
PHYS 643 Week 1: Introduction

These notes are for the first week of PHYS 643 Astrophysical Fluids. The idea is to
introduce the fluid equations, laying the groundwork for the specific topics in future
weeks.

What is a fluid?

The fluid equations apply when the mean free path of particles λ is much smaller
than the distances over which bulk properties, such as temperature and density, are
varying.

For example, let’s estimate λ in the Sun. At the center of the Sun, the temperature
is T ≈ 107 K and density ρ ≈ 150 g cm−3, so the matter is a completely-ionized plasma
of (mostly) protons and electrons. The mean free path is given by nσλ = 1 where n
is the number density of scatterers and σ is the scattering cross-section. We can get n
from the density, n ≈ ρ/mp ∼ 1026 cm−3. The Coulomb cross-section is given roughly
by writing down the scalings

e2

r
∼ kBT σ ∼ πr2 ∼ e4

(kBT)2 .

Plugging in numbers gives

λ ∼ 106 cm
T2

n
∼ 10−6 cm.

Much smaller than the radius of the sun R⊙ ≈ 7× 1010 cm, which is the scale on which
the temperature varies. This large difference in scales means that the particles are in
local thermodynamic equilibrium (LTE). For example, they have a Maxwell-Boltzmann
distribution at the local temperature.

Under these conditions, we can treat the matter as a continuum and describe the
matter with a set of conservation equations for mass, momentum and energy — the
fluid equations. We don’t have to worry about following the trajectories and inter-
actions of individual particles (like in an N-body simulation of a star system for ex-
ample), although there is a systematic derivation of the fluid equations from such a
starting point (the Boltzmann equation), expanding in the small parameter λ/L. This
is covered in the early chapters of Choudhuri.

Just to give a couple of situations in astrophysics where the fluid approximation
is not so good, consider gas in a galaxy cluster with temperature ∼ 108 K and n ∼
10−3 cm−3, then λ ∼ 1024 cm ≈ 0.3 Mpc, which is a large fraction of a typical cluster
size. In the solar wind near Earth, T ∼ 105 K and n ∼ 10 cm−3 gives λ ∼ 1014 cm
which is several AU.
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The continuity equation, advective derivative, Eulerian and Lagrangian ap-
proaches, incompressible fluid

The continuity equation describes mass conservation

∂ρ

∂t
= −∇ · (ρu) .

This has a flux-conservative form: rate of change of a density on one side and the
divergence of the flux of that quantity on the other side. The mass flux is ρu (units:
g cm−2 s−1). Using the advective derivative

D
Dt

=
∂

∂t
+ u ·∇

this can be rewritten
Dρ

Dt
= −ρ∇ · u.

Make sure you are comfortable with the physical interpretation of this: e.g., if the flow
converges, mass is flowing to a point and so the local density has to increase.

The advective derivative is also known as the Lagrangian derivative. It represents
the rate of change of a quantity following along with the fluid element (Lagrangian
approach) rather than asking what is the rate of change of the quantity at a fixed point
in space (Eulerian approach).

An incompressible fluid (e.g. water) has a constant density, so that Dρ/Dt = 0 and
∇ · u = 0. (Think about how when a river widens, the water slows down so that the
mass flow rate is the same). Incompressibility is a good approximation when the flow
is subsonic |u| ≪ cs because then any density variations will be rapidly smoothed out
by sound waves much faster than the fluid motion.

Momentum equation; body and surface forces, viscosity, equation of state

The momentum equation in flux conservative form is

∂

∂t
(ρui) +

∂

∂xj

󰀃
ρuiuj

󰀄
= fi +

∂

∂xj
Tij.

This describes conservation of the ith component of momentum density ρui (momen-
tum per unit volume). The flux of the ith component of momentum in the j-direction
is ρuiuj.

On the right hand side, forces act to change the momentum. They are of two types.
Body forces act on each particle in the fluid element. The body force per unit volume
in the i-direction is fi. Examples are gravity, f = ρg = −ρ∇Φ, and magnetic force,
f = J × B/c.

The second term represents surface forces, and Tij is a stress tensor. The diagonal
elements of the stress tensor are forces that push inwards or outwards on the surface
of a fluid element (direction along the normal to the surface). An example is pressure,
described by

Tij = −Pδij
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which gives
∂

∂xj
Tij = − ∂

∂xi
P = − (∇P)i

the ith component of the pressure gradient. Fluid elements feel a force down the
pressure gradient. Physically, the pressure force on one side of the fluid element out-
balances the pressure force on the other, giving a net acceleration.

With pressure and gravity forces only, and using the continuity equation to sim-
plify the left hand side, a common form of the momentum equation is

ρ
Du
Dt

= −∇P + ρg.

(Think of this as F = ma for a fluid element).
Viscosity in a fluid resists shear (as the random motions of particles transfer mo-

mentum between parts of the fluid moving with different velocities). It gives off-
diagonal contributions to Tij, i.e. the viscous force acts in a direction parallel to the
surface of a fluid element rather than normal to it. In general, the viscous stress can
be written

σij = µ

󰀕
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij∇ · u

󰀖
+ ξδij∇ · u,

where µ is the shear viscosity and ξ is the bulk viscosity (units of viscosity: g cm−1 s−1).
The velocity derivatives in the first term describe shearing motions of the fluid (as
opposed to rotation of a fluid element which would have a minus sign — see vorticity
below), and is the usual viscosity that we worry about. The bulk viscosity is not
usually important, it describes irreversible processes that occur when a fluid element
is compressed. The quantity ν = µ/ρ is the kinematic viscosity (units: cm2 s−1). For an
ideal gas this is roughly ν ∼ λ2/tc ∼ λvth, where tc is the collision time and vth is the
thermal velocity of the particles in the gas. If the fluid motions have ∇ · u ≈ 0, the
viscous term in the momentum equation simplifies to

∂

∂xj
Tij ≈

∂

∂xj

󰀕
µ

∂ui

∂xj

󰀖

or for constant µ,
≈ µ∇2u.

This last form shows that viscosity leads to diffusion of momentum.
The momentum and continuity equations describe the fluid motion completely

if we know how to relate P and ρ, which depends on the equation of state of the
fluid. For example, if the fluid flow is rapid enough that there is no time for heat flow
between fluid elements, the motion is adiabatic and we can write P ∝ ργ, where γ is
the adiabatic index. The opposite limit is extremely rapid heat transport so that the
gas remains isothermal, P ∝ ρ. Intermediate cases require that we also follow the
temperature of the gas which requires a third equation, the energy equation. We’ll
come to that soon.
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Magnetic fields: the MHD equations

For a magnetized plasma, we already mentioned the J × B force in the momentum
equation1 We also need to discuss how the magnetic field evolves. The electric field
by Ohm’s law2 is

E = −u × B
c

+
J
σ

.

The first term on the right hand side comes from the relativistic transformation from
the fluid rest frame to the frame in which the fluid is moving with velocity u. Fara-
day’s law then gives the time-dependence of B,

∂B
∂t

= −c∇× E = ∇× (u × B)− c∇×
󰀕

J
σ

󰀖
.

This is known as the induction equation.
The first term on the right hand side describes flux freezing. In the absence of ohmic

dissipation (ideal MHD), magnetic field lines move with the fluid. A good way to see
this is to derive an equation for the separation dℓ between two fluid elements in a fluid.
It turns out to be of the same form as the induction equation (without the ohmic term)
but with B → dℓ. So if you take two fluid elements and follow them as they move
through the flow, their separation vector and the local magnetic field vector evolve in
the same way. That tells you that magnetic field lines are tied into the fluid.

To see the effect of the ohmic term, use Ampere’s law3, which gives the current
density

J =
c

4π
∇× B.

The induction equation is then

∂B
∂t

= −c∇× E = ∇× (u × B)−∇× (η∇× B) ,

where the magnetic diffusivity η = c2/(4πσ). Since ∇ · B = 0, ∇×∇× B = −∇2B
and so for constant η the ohmic term in the induction equation is

∂B
∂t

= η∇2B,

a diffusion equation for B. We see that ohmic dissipation gives rise to ohmic diffusion of
the magnetic field. It breaks flux freezing, and leads to motion of the field lines within
the fluid.

The fluid equations with the J × B force, the induction equation, and Ampere’s
law together form the equations of magnetohydrodynamics (MHD).

1If there is a non-zero charge density ρe, there will also be an electric force ρeE, but usually in astro-
physical situations the plasma is electrically neutral ρe = 0.

2In fact, there are other terms that can appear in Ohm’s law. See the Appendix for a more general
derivation of Ohm’s law using the two fluid equations.

3The term ∂E/∂t in Ampere’s law can be dropped as long as the timescale on which B is evolving
is much longer than a light crossing time. Note that we then have ∇ · J = 0, consistent with charge
conservation.
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One more thing we can do is to look in more detail at the J × B force using Am-
pere’s law to write J in terms of B. Then

J × B
c

=
1

4π
(∇× B)× B = −∇

󰀕
B2

8π

󰀖
+

(B ·∇)B
4π

.

The first term is the gradient of the magnetic pressure B2/8π. The second term has
two pieces. One piece has a direction along the field, and cancels the gradient along
the field from the first term. The net effect is that the magnetic pressure acts only
perpendicular to the field (as it must since the force is J×B). So if you grab a flux tube
and squeeze it, you will feel the magnetic pressure pushing back. The other piece of
the B ·∇B term is magnetic tension, which tries to make the fields lines straighten (like
an elastic string). The magnitude of the tension force per unit volume is B2/4πRc,
where Rc is the radius of curvature of the field line. We’ll see later this force supports
Alfven waves.

Energy equation

It helps to consider the bulk kinetic energy, internal energy, and magentic energy sep-
arately.

An equation for the kinetic energy density (1/2)ρu2 comes from carrying out the
dot product

u · (momentum equation) ⇒
∂

∂t

󰀕
1
2

ρu2
󰀖
+

∂

∂xj

󰀕
1
2

ρu2uj

󰀖
= u · f + ui

∂Tij

∂xj
.

Again this is flux-conservative form and says that the kinetic energy density changes if
there is mechanical work u · f on the fluid element, either from body or surface forces.

For internal energy, we can start with the 1st law of thermodynamics dE = TdS −
PdV which we write per unit mass as

de = Tds +
Pdρ

ρ2 . (1)

For a given fluid element, the rate of change of entropy,

T
Ds
Dt

=
De
Dt

− P
ρ2

Dρ

Dt
, (2)

is the rate of change of heat content of the fluid element. It can come from internal
heating or cooling (e.g. nuclear reactions that deposit energy in the gas or neutrinos
that leave the volume and act as a volumetric cooling source), or from a heat flux at the
surface of the fluid element. The heat flux F can often be written F = −K∇T where
K is the thermal conductivity (heat flows down the temperature gradient). Including
both contributions, we write

T
Ds
Dt

= 󰂃 − 1
ρ
∇ · F,
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the entropy equation.
We already mentioned the adiabatic approximation that P ∝ ργ if there is no time

for heat flow. Here, γ = cP/cV is the ratio of specific heats. We can see this directly by
demanding that fluid elements conserve entropy

Ds
Dt

=
D
Dt

󰀕
P
ργ

󰀖
= 0.

In the second step, we used eq. (1) and P = (γ − 1)ρe to rewrite equation (2).
Adding the kinetic energy to the internal energy we get an equation for the total

energy (neglecting magnetic energy)

∂

∂t

󰀕
1
2

ρu2 + ρe
󰀖
+

∂

∂xj

󰀕
uj

󰀗
1
2

ρu2 + ρe + P
󰀘󰀖

=

󰀕
󰂃 − ∇ · F

ρ

󰀖
+ u · f.

(We write only the body force piece of the mechanical work for simplicity). Note that
the enthalpy h = e + P/ρ appears in the flux term. The enthalpy is often a more useful
quantity than internal energy in flows at constant pressure, since it takes into account
the PdV work done as the fluid moves around. It often comes up in chemistry, for
example.

To include magnetic energy, we can dot B into the induction equation. This gives
an equation for the magnetic energy density B2/8π,

∂

∂t

󰀕
B2

8π

󰀖
= −∇ ·

󰀕
cE × B

4π

󰀖
− E · J

which you may have seen before in electromagnetism. The first term on the right hand
side is the divergence of the Poynting flux; the second is Ohmic dissipation.

Using Ohm’s law, the J · E term can be written as two terms

−E · J = − J2

σ
− u · J × B

c
.

The first is the energy dissipation rate from ohmic heating. This converts magnetic
energy into internal energy: J2/σ is the heating rate per unit volume. The second term
has the same form as the mechanical work term u · f in the kinetic energy equation,
but with opposite sign. This shows that the work done on the fluid by the J × B force
takes energy from (or puts energy into) the magnetic field.
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Examples

Here are two example problems to work on that will give you a chance to play around
with the fluid and MHD equations:

1. Magnetic field winding. Consider a spherical star which is differentially rotating such
that the fluid velocity is u = φ̂ RΩ(R), where we use cylindrical coordinates (R, φ, z)
with z along the rotation axis. A poloidal magnetic field (BR(R, z), 0, Bz(R, z)) threads
the star initially.

(a) First assume that the velocity does not change over time. What does the in-
duction equation imply for the subsequent evolution of the field? Explain your result
physically.

(b) Now write down the momentum equation for the fluid and include the back
reaction of the field on the fluid. What is the evolution in time?

2. Electric field in an atmosphere. Consider a plane-parallel atmosphere of fully ionized
hydrogen gas. By writing down the momentum equations for the protons and elec-
trons separately, show that (1) the structure of the atmosphere is given by dP/dz =
−ρg, where P is the sum of the electron and proton pressures, and (2) there is an elec-
tric field in the atmosphere. What is the value of the electric field, and what is its
role?
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Appendix: Two fluid equations

Another way to approach the MHD equations is to consider the electron and ions
separately. Coupled by a collisional term, the momentum equations for each species
are

neme
Dve

Dt
= −neme(ve − vi)

τe
− nee

󰀕
E +

ve × B
c

󰀖
−∇Pe (3)

nimi
Dvi

Dt
= −nimi(vi − ve)

τi
+ niZe

󰀕
E +

vi × B
c

󰀖
−∇Pi (4)

where ne, ni, Pe and Pi are the electron and ion densities and pressures, me and mi are
the electron and ion masses, and τe and τi are the timescales on which the electron or
ion velocity ve or vi relaxes due to collisions with the other species.

Charge neutrality implies that ne = Zni. Momentum conservation also tells us
that the collisional terms must cancel, i.e. neme/τe = nimi/τi or τe = (Zme/mi)τi. This
means that the electron velocity changes on a much faster timescale due to collisions
with protons than vice versa. This makes sense if we consider two body collisions
between particles with very different masses: the heavy particle undergoes a smaller
velocity change by roughly the ratio of the particle masses.

The electrons and ions satisfy the continuity equations

∂ne

∂t
+∇ · (neve) = 0

∂ni

∂t
+∇ · (nivi) = 0.

Multiplying by the particle masses and adding, we find

∂

∂t
(neme + nimi) +∇ · (nemeve + nimivi) = 0

or
∂ρ

∂t
+∇ · (ρu) = 0,

where ρ = neme + nimi is the mass density and we define the fluid velocity u such
that

ρu = nemeve + nimivi.

Note that since me ≪ mi, the fluid velocity is close to the ion velocity u ≈ vi. Sub-
tracting the continuity equations and assuming charge neutrality gives ∇ · J = 0 as
required for charge conservation.

Now add the two momentum equations (3) and (4). On the left hand side this
gives

neme
Dve

Dt
+ nimi

Dvi

Dt
= ρ

Du
Dt

.

On the right hand side, the pressure gradient terms add ∇Pi +∇Pe = ∇P, where P is
the total pressure, and the Lorentz force terms are

−nee
󰀕

E +
ve × B

c

󰀖
+ niZe

󰀕
E +

vi × B
c

󰀖
= nee

(vi − ve)× B
c

=
J × B

c
.
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The final result is
ρ

Du
Dt

= −∇P +
J × B

c
,

which is the familiar momentum equation for the fluid.
Ohm’s law can be obtained from the electron equation of motion. We neglect the

acceleration term on the left hand side, assuming that the electron velocity quickly
adjusts to changes in Lorentz forces since the electrons are much less massive than the
ions. Therefore

0 = −neme(ve − vi)

τe
− nee

󰀕
E +

ve × B
c

󰀖
−∇Pe

or

E =
meJ

nee2τe
− (ve − vi)× B

c
− vi × B

c
− ∇Pe

nee
.

The electrical conductivity is σ = nee2τ/me, and since u ≈ vi, we have

E =
J
σ
− u × B

c
+

J × B
neec

− ∇Pe

nee
. (5)

Equation (5) is the Ohm’s law we wrote down in the text, except for the last two terms
which are the Hall term and battery term. The first of these is the Hall electric field
that you may have come across before that arises when a current flows perpendicular
to a magnetic field. The Lorentz force deflects the current-carrying charges until the
Hall electric field grows to balance it. The battery term enters the induction equation
as the cross product of the electron pressure and density gradients ∇Pe ×∇ne (after
taking the curl of E) so that misalignment of the surfaces of constant electron density
and constant electron pressure leads to magnetic field growth (the “battery effect”).

9


