
PHYS 643 Week 5: Introduction to Numerical Methods

These notes give an introduction to numerical methods for solving the fluid equations.
They draw upon material in the book Numerical Recipes by Press & Teukolsky (see in
particular section 19.1 of that book), and the course on hydrodynamics by P. Dulle-
mond at the University of Heidelberg 1. I focus here on finite differencing because
this is the technique mostly used in astrophysics, where the geometry of the flow is
usually quite simple, e.g. spherical (star or outflow), cylindrical (accretion disk) or
plane-parallel (local box). An alternative technique is finite elements, used a lot in en-
gineering applications that have complex geometries (e.g. flow around an aeroplane).

Finite difference approximation for derivatives

We solve for fluid properties on a numerical grid, at locations xj = j∆x where j labels
the grid point. For simplicity here, we assume constant grid spacing ∆x, although the
results can be generalized to non-constant spacing. Quantities on neighbouring grid
points are related by a Taylor expansion

f j+1 = f j + ∆x f ′j +
(∆x)2

2
f ′′j +O(∆x3)

f j−1 = f j − ∆x f ′j +
(∆x)2

2
f ′′j +O(∆x3).

Considering either of these gives a first order expression for the first derivative,

f ′j =
f j − f j−1

∆x
+O(∆x) f ′j =

f j+1 − f j

∆x
+O(∆x).

Adding and subtracting instead gives a second order expression for the derivative
and second derivative,

f ′j =
f j+1 − f j−1

2∆x
+O(∆x2)

f ′′j =
f j+1 − 2 f j + f j−1

(∆x)2 +O(∆x2).

The advection equation; numerical stability and numerical diffusion

First consider advection,
∂ f
∂t

+ v
∂ f
∂x

= 0.

Using our expressions for the derivatives, we might write

f n+1
j − f n

j

∆t
= −v

f n
j+1 − f n

j−1

2∆x
,

1You can find the notes at
http://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2011/index.shtml

1

http://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2011/index.shtml

where n labels the timestep. This gives an expression for the quantity f at the next
timestep n + 1 in terms of the value at the current timestep n:

f n+1
j = f n

j − v∆t
2∆x

󰀓
f n
j+1 − f n

j−1

󰀔
.

This is known as the forward-time centered-space (FTCS) scheme. This kind of scheme
is referred to as explicit because the new values are written explicitly in terms of the
old ones.

In fact, it turns out that this scheme is always numerically unstable. You can see
this by looking for a solution

f n
j = (ξ)neikxj ,

where k is the wavevector and ξ is a complex amplitude. If |ξ| > 1 for any value of
k, that mode will grow exponentially with increasing timestep n, and the numerical
scheme is unstable. Trying a solution like this for the FTCS scheme gives

|ξ|2 = 1 +
󰀕

v∆t
∆x

󰀖2

sin2 (k∆x) ,

which is indeed greater than unity for any value of k.
Fortunately, there is a simple way to write a stable method, the Lax method:

f n+1
j =

1
2

󰀓
f n
j+1 + f n

j−1

󰀔
− v∆t

2∆x

󰀓
f n
j+1 − f n

j−1

󰀔
.

This has

|ξ|2 = 1 +

󰀥󰀕
v∆t
∆x

󰀖2

− 1

󰀦
sin2 (k∆x) ,

and so we see that the scheme is stable as long as

v∆t
∆x

≤ 1.

This condition on the timestep is the Courant-Friedrichs-Levy criterion or “Courant con-
dition”. The criterion states that our timestep must not exceed the fluid travel time be-
tween two grid points, which makes sense physically because the information about
fluid quantities is advected at that speed. Larger timesteps require information from
grid points further away than ∆x, not included in our update.

A way to understand why the scheme is stable is to separate out the FTCS part
and see what additional terms have been added. The Lax method can be rewritten

f n+1
j − f n

j

∆t
= −v

f n
j+1 − f n

j−1

2∆x
+

󰀕
∆x2

2∆t

󰀖 f n
j+1 − 2 f n

j + f n
j−1

(∆x)2 .

The additional term on the right is a diffusion term with diffusivity (∆x)2/2∆t. This
is known as numerical diffusion, it provides numerical dissipation that stabilizes the
method. The damping is largest for short wavelengths where k∆x ∼ 1 which are most
unstable.

The Lax scheme provides a good illustration of different types of error:

2

• When v∆t < ∆x, |ξ| < 1, giving an amplitude error: the amplitude of any given
mode k decreases over time (it should stay constant under advection)

• Phase error. The factor ξ in the Lax scheme can be rewritten as

ξ = e−ik∆x + i
󰀕

1 − v∆t
∆x

󰀖
sin k∆x.

For a timestep ∆t = ∆x/v, the phase of each mode is shifted by k∆x, equivalent
to advecting by one grid point. But for timesteps ∆t < ∆x/v the phase shift de-
pends on k, so that different modes are advected at different speeds. Again, this
should not happen under advection. The numerical method introduces disper-
sion as the component waves of the profile we are trying to advect move with
different speeds.

• Transport errors: in the Lax scheme, the information from cells j − 1 and j + 1
propagates to cell j in the next timestep. But physically, if the velocity is to the
right for example, only information in cell j − 1 should be used to update cell j.
A way around this is upwind differencing which avoids this problem, but at the
expense of being first order:

f n+1
j − f n

j

∆t
= −vj

f n
j − f n

j−1

∆x
vn

j > 0

f n+1
j − f n

j

∆t
= −vj

f n
j+1 − f n

j

∆x
vn

j < 0.

Everything we’ve discussed here is first order in time, but there are higher order
methods that you can read about in Numerical Recipes. A useful one is staggered-
leapfrog which uses a second-order time-derivative

f n+1
j = f n−1

j − v∆t
2∆x

󰀓
f n
j+1 − f n

j−1

󰀔
.

Numerically this requires storing the previous two timesteps in order to do the up-
date. This method has the advantage that |ξ| = 1 for all modes no matter what
timestep is used: the stability analysis gives

ξ = −i
v∆t
∆x

sin k∆x ±

󰁶

1 −
󰀕

v∆t
∆x

sin k∆x
󰀖2

,

so while there is dispersion (the phase evolution is different for different modes), the
amplitude of each mode stays constant, much better than the very dispersive first or-
der Lax method. Note that staggered leapfrog also has a limit ∆t ≤ ∆x/v for stability.

3

The diffusion equation: implicit methods

In the case of diffusion, the simplest differencing that you might write down is stable
for small enough timesteps. The update is

f n+1
j − f n

j

∆t
= D

f n
j+1 − 2 f n

j + f n
j−1

(∆x)2 ,

with
D∆t
(∆x)2 ≤ 1

2

for stability. The physical interpretation is that the timestep is constrained by the
diffusion time between grid cells.

Solving diffusion problems with explicit schemes is particularly slow, because the
distance diffused in time t grows slowly with time, as L ∝ t1/2. The number of
timesteps needed to follow diffusion over a lengthscale L is L2/D∆t ≥ 2(L/∆x)2 ∼
N2 where N is the number of grid points.

An alternative scheme that allows larger timesteps, at the expense of accuracy on
small scales, is an implicit scheme

f n+1
j − f n

j

∆t
= D

f n+1
j+1 − 2 f n+1

j + f n+1
j−1

(∆x)2 ,

in which we write the update in terms of the values at the next timestep rather than at
the current timestep (hence the name implicit). Rearranging, we can write

−α f n+1
j+1 + (1 + 2α) f n+1

j − α f n+1
j−1 = f n

j

where α = D∆t/(∆x)2. Written as a matrix equation this is

A f n+1 = f n

for the vectors f n+1 and f n, where the matrix A is tridiagonal, with entries 1 + 2α on
the diagonal and −α on the upper and lower diagonals. This system can be solved by
finding the inverse of the matrix A, since then f n+1 = A−1 f n.

This fully-implicit scheme has the feature that it goes to the steady-state solution
for large time-steps ∆t → ∞. Although small scales are not followed accurately for
large timesteps, they go the correct steady-state solution. An alternative semi-implicit
scheme is Crank-Nicholson

f n+1
j − f n

j

∆t
=

D
(∆x)2

󰀗
1
2

󰀓
f n
j+1 − 2 f n

j + f n
j−1

󰀔
+

1
2

󰀓
f n+1
j+1 − 2 f n+1

j + f n+1
j−1

󰀔󰀘

which is also stable for large timesteps. It has the advantage that it is second order in
both space and time, whereas fully-implicit is second order in space, but first order in
time.

4

Operator splitting

You will often have multiple operators in the equation you are solving. A simple
example is the advection-diffusion equation

∂ f
∂t

= −v
∂ f
∂x

+ D
∂2 f
∂x2 .

One way to deal with this is to calculate the update for each operator separately. Start-
ing with f n, generate f n+ 1

2 by updating with the diffusion operator with timestep ∆t,
then update f n+ 1

2 with the advection operator with timestep ∆t to obtain the final
values f n.

Flux-conservative schemes

We know that the fluid equations arise from the conservation laws for mass, momen-
tum and energy. We can take advantage of that and work with the equations in flux-
conservative form, so that the numerical method exactly conserves these quantities.

In finite-volume methods, we divide the volume into cells such that the grid points
xj are the locations of the cell centres, and the cell boundaries are at locations xj±1/2 =
(1/2)(xj + xj±1). We then solve the equation

∂ f
∂t

= − ∂J
∂x

,

or in discretized form

f n+1
j − f n

j

∆t
= −

Jn+ 1
2

j+ 1
2
− Jn+ 1

2
j− 1

2

∆x
,

where we write the flux of quantity f at the cell boundaries (j ± 1/2) averaged over
the timestep:

Jn+ 1
2

j+ 1
2
=

1
∆t

󰁝 t+∆t

t
dt Jj+ 1

2
(t).

This formulation automatically conserves the quantity f , since the flux out of one cell
equals the flux into the neighbouring cell.

The simplest choice for the flux J is to write

Jj+ 1
2
= vj+ 1

2
f n
j vj+ 1

2
> 0

Jj+ 1
2
= vj+ 1

2
f n
j+1 vj+ 1

2
< 0

Jj− 1
2
= vj− 1

2
f n
j−1 vj− 1

2
> 0

Jj− 1
2
= vj− 1

2
f n
j vj+ 1

2
< 0

which is known as donor cell advection (equivalent to the upwind differencing dis-
cussed earlier). Depending on the sign of the velocity, the contents are either advected
out of cell j or into cell j from the left or right neighbour. The assumption here is that

5

the profile of f within the cell is well-approximated by a constant (given by the value
at the center f j). More complex assumptions about the profile of f give rise to higher
order methods. For example, assuming f is linear across the cell (with slope chosen
to be consistent with the difference in f between cell j and its neighbours) gives a
scheme that is 2nd order in time. These piecewise linear schemes are discussed in
detail in Chapter 4 of the Heidelberg notes I linked to earlier (see footnote on page 1).

Papers

This week, the paper discussion will involve researching a (magneto)hydrodynamics
code such as PLUTO, PENCIL, FLASH, ZEUS, Castro.

You should discuss:

• What equations is the code solving?

• What numerical methods are used?

• What microphysics is included?

• What geometry can the code simulate?

• What are some of the applications that the code has been used for?

6

