic field is ten times larger.

(f) Question. Consider a source of synchrotron radiation which is self-absorbed. Write

the luminosity as roughly L = νpLν , where νp is the frequency at which the spectrum peaks.

Also take the brightness temperature in the self-absorbed part of the spectrum to be given

by kBTb ≈ γmec
2. Calculate the value of Tb at which the energy density in the synchrotron

photons is equal to UB (you should find Tb ≈ 1012 K for νp = 1 GHz). What would happen

if the brightness temperature exceeded this value (this is known as the “inverse Compton

catastrophe”; see e.g. Readhead 1994).

Solution. The energy density in the synchrotron photons is roughly Uγ ≈ νpIνp/c ≈
2ν3

pkBTb/c
3. The radiation at νp comes from electrons with a γ that satisfies 2πνp =

γ2eB/mec ≈ eB(kBTb)
2/m3

ec
5. Therefore the magnetic energy density is

UB =
B2

8π
=

π

2

󰀕
m3

ec
5νp

e(kBTb)2

󰀖2

.

Now set UB = Uγ and solve for Tb:

Tb =
1

kB

󰀕
π

4

m6
ec

13

e2νp

󰀖1/5

= 3× 1012 K
󰀓 νp
1 GHz

󰀔−1/5

.

The argument is that if the brightness temperature exceeded this value, Uγ > UB which

would lead to catastrophic inverse Compton cooling of the electrons by the same photons

that they created by synchrotron emission. See for example Readhead (1994) for discussion

of whether this limit is actually the correct explanation for the upper limit of observed

brightness temperatures.
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11. Problem Set 5 with solutions

1. Spectral lines and curve of growth.

(a) Question. Plot the Voigt profile for different values of natural to Doppler width.

Solution. The Voigt profile is

φ(ν) =
1√

π∆νD
H

󰀕
a,

ν − ν0
∆νD

󰀖

where ∆νD = ν0(2kBT/mc2)1/2 ∼ ν0〈v〉/c is the Doppler width, a = Γ/4π∆νD compares the

Doppler and natural linewidths, and

H(a, u) =
a

π

󰁝 ∞

−∞

e−y2dy

a2 + (u− y)2
.

Here is a plot of this function normalized to the same peak value, for a = 0.5, 1, and 2.

(b) Question. By integrating the Voigt profile over frequency, calculate the curve of

growth and confirm the scalings given in the notes, EW∝ N , ∝
√
lnN and ∝

√
N .

Solution. The idea here is to write the observed intensity as ∝ exp(−τν) where the

optical depth is τν = Nσν with the column of absorbers N and the shape of the cross-section

determined by the Voigt function, σν ∝ H(a, (ν − ν0)/∆νD).
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Here is a plot of e−τν for increasing column of absorbers by a factor of 3 each time. I’ve

set a = 1.

Next I show a similar plot but now for a = 0.01 (Doppler width much greater than

natural width) with steps of ten in the absorbing column. You can see here the different

regimes - initial linear growth as the Gaussian profile becomes deeper, once it saturates

the total area doesn’t change too much (logarithmic part) until the damping wings start to

absorb. You will only see the logarithmic part for a less than one, otherwise there is just a

transition from the linear to square root scaling.
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Finally, the next plot shows the curve of growth as a function of absorption column

(arbitrary units), obtained by integrating the area under the continuum in the previous plot.

You can clearly see the linear, almost flat, and square root scalings.
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2. Radiative transitions

Question. Using Fermi’s Golden Rule as discussed in class, show that the 2p → 1s

transition rate for hydrogen is

A21 =

󰀕
2

3

󰀖8

α5mec
2

󰄁
.

Solution. This calculation involves assembling the various pieces that go into Fermi’s

Golden Rule that are discussed in the lecture notes in sections 6.4 to 6.6. (This is a standard

textbook example which you can find towards the end of non-relativistic quantum mechanics

books.) We have

A21 =
2π

󰄁

󰁝
4πp2dp

h3
δ(pc− E21) |Mfi|2

where Mfi is the matrix element connecting the initial and final states, E21 = (3/8)α2mec
2

is the energy of the transition (the energy difference between the n = 1 and n = 2 states

of hydrogen), and the delta function ensures the outgoing photon takes away the transition

energy. We’ve also assumed that the outgoing photon is isotropically distributed, which is

okay because we will sum over all m for the initial 2p state - ie. the atom initially has no

preferred direction. We can use the delta function to do the integral, which gives (using

photon frequency rather than momentum)

A21 =
2π

󰄁
4π(󰄁ω)2

h3c3
|Mfi|2 .

In section 6.4, we show that in the dipole approximation we can write

|Mfi|2 = 2

󰀕
e

mec

󰀖2
2π󰄁c2

ω
m2ω2

󰀏󰀏󰀏〈f|󰂓󰂃 ·󰂓r|i〉
󰀏󰀏󰀏
2

where the last factor is the square of the overlap integral between the initial 2p and final 1s

state, and the initial factor of 2 counts the two photon polarizations. The radial part of the

overlap integral is given in the notes as
󰁝 ∞

0

R󰂏
10(r)R21(r)r

3dr =
24√
6

󰀕
2

3

󰀖5

a0,

which just leaves the angular part. Before we do that let’s put everything we have so far

together:

2π

󰄁
4π(󰄁ω)2

h3c3
2

󰀕
e

mec

󰀖2
2π󰄁c2

ω
m2ω2

󰀥
24√
6

󰀕
2

3

󰀖5

a0

󰀦2

|MΩ|2

where MΩ is the angular part of the overlap integral. Simplifying gives

A21 =
28

36
α5mec

2

󰄁
|MΩ|2 .
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From the notes, the angular integral is
󰁝

dΩ Y 󰂏
00󰂓󰂃 · 󰂓erY1,m

which depends on the initial m of the 2p state and again from the notes we can write

󰂓󰂃 · 󰂓er =
󰁵

4π

3

󰀕
󰂃zY1,0 +

−󰂃x + i󰂃y√
2

Y1,1 +
󰂃x + i󰂃y√

2
Y1,−1

󰀖
. (6.148)

In principle we are dealing with an integral of the product of three Ylm’s. However Y00 =

1/
√
4π is a constant, and so pulls out of the integral. The orthogonality of the Ylm’s then

means that each choice of m picks out of the terms in equation (6.148). Summing over the

three terms gives (󰂃2x+󰂃2y+󰂃2z)/3 = 1/3. We then divide by another factor of three to average

over the m values. The final rate is

A21 =

󰀕
2

3

󰀖8

α5mec
2

󰄁
.

3. HII regions

(a) Question. In the interior of a typical HII region with electron density ne ≈
100 cm−3, what is the lifetime of a proton to recombination, and of a hydrogen atom to

photoionization ? Estimate the ionization fraction.

Solution. The recombination rate per proton is

ne〈σfbv〉 ≈ 10−11 s−1
󰀓 ne

100 cm−3

󰀔󰀕
〈σfbv〉

10−13 cm3 s−1

󰀖

where we use a typical value for the recombination coefficient from section 6.9 of the notes.

The photoionization rate per proton is

Ṅγ

4πr2
σbf ∼ 10−5 s−1

󰀕
1 pc

r

󰀖2
󰀣

Ṅγ

1050 s−1

󰀤󰀓 σbf

10−17 cm2

󰀔

where we again take a typical value for the photoionization cross-section near threshold and

Ṅγ is the photon luminosity of the central star.

Therefore we estimate that a proton will recombine once every 1011 s ≈ 3000 years,

whereas a hydrogen atom is ionized about once a day. This tells you that in steady-state

there must be many more protons than neutral hydrogen atoms. The neutral fraction must

be 1 day divided by 3000 years or ∼ 10−6. (So the ionization fraction is 1 minus 10−6). This

number compares well with values in Table 2.2 of Osterbrock.
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This also gives you a way to understand the size of the HII region, since the star

produces 1050 ionizing photons per second, or 1061 ionizing photons in the recombination

time of 1011 s. Therefore we need 1061 protons to be able to keep absorbing the ionizing

photons in steady-state. For n ≈ 100 cm−3, the volume is 1061/100 ∼ 1059 cm3, or a radius

of about 10pc.

We could also calculate the time between collisions. The rate per atom is neγkj with

γkj ≈ 10−7 cm3 s−1 Ω(j, k)T
−1/2
4 /gk. Therefore an atom undergoes a collision about once a

day. As we discussed in class, collisional deexcitation is therefore only important for transi-

tions with small A values A ∼ 10−5 s−1 such as forbidden transitions (see next question).

(b) Question. Calculate the mean free path of an ionizing photon in neutral hydrogen.

What does your result say about the thickness of the transition zone between HII and HI at

the edge of an HII region?

Solution. The typical photoionization cross-section of 10−17 cm2 implies that we need a

column of hydrogen NH ≈ 1017 cm−2 for optical depth unity. The mean free path is therefore

≈ 0.03pc (nH/cm
−3)−1. This sets the scale for the transition between ionized and neutral

gas at the edge of the HII region. The transition is very sharp.

4. Line diagnostics

Question. Calculate and plot the intensity ratio of the OII 3728.9Å and 3726.2Å emis-

sion lines discussed in class as a function of ne, with and without taking collisional transitions

between the two upper levels into account, and comment on whether it is important to in-

clude the transitions between the upper two levels when using the line ratio to determine

electron density. (One place to find decay rates and collision strengths for the 2D3/2,
2 D5/2

and 4S3/2 levels of OII is Seaton and Osterbrock 1957).

Solution. Here is a summary of the atomic data that comes from Seaton & Osterbrock

(1957):
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We’ll refer to the three levels as 1, 2, and 3. The degeneracies are g3 = 4, g2 = 6, g1 = 4

based on the values of J = 3/2, 5/2 and 3/2 respectively. In class, we derived the expression

for the intensity ratio of the two lines ignoring transitions between levels 2 and 3. The result

is
I31
I21

=
g3A31ν31
g2A21ν21

e−E23/kBT

󰀗
1 + A21/neγ21
1 + A31/neγ31

󰀘
. (6.149)

Now define the critical densities nc,2 = A21/γ21 and nc,3 = A31/γ31. The deexcitation rate

coefficient is from the notes

γkj = 8.6× 10−6 cm3 s−1 Ω(j, k)

gkT 1/2
. (6.150)

This gives

nc,2 = 3.8× 103 cm−3T
1/2
4 nc,3 = 1.6× 104 cm−3 T

1/2
4 .

To get the prefactor in equation (6.149), note that E23 ≪ kBT for typical HII region tem-

peratures, so we can set the exponential to unity, and also ν31 ≈ ν21 because E23 ≪ E12.

Therefore the prefactor is g3A31/g2A21 = 2.9, giving

I31
I21

= 2.9

󰀥
1 + 3.8× 103 cm−3T

1/2
4 /ne

1 + 1.6× 104 cm−3 T
1/2
4 /ne

󰀦
.

The high density limit is 2.9, the low density limit is given by Ω(1, 3)/Ω(1, 2) = 0.51/0.77 =

0.66. Here is a plot of I31/I21 against ne for T4 = 1:
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Now let’s put in collision-induced transitions between levels 2 and 3. We can safely

ignore the spontaneous emission from 3 to 2 because A32/A31 ≈ 10−3 so only one in a

thousand radiative decays from level 3 goes to level 2. In equilibrium, the level populations

are given by

n1(neγ12 + neγ13) = n2(neγ21 + A21) + n3(neγ31 + A31) (6.151)

n2(A21 + neγ21 + neγ23) = n3(A32 + neγ32) + n1(neγ12) (6.152)

n3(A31 + A32 + neγ32 + neγ31) = n1neγ13 + n2neγ23 (6.153)

where we write an equation for each level, with the rate of transitions out of that level

on the left, and into that level on the right. Any two of these equations can be solved

by eliminating n1 to get an equation for n3/n2 (the third equation is redundant since all

transitions are occurring within this set of levels). This gives

n3

n2

=
γ21γ13 + γ23γ12 + γ23γ13 + γ13A21/ne

γ12γ31 + γ32γ12 + γ13γ32 + γ12A31/ne

. (6.154)

The next step is to realize that

γ21γ13 + γ23γ12 + γ23γ13
γ12γ31 + γ32γ12 + γ13γ32

=
g3
g2
e−E23/kBT

which you can show using the relation between γjk and γkj or simply by considering the limit

of equation (6.154) in which the collisional terms dominate.
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The line intensity ratio can now be written

I31
I21

=
g3A31ν31
g2A21ν21

e−E23/kBT

󰀗
1 + nc,2/ne

1 + nc,3/ne

󰀘
(6.155)

as before (compare eq. [6.149]), but with critical densities

nc,2 =
A21

γ21

󰀗
1 +

γ23
γ21

󰀕
1 +

γ12
γ13

󰀖󰀘−1

nc,3 =
A31

γ31

󰀗
1 +

γ32
γ31

󰀕
1 +

γ13
γ12

󰀖󰀘−1

.

We just need to calculate the factors in square brackets and modify our previous values for

the critical density. Using the relation between γjk and γkj, and using the expression for the

deexcitation rate constant γkj in equation (6.150), we find that both these factors are equal

to

1 + Ω(3, 2)

󰀗
1

Ω(3, 1)
+

1

Ω(2, 1)

󰀘
= 3.8

where we’ve set e−E32/kBT ≈ 1.

Here is the plot (dotted curve is with collisional transitions between 3 and 2; solid curve

is no transitions between 3 and 2):



– 155 –

Including the 3 to 2 transitions reduces the inferred density for a given measured line ratio

by about a factor of 4. Note that the low and high density limits are unchanged: at high

densities we must still have the Boltzmann occupation of levels, and at low densities because

we haven’t changed the radiative decays: both levels decay straight to the ground state.

Another way to look at this is that at a fixed ne, including the 3 to 2 transitions increases

I31/I21. Since it helps the levels reach a thermal population.

Figure 5.8 of Osterbrock’s book shows the inverse ratio I21/I31 as a function of ne. They

include also excitation of the higher energy 2P levels which can cascade down and populate

our levels 1,2 and 3. This shifts the curve to lower densities by about another order of

magnitude, so that the transition occurs for ne between 102 and 103 cm−3.


