
PHYS 643 Computational Exercise: The white dwarf mass–radius
relation

You should send me a write-up of your results and the code that you used to do the
calculation and make plots by email before the class on September 27.

Overview. The goal of this exercise is to calculate the mass-radius relation for T = 0
white dwarfs. This requires numerically integrating the equation of hydrostatic bal-
ance. You can do this using whatever method you wish, but to help you I describe a
possible procedure below.

Equations and boundary conditions. The structure of the white dwarf is given by the
equations of hydrostatic balance

dP
dr

= −Gmρ

r2
dm
dr

= 4πr2ρ.

The boundary conditions are m = 0 at r = 0 and P = ρ = 0 at r = R.

Equation of state. The integration variables are m and P, so at each step you will need to
compute the density from the pressure using the equation of state. Usually the equa-
tion of state is given the other way round, as a function P(ρ), often as a numerical
table for complex equations of state. Given P(ρ), you can find the density ρ0 corre-
sponding to a particular pressure P0 by solving the equation P(ρ0) = P0 numerically
using a root-finding algorithm.

You can use this root-finding technique in your code, but there is also another
option since we have an analytic expression for the equation of state. In this case, we
can change integration variables from P → ρ, ie. use the analytic equation of state
to write dP/dr in terms of dρ/dr. As the white dwarf mass increases, the electrons
go from being non-relativistic (P ∝ ρ5/3) to relativistic (P ∝ ρ4/3). To take this into
account, we can use the analytic fitting formula for the equation of state derived by
Paczynksi (1983) that I mentioned in the notes:

P−2 = P−2
nr + P−2

r ,

where Pnr = Knrρ5/3 is the non-relativistic degenerate electron pressure and Pr =
Krρ4/3 is the relativistic degenerate electron pressure. It is then straightforward to
show that

d ln P
dr

=
d ln ρ
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Use the class notes to determine the constants Knr and Kr. Assume a carbon/oxygen
white dwarf which has Ye = 0.5.

Integration. Now the idea is to integrate outwards from the center of the star to the
surface. At the center, there is a problem at r = 0 since the equation for dP/dr has an
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r in the denominator and we can’t divide by zero! To avoid this, start the integration
at a small distance r =  from the center, where ρ ≈ ρc and m ≈ 4πρc3/3. Here I’ve
written the central density as ρc.

Integrate outwards until the density falls to zero. The radius at which ρ = 0 is the
radius of the star r = R, and the value of m at this point is the mass M of the star. How
you do this step in practice depends on your integrator. Most likely you will have to
tell your integration routine to integrate from r = r1 = 0 to r = r2. In that case, try
different values of r2 until you find the one that gives ρ = 0 at the edge.

Repeat this integration for several different choices for central density ρc logarith-
mically spaced from about 106 g cm−3 to 109 g cm−3. You’ll have to experiment to get
the correct range in central density that covers a mass range up to the Chandrasekhar
mass at ≈ 1.4 M⊙.

Questions

1. Mass-radius relation. Plot the curve of radius against mass. For low masses, when
the central density is small and γ = 5/3, you should find R ∝ M−1/3, but you’ll
see the slope changes at large masses. How does your answer compare with the
analytic approximation from the lecture notes,

R = 8.7 × 108 cm
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and what do you determine to be the Chandrasekhar mass?

2. Investigate the density profile. Plot the density profile as a function of radius for
different mass white dwarfs. How does the density profile change as you change
the white dwarf mass?

3. The extent to which the electrons are relativistic. Plot the value of γ and EF/mec2 at
the center of the white dwarf as a function of mass.

A possible extension is to add the Coulomb energy of the ions (see eq. [4] of the
notes) to the pressure. Are there masses where the Coulomb energy becomes impor-
tant?
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