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Figure 4.5. Advection with the piecewise linear advection algorithm with 6 different choices

of the slope. Results are shown of the advection of a step function over a grid of 100 points

with grid spacing ∆x = 1, after 300 time steps with∆t = 0.1.

































PHYS 643

1. Fluid basics

Idea of a fluid as having λ ! L. The mean free path λ = 1/nσ.

Proving vector identities using index notation.

εijkεklm = δilδjm − δjlδim

Eulerian vs. Lagrangian descriptions. Advective derivative

D

Dt
=

∂

∂t
+ u·∇

Continuity equation (mass conservation)

∂ρ

∂t
= −∇· (ρu)

or
Dρ

Dt
= −ρ∇·u

Momentum equation

ρ
Du

Dt
= −ρg − ∇P +

1

c
J×B

Acceleration due to gravity g = −∇Φ, gravitational potential Φ obeys Pois-
son’s equation ∇2Φ = 4πGρ.

Hydrostatic balance. Plane-parallel atmosphere dP/dz = −ρg. Isothermal
atmosphere ρ = ρ0 exp(−z/H), scale height H = kBT/µmpg.

Energy equation

∂

∂t

(

1

2
ρu2 + ρU

)

+
∂

∂xj

(

uj

[

1

2
ρu2 + ρU + P

])

= (ρε − ∇· F ) + u·f

The P term in the energy flux as representing PdV work.

Vorticity ω = ∇× u and circulation Γ =
∫

u·dl. Rigid rotation ω = 2Ω.
Shear flow ω = du/dz.

Kelvin’s circulation theorem: DΓ/Dt = 0 for a barotropic fluid. The idea
that vortex lines are carried bodily by the fluid. The local vorticity can
change because of vortex stretching or vortex tipping.



Generation of vorticity by baroclinicity. The baroclinic vector ∇P×∇ρ.

Bernoulli’s principle. u2/2 + Φ + h =constant along a streamline.

Magnetic force density

J×B

c
= −∇

(

B2

8π

)

+
(B·∇)B

4π
.

The force is perpendicular to the field, and has two pieces - magnetic pressure
and tension.

Ohm’s law E + u×B/c = J/σ. Ampere’s law J = (c/4π)∇×B.

Induction equation.

∂B

∂t
= ∇× (u×B) − c∇×

(

J

σ

)

.

When the first term dominates, “ideal MHD”: the magnetic field lines are
frozen into the fluid. The second term represents Ohmic diffusion, which
allows field lines to move through the fluid. The magnetic diffusivity is
η = c2/4πσ. The relative importance of the two terms is measured by the
magnetic Reynold’s number RM = UL/η.

Magnetic energy density B2/8π (same as the pressure). Magnetic energy
equation:

∂

∂t

(

B2

8π

)

= −∇·

(

cE×B

4π

)

−
J2

σ
− u.

(

J×B

c

)

The different terms are: Poynting flux at the surface, Ohmic dissipation,
energy transfer to kinetic energy via work done against the magnetic force.

Reading

Choudhuri §4, 14.1, 14.2
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2. Objects in hydrostatic balance

Simple scaling arguments: Pc ≈ GM2/R4, kBTc ≈ GMmp/R.

Equation of state of an ideal gas of fermions. (a) A non-degenerate gas of
non-relativistic particles has

P = nkBT, U =
3
2
nkBT =

3
2
P, µ = kBT ln

�
n

nQ

�

,

where nQ = (2πmkBT/h2)3/2. The non-degenerate limit is when µ/kBT �
−1 or n� nQ.

(b) A fully-degenerate gas has µ = EF � kBT . Fermi wavevector

kF = (3π2n)1/3 = pF /h̄

Non-relativistic particles have

EF =
p2

F

2m
∝ n2/3, P =

2
5
nEF = Ke,nrρ

5/3 U =
3
2
P

Relativistic particles have

EF = pF c ∝ n1/3 P =
1
4
nEF = Ke,rρ

4/3 U = 3P

Radiation
U = aT 4, P =

1
3
aT 4 =

1
3
U

where the radiation constant a = 7.5657× 10−15 cgs.

Mean molecular weights.

ρYi = nimp ρ = µinimp

defines Yi and µi for species i. Mass fraction of ion species i defined by
Xiρ = Ainimp. Relation between Yi and Xi is Yi = Xi/Ai. Mean molecular
weight µ−1 = µ−1

e +µ−1
ion. Ideal gas of ions and electrons has P = ρkBT/µmp.

Different regimes for a mixture of ions, electrons, and radiation. When does
each of these dominate the pressure? When are the electrons degenerate or
non-degenerate, relativistic or non-relativistic?



White dwarfs. For low masses, γ ≈ 5/3, and R ∝ M−1/3
. Chandrasekhar

mass MCh = 1.45 M⊙(Ye/0.5)
2
. Mass radius relation

R ≈ 8× 10
8

cm

�
M

M⊙

�−1/3
�

1−
�

M

MCh

�4/3
�1/2

Neutron stars. A star held up by non-relativistic proton/neutron degeneracy

pressure rather than electrons has a radius smaller by a factor ≈ mp/me ≈
2000. Typical model neutron star radii are ≈ 10–15 km. Interactions give

an equation of state roughly P ∝ ρ2
which leads to a radius which is almost

independent of mass.

Couloumb pressure in a degenerate gas. The electrons form an almost uni-

form background. Wigner-Seitz approximation:

UC = −ne
9

10

Ze2

RZ

The Coulomb pressure is P = −KCρ4/3
with

KC = 2.2× 10
12

erg cm
−3Z2/3

(Ye/0.5)
4/3.

Density of zero-pressure matter ρ = (KC/Ke,nr)
3
.

Mass radius relation

R =
Ke

GM1/3 + KCM−1/3

“Hot” objects. kBT sets the pressure rather than EF . Central temperature

Tc ≈ GMµmp/kBR. Heat transport

F = −4acT 3

3κρ

dT

dr

For constant opacity (e.g. electron Thompson scattering) L ∝M3
.

The idea that a core can only support a finite size envelope. Application to

helium cores (Schönberg-Chandrasekhar limit) and planet formation (run-

away accretion to form Jupiter).

Reading

This part of the course is not covered in Choudhuri. The best places to

look are books on stellar structure, in particular:



Clayton, “Principles of Stellar Evolution and Nucleosynthesis”, Chapter 2.

Hansen & Kawaler, “Stellar Interiors” (the latest edition of this book is

Hansen, Kawaler, & Trimble), mostly Chapter 3.

White dwarf mass-radius relation compared to observations: Provencal et

al. 1998, ApJ, 494, 759

Neutron star mass-radius relations: Lattimer & Prakash 2001, ApJ, 550,

426

Mass-radius relations for low mass stars and planets: Deloye & Bildsten

2003, ApJ, 598, 1217; Fortney et al. 2007, ApJ, 659, 1661
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3. Compressible Fluids

Sound waves. Sound speed c2
s = (∂P/∂ρ). Adiabatic sound speed c2

s =
γP/ρ, isothermal sound speed c2

s = P/ρ. Dispersion relation ω = ±csk.

Waves in a magnetized fluid. The Alfven velocity vA = B/
√

4πρ. Fast
magnetosonic wave (compressible wave across field lines) ω2 = k2(c2

s + v2
A).

Slow magnetosonic wave (compressible wave along field lines) ω2 = k2c2
s.

Alfven wave (transverse wave restored by magnetic tension) ω2 = v2
Ak2.

General solution to linearized wave equation. δρ = f(x − ct) + g(x + ct).

Characteristics for compressible flows. Riemann invariants for isentropic
flow J± = u ±

∫
dP/ρcs = u ± 2c/(γ − 1). Along a C+ characteristic, J+

is constant, and J− determines the shape of the curve (vice-versa for C−).
The example of a piston moving into a shock tube. Formation of shocks.

Shock jump conditions derived from conservation laws. The density contrast
as a function of Mach number M = u1/c1. A strong shock (M2 # 1) has

u1

u2

=
ρ2

ρ1

=
γ + 1

γ − 1

which is 4 for γ = 5/3. The entropy increases across the shock as energy in
bulk motion goes into internal energy. Radiative shocks. Isothermal jump
conditions. Thin, slow moving shell associated with radiative shocks.

Self-similar flows. Sedov-Taylor solution for a spherical blast wave. Con-
stant pressure, low density interior. Most of the mass is behind the shock.
Application to supernova remnants. Three phases of SNR evolution: bal-
listic phase, energy-conserving self-similar phase, snowplough momentum-
conserving phase.

Transition from subsonic to supersonic flow. There is a maximum mass flux
density in a 1D flow, which occurs at the sonic point. Subsonic flow has
increasing flux with increasing velocity; supersonic flow has decreasing flux
with increasing velocity. The de Laval nozzle. Using Bernoulli’s principle
to calculate the velocity as a function of pressure. Blandford & Rees (1974)
application to outflows from active galaxies.

Spherical accretion and winds. Bondi-Hoyle accretion rate

Ṁ ≈ π(GM)2ρ∞/c3
∞



or for moving star
Ṁ ≈ π(GM)2ρ∞/v3

Parker’s solution for the solar wind.

Relativistic hydrodynamics. Energy momentum tensor

T µν =
wuµuν

c2
+ Pηµν

where w = e+P is the enthalpy, e is the energy density, and P the pressure,
all measured in the rest frame of the fluid element. The four-velocity is
uµ = γ(c,u), ηµν is the metric.

Sound waves. The sound speed is c2
s = c2(∂e/∂P )S . For an ultrarelativistic

gas, this is cs = c/
√

3.

Bernoulli’s constant for relativistic flows is γw/n.

Relativistic shocks. In the frame of the shock, matter flows into the shock
with β ≈ 1−1/2Γ2 and leaves with β ≈ 1/3. In the frame of the undisturbed
fluid, the postshock material has γ2 = Γ/

√
2. The (rest frame) density

increases by a factor ≈ Γ across the shock. The energy density increases by
a factor Γ2 across the shock.

Reading

Choudhuri Chapter 6.

The best places to look for a discussion of characteristics and shock devel-
opment are:

Landau & Lifshitz, Fluid Mechanics (Course of Theoretical Physics Volume
6)

Zeldovich & Raizer, Physics of Shock Waves and High Temperature Hydro-
dynamic Phenomena

Blandford & Rees (1974) AGN outflows as relativistic de Laval nozzles

For a start on radiative shocks, see Shu’s volume 2.

Taylor’s two papers are (1950) Proc Roy Soc London A201, 159

Models of supernova remnants: Mansfield & Salpeter (1974) McKee (1974,
reverse shock), Chevalier (1974)



Spherical accretion and winds: it’s really worth reading the original pa-
pers, especially to get the motivation and context. Bondi (1952), Hoyle &
Lyttleton (1939), Parker (1958)

There is a brief discussion of relativistic hydrodynamics in Choudhuri, but
see Landau & Lifshitz Chp XV for a good treatment.

Blandford & McKee (1976) Phys Fluids give jump conditions for relativistic
shocks, and derive self-similar solutions for a relativistic blast wave.
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4. Oscillations and Instabilities

Eulerian and Lagrangian perturbations. ∆f = δf + ξ·∇f . Velocity pertur-
bation ∆u = Dξ/Dt. The perturbed continuity equation is

∆ρ

ρ
= −∇· ξ δρ = −∇· (ρξ)

valid for a static background or when there is a background flow.

Surface gravity waves in an incompressible fluid. In the deep limit k⊥H " 1,
the wave frequency is given by ω2 ≈ gk⊥, and the motions are approximately
circular, ξz ≈ ξ⊥. In the shallow limit k⊥H $ 1, the wave frequency is
ω2 ≈ gk2

⊥
H, and the motions are mostly horizontal, ξz/ξ⊥ ≈ (k⊥H) $ 1.

Oscillations in a stratified fluid. The Brunt-Väisälä frequency or buoyancy
frequency N , given by N2 = −gA with

A =
d ln ρ

dr
−

1

γ

d ln P

dr

The propagation diagram for the modes. p-modes are high frequency (ω >
csk⊥, ω > N) modes with ω ≈ csk, g-modes are low frequency (ω < N ,
ω < csk⊥) modes with ω ≈ N(k⊥/k).

Convective instability occurs when A > 0 or N2 < 0. This is the Schwarzschild
criterion for convection. In terms of temperature, instability occurs if

d ln T

d ln P
> ∇ad

or if entropy decreases outwards (direction opposite to gravity).

Interchange and Parker instability, The idea of magnetic buoyancy. An
isolated flux tube is buoyant with respect to its surroundings. The MHD
energy principle as a way to assess stability.

Shear instabilities. Rayleigh’s inflexion point theorem d2U/dz2 must change
sign somewhere in the flow. Fjortoft’s theorem that the vorticity must
have a maximum. Howard’s semicircle theorem that somewhere in the
flow the phase velocity of the unstable mode equals the fluid velocity. In
a stratified fluid, Ri < 1/4 for instability, where the Richardson number
Ri ≡ N2/(dU/dz)2 compares the work done against gravity to the energy
available in the shear.



Reading

Choudhuri Chapter 7 and parts of Chapter 14 (for discussion of magnetic
buoyancy and Parker instability).

Two classic books on stellar pulsations are J. P. Cox (1980) “Theory of
Stellar Pulsation” and Unno et al. (1989) “Nonradial Oscillations of Stars”

Two classic books on instabilities are “Hydrodynamic and Hydromagnetic
Stability” by Chandrasekhar, and “Hydrodynamic Stability” by Drazin and
Reid.

The onset and non-linear development of convection is covered in books on
stellar structure and evolution, e.g. “Stellar Interiors” by Hansen, Kawaler,
& Trimble.

I included some plots from “Lecture Notes on Stellar Oscillations” by J.
Christensen-Dalsgaard which you can find on the web.

Papers on the MHD energy principle and interchange/Parker instabilities
are Bernstein et al. (1958), Greene & Johnson (1968), Newcomb (1961),
Parker (1966).

Shear instabilities: Miles, Howard, Chimonas


