
PHYS 643 Week 7: Oscillations and Instabilities

We’ve already seen two examples of waves in a fluid system: sound waves in a uni-
form gas, and fast and slow magnetosonic waves and Alfven waves in a magnetized
plasma. Here I go through two examples of linear stability analysis as examples of
more complex situations: first what happens when we include the energy equation
explicitly for sound waves, and second how to deal with a background that has a
gradient.

Sound waves with thermal conduction

Earlier, we derived the dispersion relation for sound waves by assuming a relation
between the pressure and density perturbations

δP =
∂P
∂ρ

δρ = c2
s δρ.

The partial derivative can be taken at constant entropy, in which case c2
s = γP/ρ is

the adiabatic sound speed, or at constant temperature, giving the isothermal sound
speed c2

s = P/ρ = kBT/µmp. These two cases can be understood as limits of either
very inefficient heat transfer (adiabatic) or efficient heat transfer (isothermal) on the
timescale of the sound wave period (2π/ω = 2π/csk = λ/cs).

Instead of making this assumption, let’s instead include the energy equation in
the calculation. We will assume ideal gas, in which case the pressure, density and
temperature perturbations are related by

δP
P

=
δρ

ρ
+

δT
T

(1)

(since P ∝ ρT). The entropy equation is

T
Ds
Dt

= −1
ρ
∇ · F =

1
ρ
∇ · (K∇T) ,

where K is the thermal conductivity (we will assume this is a constant).
Perturbing the entropy equation gives

− iωTδs = − k2KδT
ρ

(2)

(the background is stationary, so only the time derivative term of D/Dt contributes at
linear order). This is the extra equation that we need to eliminate δT and derive the
relation between δP and δρ. To do this, write

Tds = T
∂s
∂T

󰀏󰀏󰀏󰀏
P

dT + T
∂s
∂P

󰀏󰀏󰀏󰀏
T

dP. (3)

We then use the fact that T ∂S/∂T|P = cP the heat capacity at constant pressure, the
identity

∂s
∂P

󰀏󰀏󰀏󰀏
T

∂P
∂T

󰀏󰀏󰀏󰀏
s

∂T
∂s

󰀏󰀏󰀏󰀏
P
= −1,
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and the adiabatic index
γ − 1

γ
=

∂ ln T
∂ ln P

󰀏󰀏󰀏󰀏
s

to rewrite equation (3) as

Tds = cp

󰀕
dT − γ − 1

γ

T
P

dP
󰀖

. (4)

This allows us to write down δs in terms of δT and δP. Equation (2) then gives

cPT
󰀕

δT
T

− γ − 1
γ

δP
P

󰀖
=

k2KT
iωρ

󰀕
δT
T

󰀖
.

Using the ideal gas relation from equation (1) to eliminate δT in favour of δP and δρ,
we find

1
γ

δP
P

− δρ

ρ
=

k2K
iωρcP

󰀕
δP
P

− δρ

ρ

󰀖
(5)

I’ve put a box around this result because it is the relation between δP and δρ that
we’ve been looking for. The quantity D = K/ρcP is the thermal diffusivity (units of
cm2/s), since we can write

T
Ds
Dt

= cP
DT
Dt

=
K
ρ
∇2T ⇒ DT

Dt
=

K
ρcP

∇2T = D∇2T

(working at constant pressure for simplicity and again assuming constant K). The
thermal timescale associated with the perturbation is therefore 1/(k2D). When the
mode frequency ω is either large or small compared with k2D, we recover the adi-
abatic or isothermal limits discussed earlier. However, in general, we see that the
relation between δP and δρ has a complex prefactor. The dispersion relation will be

ω2

k2 = c2
s =

γP
ρ

󰀕
iω − k2D

iω − γk2D

󰀖
.

In general we see that k2 will be complex, so that for a given ω there will be a propa-
gating wave (real part of k) but with a decaying amplitude (imaginary part of k).

I will leave this as an exercise, but for example one limit to consider is when the
wave is almost adiabatic, so that k = kR + ik I with k I ≪ kR. In this limit, ω2 ≈ k2

Rc2
ad,

where cad is the adiabatic sound speed, and

k I

kR
≈ γ − 1

2
k2

RD
ω

≈ γ − 1
2

ωD
c2

ad
.

For air, cs ≈ 330 m s−1 and D ≈ 2 × 10−5 m2/s, giving a decay length of about 106

wavelengths.
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Gravity waves

As a second example, let’s look at the waves in a plane-parallel atmosphere. The
additional ingredient here is gravity, since the atmosphere is in hydrostatic balance

dP
dz

= −ρg

so that there are background pressure, density and temperature gradients.
When dealing with problems with background gradients, it can be useful to write

things in terms of Lagrangian perturbations. The perturbations we have been writing
down so far are Eulerian, since at any given time t they give the difference between
the perturbed and unperturbed flows at the same point in space, e.g.

δρ (r, t) = ρ (r, t)− ρ0 (r, t) ,

where ρ is the perturbed density and ρ0 is the unperturbed density. Instead we could
define the Lagrangian perturbation

∆ρ (x0, t) = ρ (r(x0, t), t)− ρ0 (r0(x0, t), t) ,

where x0 is a Lagrangian label that identifies the fluid element, for example a good
choice would be the initial location of the fluid element. The difference in the positions
of the fluid element in the unperturbed flow r0(x0, t) and perturbed flows r(x0, t) is
the Lagrangian displacement

ξ = r(x0, t)− r0(x0, t).

The Eulerian and Lagrangian perturbations at a particular spatial location r are related
by

∆ρ (r(x0, t), t)− δρ (r, t) = −ρ0 (r0(x0, t), t) + ρ0 (r, t) ≈ ξ ·∇ρ0(r),

or
∆ρ = δρ + ξ ·∇ρ

As an application, consider the perturbed continuity equation

−iωδρ = −∇ · (ρδv) .

We assume v = 0 in the background, in which case we can also write

δv =
∂ξ

∂t
= −iωξ

and so
δρ = −∇ · (ρξ) = −ρ∇ · ξ − ξ ·∇ρ

⇒ ∆ρ

ρ
= −∇ · ξ (6)

3



If the Lagrangrian displacements have a non-zero divergence, it implies a Lagrangian
density change. Note that if the background is moving then δv and ξ have a more
complex relation.

Going back to the plane-parallel atmosphere, the perturbed continuity equation
is therefore equation (6). We consider adiabatic perturbations which we can immedi-
ately write down taking advantage of the Lagrangian formalism as

∆P
P

= γ
∆ρ

ρ
.

Therefore
δP
P

= γ
δρ

ρ
− ξz

󰀗
d ln P

dz
− γ

d ln ρ

dz

󰀘

or
δP
ρc2

s
=

δρ

ρ
− N2ξz

g
, (7)

where we define the Brunt-Väisälä frequency N and convective discriminant A accord-
ing to

N2 = −gA = −g
󰀗

d ln ρ

dz
− 1

γ

d ln P
dz

󰀘
.

The momentum equations are

−ρω2ξz = −dδP
dz

+ gδρ (8)

−ρω2ξx = −ikxδP. (9)

Note that whereas we have assumed an x-dependence for the perturbations of eikxx,
we do not specify a functional form for the z-dependence; it will be determined by
how the background changes with height. To solve the equations in a realistic atmo-
sphere or star requires integration of the equations over height z. The equations form
an eigenvalue problem: in general, only a certain set of frequencies ωn give solutions
that satisfy the boundary conditions at z = 0 or z = ∞ (r = 0 and r = R in the case of
a star).

A useful limit to consider however is when the vertical wavelength of the waves
is much smaller than the pressure or density scale heights. Then the coefficients in the
equations remain constant on the scale of a wavelength, and we can write a local WKB
solution eikzz. Substituting this into the continuity equation, momentum equations and
adiabatic condition (eqs. [6], [7], [8], and [9]) gives the dispersion relation

c2
s k2

z =
󰀃
ω2 − N2󰀄

󰀕
1 − k2

xc2
s

ω2

󰀖
.

A vertically-propagating wave requires k2
z > 0 so that kz is real. This can happen

in two ways. The first is ω2 ≫ N2, when ω2 = c2
s (k2

z + k2
x) = c2

s k2. These are the
sound waves or acoustic waves we have encountered before. We see them again in
the plane-parallel atmosphere.
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The second solution for propagating waves is when ω2 < N2 and ω2 < c2
s k2. Then

both terms on the right hand side of the dispersion relation are negative and so k2
z > 0.

The dispersion relation when ω2 ≪ N2 is

ω2 = N2
󰀕

kx

k

󰀖2

.

These waves are internal gravity waves. They are incompressible waves, ie. they satisfy
∇ · ξ ≈ 0 (if you repeat the calculation setting ∇ · ξ = 0 exactly, you’ll find that
the sound waves go away but the gravity waves survive). The restoring force for
the wave is from horizontal pressure gradients that arise from horizontal variations
in the hydrostatic column that arise as the fluid moves. One interesting fact about
gravity waves is that the phase and group velocities of a wavepacket are orthogonal
(try proving this using the dispersion relation). In the context of stars, standing gravity
waves or acoustic waves can exist that occupy the entire stellar volume in some cases
or may propagate in only a limited region of the stellar interior (where k2 > 0). In this
context, gravity waves are referred to as g-modes and the acoustic waves as p-modes (g
for gravity and p for pressure).

The convective discriminant A is so-named because it indicates whether the at-
mosphere is unstable to convection. In a situation in which A > 0, N2 < 0 and
ω2 < 0 indicating instability. The way to understand this is to consider moving a
fluid element upwards slowly enough that it stays in pressure equilibrium with its
surroundings, but quickly enough that the motion is adiabatic. The density contrast
between the fluid element and its surroundings after moving a vertical distance ∆z is

∆z
∂ρ

∂P

󰀏󰀏󰀏󰀏
S

dP
dz

− ∆z
dρ

dz
= −ρ∆z

󰀗
d ln ρ

dz
− 1

γ

d ln P
dz

󰀘
= −ρ∆zA.

If A > 0, we see that the fluid element will be less dense than its surroundings and so
will buoyantly rise further: the atmosphere is unstable to vertical perturbations. The
criterion A > 0 is the Schwarzschild criterion for convection.
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Papers

There are many different types of waves and instabilities relevant for astrophysical
objects. Here is a selection of recent papers that give some nice examples:

• Fuller (2014) “Saturn ring seismology: Evidence for stable stratification in the
deep interior of Saturn”
http://adsabs.harvard.edu/abs/2014Icar..242..283F

• Showman & Polvani (2011) “Equatorial Superrotation on Tidally Locked Exo-
planets”
http://adsabs.harvard.edu/abs/2011ApJ...738...71S

• Philippov et al. (2016) “Spreading Layers in Accreting Objects: Role of Acous-
tic Waves for Angular Momentum Transport, Mixing, and Thermodynamics”
https://ui.adsabs.harvard.edu/#abs/2016ApJ...817...62P/abstract

• Levin (2007) “On the theory of magnetar QPOs”
https://ui.adsabs.harvard.edu/#abs/2007MNRAS.377..159L/abstract
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Appendix: Perturbation equations in spherical geometry

For stellar or planetary oscillations, we need the perturbation equations in spherical
geometry. We assume the background is spherically-symmetric, so pressure or density
depend only on r. We take density perturbations of the form

δρ = δρ(r)eimφPm
ℓ (cos θ)e−iωt

and similarly for the pressure perturbation δP and radial displacement ξr. The non-
radial displacements have a different angular dependence:

ξθ = ξθ(r)eimφ dPm
ℓ (cos θ)

dθ
e−iωt

ξφ = ξφ(r)eimφ imPm
ℓ (cos θ)

sin θ
e−iωt

With these choices for the angular dependences, the perturbation equations then de-
pend only on r, as follows:

Adiabatic perturbations
∆ρ

ρ
=

1
γ

∆P
P

⇒ δρ

ρ
=

1
γ

δP
P

+
N2ξr

g

(using the definition of N2 from the text; g(r) = Gm(r)/r2).
Continuity

∆ρ

ρ
= −∇ · ξ

1
γ

δP
P

+
ξr

γ

d ln P
dr

= − 1
r2

d(r2ξr)

dr
− ξθ

r sin θPm
ℓ

∂

∂θ
(sin θ

∂Pm
ℓ

∂θ
) +

m2ξφ

r sin2 θ

⇒ 1
γ

δP
P

+
ξr

γ

d ln P
dr

= − 1
r2

d(r2ξr)

dr
+ ℓ(ℓ+ 1)

ξθ

r

Momentum
−ρω2ξr = −dδP

dr
− gδρ

−ρω2ξ⊥ = −δP
r

ξφ = ξθ = ξ⊥

We have made the approximation that the perturbations do not change the gravi-
tational potential, so δg = 0; this is known as the Cowling approximation.

These simplify to give two ODEs to integrate:
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1
r2

d(r2ξr)

dr
=

g
c2

s
ξr −

δP
ρ

󰀗
1
c2

s
− ℓ(ℓ+ 1)

ω2r2

󰀘
(10)

dδP
dr

= − g
c2

s
δP + ρ(ω2 − N2)ξr. (11)

We have used the fact that γH = γP/ρg = c2
s /g, where c2

s is the adiabatic sound
speed and H = −dz/d ln P is the pressure scale height.

The boundary condition at the stellar surface is that the Lagrangian pressure per-
turbation should vanish there

∆P
P

= 0 ⇒ δP
P

=
ξr

H
at r = R. (12)

At the center r = 0, we see that there are terms that diverge, so we need to step away
from the origin and begin our integration at a small non-zero value of r. The boundary
conditions for ℓ > 0 (non-radial oscillations) are

dδP
dr

=
ℓ

r
δP

dξr

dr
=

ℓ− 1
r

ξr,

or for ℓ = 0 (radial oscillations)

dδP
dr

= 0
dξr

dr
=

ξr

r
.

An equivalent way to write the first ℓ > 0 boundary condition is

ξr = ℓξ⊥, (13)

where ξ⊥ can be expressed in terms of δP using the horizontal momentum equation.
Equations (10) and (11) and the boundary conditions of equations (12) and (13)

define an eigenvalue problem for the mode frequency ω.
There are three “quantum numbers” that label the modes: ℓ, m, and the number

of radial nodes n. However note that the azimuthal wavenumber m doesn’t enter into
the equations, so the frequency of the mode depends on the number of radial nodes n
and the angular quantum number ℓ, but not m. This changes if spherically symmetry
is broken, eg. a rotating or magnetized star.
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