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Preamble
This document collects together notes for the graduate course PHYS 643 Astrophysical
Fluids, as taught in the Winter terms of 2016 and 2018 at McGill University. The final
two weeks, covering Rotating Fluids and Turbulence, are missing and (hopefully) will
be added in a future update.

The course was organized around a different topic each week, with one class de-
voted to lecture and the other to student presentations on papers. The papers for each
topic are listed at the end of each chapter. The material covered in class was put into
action in the computational exercises, included here, which were completed as home-
work, and in a final numerical project.
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Week 1: Introduction
These notes are for the first week of PHYS 643 Astrophysical Fluids. The idea is to
introduce the fluid equations, laying the groundwork for the specific topics in future
weeks.

What is a fluid?
The fluid equations apply when the mean free path of particles λ is much smaller than
the distances overwhich bulk properties, such as temperature and density, are varying.

For example, let’s estimate λ in the Sun. At the center of the Sun, the temperature
is T ≈ 107 K and density ρ ≈ 150 g cm−3, so the matter is a completely-ionized plasma
of (mostly) protons and electrons. The mean free path is given by nσλ = 1 where n
is the number density of scatterers and σ is the scattering cross-section. We can get n
from the density, n ≈ ρ/mp ∼ 1026 cm−3. The Coulomb cross-section is given roughly
by writing down the scalings

e2

r
∼ kBT σ ∼ πr2 ∼ e4

(kBT )2
.

Plugging in numbers gives

λ ∼ 106 cm T 2

n
∼ 10−6 cm.

Much smaller than the radius of the sunR⊙ ≈ 7×1010 cm, which is the scale on which
the temperature varies. This large difference in scales means that the particles are in
local thermodynamic equilibrium (LTE). For example, they have a Maxwell-Boltzmann
distribution at the local temperature.

Under these conditions, we can treat the matter as a continuum and describe the
matter with a set of conservation equations for mass, momentum and energy — the
fluid equations. We don’t have to worry about following the trajectories and inter-
actions of individual particles (like in an N -body simulation of a star system for ex-
ample), although there is a systematic derivation of the fluid equations from such a
starting point (the Boltzmann equation), expanding in the small parameter λ/L. This
is covered in the early chapters of Choudhuri.

Just to give a couple of situations in astrophysics where the fluid approximation
is not so good, consider gas in a galaxy cluster with temperature ∼ 108 K and n ∼
10−3 cm−3, then λ ∼ 1024 cm ≈ 0.3 Mpc, which is a large fraction of a typical cluster
size. In the solar wind near Earth, T ∼ 105 K and n ∼ 10 cm−3 gives λ ∼ 1014 cm
which is several AU.

The continuity equation, advective derivative, Eulerian and Lagrangian ap-
proaches, incompressible fluid
The continuity equation describes mass conservation

∂ρ

∂t
= −∇ · (ρu) .
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This has a flux-conservative form: rate of change of a density on one side and the
divergence of the flux of that quantity on the other side. The mass flux is ρu (units:
g cm−2 s−1). Using the advective derivative

D

Dt
=

∂

∂t
+ u · ∇

this can be rewritten
Dρ

Dt
= −ρ∇ · u.

Make sure you are comfortable with the physical interpretation of this: e.g., if the flow
converges, mass is flowing to a point and so the local density has to increase.

The advective derivative is also known as the Lagrangian derivative. It represents
the rate of change of a quantity following along with the fluid element (Lagrangian
approach) rather than asking what is the rate of change of the quantity at a fixed point
in space (Eulerian approach).

An incompressible fluid (e.g. water) has a constant density, so thatDρ/Dt = 0 and
∇ · u = 0. (Think about how when a river widens, the water slows down so that the
mass flow rate is the same). Incompressibility is a good approximation when the flow
is subsonic |u| ≪ cs because then any density variations will be rapidly smoothed out
by sound waves much faster than the fluid motion.

Momentum equation; body and surface forces, viscosity, equation of state
The momentum equation in flux conservative form is

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = fi +

∂

∂xj
Tij .

This describes conservation of the ith component of momentum density ρui (momen-
tum per unit volume). The flux of the ith component of momentum in the j-direction
is ρuiuj .

On the right hand side, forces act to change the momentum. They are of two types.
Body forces act on each particle in the fluid element. The body force per unit volume
in the i-direction is fi. Examples are gravity, f = ρg = −ρ∇Φ, and magnetic force,
f = J× B/c.

The second term represents surface forces, and Tij is a stress tensor. The diagonal
elements of the stress tensor are forces that push inwards or outwards on the surface
of a fluid element (direction along the normal to the surface). An example is pressure,
described by

Tij = −Pδij

which gives
∂

∂xj
Tij = − ∂

∂xi
P = − (∇P )i

the ith component of the pressure gradient. Fluid elements feel a force down the pres-
sure gradient. Physically, the pressure force on one side of the fluid element outbal-
ances the pressure force on the other, giving a net acceleration.
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With pressure and gravity forces only, andusing the continuity equation to simplify
the left hand side, a common form of the momentum equation is

ρ
Du
Dt

= −∇P + ρg.

(Think of this as F = ma for a fluid element).
Viscosity in a fluid resists shear (as the random motions of particles transfer mo-

mentum between parts of the fluid moving with different velocities). It gives off-
diagonal contributions to Tij , i.e. the viscous force acts in a direction parallel to the
surface of a fluid element rather than normal to it. In general, the viscous stress can be
written

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij∇ · u

)
+ ξδij∇ · u,

where µ is the shear viscosity and ξ is the bulk viscosity (units of viscosity: g cm−1 s−1).
The velocity derivatives in the first term describe shearing motions of the fluid (as op-
posed to rotation of a fluid element which would have a minus sign — see vorticity
below), and is the usual viscosity that we worry about. The bulk viscosity is not usu-
ally important, it describes irreversible processes that occur when a fluid element is
compressed. The quantity ν = µ/ρ is the kinematic viscosity (units: cm2 s−1). For an
ideal gas this is roughly ν ∼ λ2/tc ∼ λvth, where tc is the collision time and vth is the
thermal velocity of the particles in the gas. If the fluid motions have ∇ · u ≈ 0, the
viscous term in the momentum equation simplifies to

∂

∂xj
Tij ≈

∂

∂xj

(
µ
∂ui
∂xj

)
or for constant µ,

≈ µ∇2u.

This last form shows that viscosity leads to diffusion of momentum.
The momentum and continuity equations describe the fluid motion completely if

we know how to relate P and ρ, which depends on the equation of state of the fluid.
For example, if the fluid flow is rapid enough that there is no time for heat flow be-
tween fluid elements, the motion is adiabatic and we can write P ∝ ργ , where γ is the
adiabatic index. The opposite limit is extremely rapid heat transport so that the gas
remains isothermal, P ∝ ρ. Intermediate cases require that we also follow the temper-
ature of the gas which requires a third equation, the energy equation. We’ll come to
that soon.

Magnetic fields: the MHD equations
For a magnetized plasma, we already mentioned the J × B force in the momentum
equation1 We also need to discuss how the magnetic field evolves. The electric field by

1If there is a non-zero charge density ρe, there will also be an electric force ρeE, but usually in astro-
physical situations the plasma is electrically neutral ρe = 0.
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Ohm’s law2 is
E = −u× B

c
+

J
σ
.

The first term on the right hand side comes from the relativistic transformation from
the fluid rest frame to the frame inwhich the fluid is movingwith velocity u. Faraday’s
law then gives the time-dependence of B,

∂B
∂t

= −c∇× E = ∇× (u× B)− c∇×
(

J
σ

)
.

This is known as the induction equation.
The first term on the right hand side describes flux freezing. In the absence of ohmic

dissipation (ideal MHD), magnetic field lines move with the fluid. A good way to see
this is to derive an equation for the separation dℓ between two fluid elements in a fluid.
It turns out to be of the same form as the induction equation (without the ohmic term)
but with B → dℓ. So if you take two fluid elements and follow them as they move
through the flow, their separation vector and the local magnetic field vector evolve in
the same way. That tells you that magnetic field lines are tied into the fluid.

To see the effect of the ohmic term, use Ampere’s law3, which gives the current
density

J = c

4π
∇× B.

The induction equation is then

∂B
∂t

= −c∇× E = ∇× (u× B)−∇× (η∇× B) ,

where the magnetic diffusivity η = c2/(4πσ). Since∇ ·B = 0, ∇×∇×B = −∇2B and
so for constant η the ohmic term in the induction equation is

∂B
∂t

= η∇2B,

a diffusion equation for B. We see that ohmic dissipation gives rise to ohmic diffusion of
the magnetic field. It breaks flux freezing, and leads to motion of the field lines within
the fluid.

The fluid equations with the J×B force, the induction equation, and Ampere’s law
together form the equations of magnetohydrodynamics (MHD).

Onemore thingwe can do is to look inmore detail at the J×B force using Ampere’s
law to write J in terms of B. Then

J× B
c

=
1

4π
(∇× B)× B = −∇

(
B2

8π

)
+

(B · ∇)B
4π

.

2In fact, there are other terms that can appear in Ohm’s law. See the Appendix for a more general
derivation of Ohm’s law using the two fluid equations.

3The term ∂E/∂t in Ampere’s law can be dropped as long as the timescale on which B is evolving
is much longer than a light crossing time. Note that we then have ∇ · J = 0, consistent with charge
conservation.
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The first term is the gradient of the magnetic pressure B2/8π. The second term has
two pieces. One piece has a direction along the field, and cancels the gradient along
the field from the first term. The net effect is that the magnetic pressure acts only
perpendicular to the field (as it must since the force is J×B). So if you grab a flux tube
and squeeze it, you will feel the magnetic pressure pushing back. The other piece of
the B · ∇B term is magnetic tension, which tries to make the fields lines straighten (like
an elastic string). The magnitude of the tension force per unit volume is B2/4πRc,
where Rc is the radius of curvature of the field line. We’ll see later this force supports
Alfven waves.

Energy equation
It helps to consider the bulk kinetic energy, internal energy, and magentic energy sep-
arately.

An equation for the kinetic energy density (1/2)ρu2 comes from carrying out the
dot product

u · (momentum equation) ⇒
∂

∂t

(
1

2
ρu2
)
+

∂

∂xj

(
1

2
ρu2uj

)
= u · f+ ui

∂Tij

∂xj
.

Again this is flux-conservative form and says that the kinetic energy density changes if
there is mechanical work u · f on the fluid element, either from body or surface forces.

For internal energy, we can start with the 1st law of thermodynamics dE = TdS −
PdV which we write per unit mass as

de = Tds+
Pdρ

ρ2
. (1.1)

For a given fluid element, the rate of change of entropy,

T
Ds

Dt
=

De

Dt
− P

ρ2
Dρ

Dt
, (1.2)

is the rate of change of heat content of the fluid element. It can come from internal
heating or cooling (e.g. nuclear reactions that deposit energy in the gas or neutrinos
that leave the volume and act as a volumetric cooling source), or from a heat flux at the
surface of the fluid element. The heat flux F can often be written F = −K∇T where
K is the thermal conductivity (heat flows down the temperature gradient). Including
both contributions, we write

T
Ds

Dt
= ϵ− 1

ρ
∇ · F,

the entropy equation.
We already mentioned the adiabatic approximation that P ∝ ργ if there is no time

for heat flow. Here, γ = cP /cV is the ratio of specific heats. We can see this directly by
demanding that fluid elements conserve entropy

Ds

Dt
=

D

Dt

(
P

ργ

)
= 0.
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In the second step, we used eq. (1.1) and P = (γ − 1)ρe to rewrite equation (1.2).
Adding the kinetic energy to the internal energy we get an equation for the total

energy (neglecting magnetic energy)

∂

∂t

(
1

2
ρu2 + ρe

)
+

∂

∂xj

(
uj

[
1

2
ρu2 + ρe+ P

])
=

(
ϵ− ∇ · F

ρ

)
+ u · f.

(We write only the body force piece of the mechanical work for simplicity). Note that
the enthalpy h = e+ P/ρ appears in the flux term. The enthalpy is often a more useful
quantity than internal energy in flows at constant pressure, since it takes into account
the PdV work done as the fluid moves around. It often comes up in chemistry, for
example.

To include magnetic energy, we can dot B into the induction equation. This gives
an equation for the magnetic energy density B2/8π,

∂

∂t

(
B2

8π

)
= −∇ ·

(
cE× B
4π

)
− E · J

which youmay have seen before in electromagnetism. The first term on the right hand
side is the divergence of the Poynting flux; the second is Ohmic dissipation.

Using Ohm’s law, the J · E term can be written as two terms

−E · J = −J2

σ
− u · J× B

c
.

The first is the energy dissipation rate from ohmic heating. This converts magnetic
energy into internal energy: J2/σ is the heating rate per unit volume. The second term
has the same form as the mechanical work term u · f in the kinetic energy equation, but
with opposite sign. This shows that the work done on the fluid by the J×B force takes
energy from (or puts energy into) the magnetic field.
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Examples
Here are two example problems to work on that will give you a chance to play around
with the fluid and MHD equations:

1. Magnetic field winding. Consider a spherical star which is differentially rotating such
that the fluid velocity is u = ϕ̂ RΩ(R), where we use cylindrical coordinates (R, ϕ, z)
with z along the rotation axis. A poloidalmagnetic field (BR(R, z), 0, Bz(R, z)) threads
the star initially.

(a) First assume that the velocity does not change over time. What does the in-
duction equation imply for the subsequent evolution of the field? Explain your result
physically.

(b) Now write down the momentum equation for the fluid and include the back
reaction of the field on the fluid. What is the evolution in time?

2. Electric field in an atmosphere. Consider a plane-parallel atmosphere of fully ionized
hydrogen gas. By writing down the momentum equations for the protons and elec-
trons separately, show that (1) the structure of the atmosphere is given by dP/dz =
−ρg, where P is the sum of the electron and proton pressures, and (2) there is an
electric field in the atmosphere. What is the value of the electric field, and what is its
role?

13



Appendix: Two fluid equations
Another way to approach the MHD equations is to consider the electron and ions sep-
arately. Coupled by a collisional term, the momentum equations for each species are

neme
Dve
Dt

= −neme(ve − vi)

τe
− nee

(
E+

ve × B
c

)
−∇Pe (1.3)

nimi
Dvi
Dt

= −nimi(vi − ve)

τi
+ niZe

(
E+

vi × B
c

)
−∇Pi (1.4)

where ne, ni, Pe and Pi are the electron and ion densities and pressures,me andmi are
the electron and ion masses, and τe and τi are the timescales on which the electron or
ion velocity ve or vi relaxes due to collisions with the other species.

Charge neutrality implies that ne = Zni. Momentum conservation also tells us that
the collisional terms must cancel, i.e. neme/τe = nimi/τi or τe = (Zme/mi)τi. This
means that the electron velocity changes on a much faster timescale due to collisions
with protons than vice versa. This makes sense if we consider two body collisions
between particles with very different masses: the heavy particle undergoes a smaller
velocity change by roughly the ratio of the particle masses.

The electrons and ions satisfy the continuity equations

∂ne

∂t
+∇ · (neve) = 0

∂ni

∂t
+∇ · (nivi) = 0.

Multiplying by the particle masses and adding, we find

∂

∂t
(neme + nimi) +∇ · (nemeve + nimivi) = 0

or
∂ρ

∂t
+∇ · (ρu) = 0,

where ρ = neme+nimi is the mass density andwe define the fluid velocity u such that

ρu = nemeve + nimivi.

Note that sinceme ≪ mi, the fluid velocity is close to the ion velocity u ≈ vi. Subtract-
ing the continuity equations and assuming charge neutrality gives∇·J = 0 as required
for charge conservation.

Now add the twomomentum equations (1.3) and (1.37). On the left hand side this
gives

neme
Dve
Dt

+ nimi
Dvi
Dt

= ρ
Du
Dt

.

On the right hand side, the pressure gradient terms add ∇Pi +∇Pe = ∇P , where P
is the total pressure, and the Lorentz force terms are

−nee

(
E+

ve × B
c

)
+ niZe

(
E+

vi × B
c

)
= nee

(vi − ve)× B
c

=
J× B
c

.
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The final result is
ρ
Du
Dt

= −∇P +
J× B
c

,

which is the familiar momentum equation for the fluid.
Ohm’s law can be obtained from the electron equation of motion. We neglect the

acceleration term on the left hand side, assuming that the electron velocity quickly
adjusts to changes in Lorentz forces since the electrons are much less massive than the
ions. Therefore

0 = −neme(ve − vi)

τe
− nee

(
E+

ve × B
c

)
−∇Pe

or
E =

meJ
nee2τe

− (ve − vi)× B
c

− vi × B
c

− ∇Pe

nee
.

The electrical conductivity is σ = nee
2τ/me, and since u ≈ vi, we have

E =
J
σ
− u× B

c
+

J× B
neec

− ∇Pe

nee
. (1.5)

Equation (1.5) is theOhm’s lawwewrote down in the text, except for the last two terms
which are the Hall term and battery term. The first of these is the Hall electric field
that you may have come across before that arises when a current flows perpendicular
to a magnetic field. The Lorentz force deflects the current-carrying charges until the
Hall electric field grows to balance it. The battery term enters the induction equation
as the cross product of the electron pressure and density gradients ∇Pe × ∇ne (after
taking the curl of E) so that misalignment of the surfaces of constant electron density
and constant electron pressure leads to magnetic field growth (the “battery effect”).
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Week 2: Cold Stars—WhiteDwarfs, Neutron Stars, and Planets
We start the course by discussing the topic of “cold stars”, which encompasses white
dwarfs, neutron stars, and planets. This is a good topic to start off with because we
need only a couple of ideas: hydrostatic balance and the zero-temperature equation of
state.

Hydrostatic balance
Stars and planets are in hydrostatic balance in which the pressure gradient from their
interior to the surface balances their self-gravity4. Assuming spherical symmetry, the
momentum equation in this situation is

dP

dr
= −Gmρ

r2
(1.6)

where
dm

dr
= 4πr2ρ (1.7)

and m(r) is the mass contained within radius r. The boundary conditions are m = 0
at r = 0 and P = 0 at r = R. To solve the equations, we just need a relation between
P and ρ. Under the assumption P ∝ ργ , the solutions are known as polytropes. A
polytrope of index n has γ = 1 + 1

n .

Stars and planets on the back of the envelope
A rough estimate of the structure is to write the two sides of the hydrostatic balance
equation as

dP

dr
≈ Pc

R
ρg ≈ M

R3

GM

R2
,

where Pc is the central pressure andR is the radius. This gives a formula for the central
pressure in terms of the mass and radius of the object

Pc ≈
GM2

R4
.

For an ideal gas, we can get the central temperature also:

Pc ≈
ρckBT

mp
⇒ Tc ≈

GMmp

kBR
.

4To see that must be the case, look at the momentum equation

Du
Dt

=
−∇P

ρ
+ g,

and imagine turning off the pressure gradients. The fluid would then accelerate in response to gravity.
The time to collapse would be∼

√
R/g ∼

√
R3/GM , or about 30 minutes for the Sun, much less than its

5 billion year age. This implies the pressure gradient must balance gravity to a high degree of accuracy!
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Plugging in numbers for the Sun gives Tc ≈ 2 × 107 K, pretty close to the central
temperature of the Sun, 1.5× 107 K.

For a polytropic relation P ∝ ργ , we can get the mass-radius scaling

Pc ≈
GM2

R4
∝ ργ ∝

(
M

R3

)γ

⇒ Mγ−2 ∝ R3γ−4.

Interesting cases:

• White dwarfs. For non-relativistic degenerate electrons, γ = 5/3 ⇒ R ∝ M−1/3.
As the white dwarf mass increases, the electrons become relativistic and γ →
4/3. Then M becomes independent of R! The corresponding mass is the Chan-
drasekhar mass MCh ≈ 1.4 M⊙, a maximum mass for white dwarfs.

• Neutron star. Degenerate neutrons hold up the star, but interactions between neu-
trons stiffen the EOS, giving γ = 2. Then R is independent of M , as seen in
realistic calculations.

• Incompressible material. γ → ∞ ⇒ M ∝ R3, we expect this to hold for small
“rocky” bodies such as moons or rocky planets. (We’ll see later that gas giant
planets like Jupiter lie between the M ∝ R3 and M ∝ R−3 limits.)

• Isothermal sphere. This has γ = 1 so thatP ∝ ρ. It is often used as amodel of stellar
systems such as globular clusters, although it has the property that ρ ∝ 1/r2 and
therefore the mass contained within radius r grows ∝ r, so it must be truncated
to give the system a finite mass.

Equations of state
The following table summarizes the chemical potential µ, pressure P and internal en-
ergy density U for four cases of interest:

µ P U

Ideal gas kBT ln
(

n
nQ

)
≪ −1 nkBT

3
2P = 3

2nkBT

nQ = (2πmkBT/h
2)3/2

Non-relativistic EF =
p2F
2m ∝ n2/3 ≫ kBT

2
5nEF ∝ n5/3 3

2P

degenerate pF = h̄kF = h̄(3π2n)1/3

Relativistic EF = pF c ∝ n1/3 1
4nEF ∝ n4/3 3P

degenerate
Radiation 0 1

3aT
4 3P = aT 4

Mixtures
Usually in astrophysics we are dealing with a plasma consisting of a mixture of differ-
ent chemical species. There is a whole terminology for dealing with this which you’ll
see used a lot, so we’ll go through this here in some detail.
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The starting point is that in amixturewe add the different contributions to the pres-
sure from each species of particle. These depend on the number densities of different
species, which can be obtained from themass density if we know their number fraction
Yi or mean molecular weight µi, defined by ρYi = nimp, ρ = µinimp, Yi = 1/µi. For
the ions, we also define the mass fraction Xi as ρXi = niAimp. Then Yi = Xi/Ai.

As an example, consider a fully-ionized solar composition gas with hydrogenmass
fraction XH = 0.7 and helium mass fraction XHe = 0.3. The ion pressure is

Pion = nHkBT + nHekBT =
ρkBT

mp

(
XH +

XHe

4

)
=

ρkBT

µimp
,

which defines µion = (XH +XHe/4)
−1 ≈ 1.3. For a general mixture of ions,

Yion =
1

µion
=
∑

Yi =
∑ Xi

Ai
.

The electrons contribute Pe = nekBT to the pressure if they are non-degenerate. From
charge neutrality, ne =

∑
niZi and so

Pe =
ρkBT

mp

∑
YiZi =

ρkBT

mp

∑ XiZi

Ai
=

ρkBT

µemp
.

For the H/He mixture, we infer µe = (XH +XHe/2)
−1 ≈ 1.2. The total pressure is

P = (ne + nH + nHe)kBT =
ρkBT

mp

(
1

µion
+

1

µe

)
=

ρkBT

µmp
.

This defines the mean molecular weight µ−1 = µ−1
e + µ−1

ion. For the solar mixture,
µ−1 = 2XH + 3XHe/4 ≈ 0.6.

Pure H has µe = µi = 1 and µ = 1/2. Pure He has µe = 2, µi = 4, and µ = 4/3.
Heavier elements than helium also have µe ≈ 2 since A ≈ 2Z for all nuclei except
hydrogen.

The ρ–T plane
The figure on the next page shows the different regions of the ρ–T plane, assuming a
composition of pure helium. Electrons become degenerate when EF ≈ kBT (dashed
line). For non-relativistic electrons, this is

h̄2

2me

(
3π2ne

)2/3 ≈ kBT ⇒ Td,nr ≈ 3× 105 K (ρYe)
2/3,

using ne = ρYe/mp. (For ions to become degenerate, would need to lower the temper-
ature by a factor > mp/me ∼ 2000.) Degenerate electrons become relativistic when

pF = h̄(3π2ne)
1/3 ≈ mec ⇒ ρYe ≈ 106 g cm−3

(vertical dotted line in the plot). The dashed line shown in the plot takes relativity into
account by writing

EF = mec
2
(√

1 + x2 − 1
)
≈ kBT
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where x = pF /mec ≈ (ρYe/10
6 g cm−3)1/3; notice it changes slope at ρ ≳ 106 g cm−3

once the electrons become relativistic.
The solid curve shows the boundary between radiation pressure and gas pressure,

assuming the gas pressure is ideal:

1

3
aT 4 =

ρkBT

µmp
⇒ Trad =

(
3ρkB
µmpa

)1/3

≈ 3× 107 K
(
ρ

µ

)1/3

.
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White dwarf mass-radius relation
White dwarfs are stars held up by degenerate electron pressure. For low masses, the
electrons are non-relativistic so that P ∝ ρ5/3, but as the mass approaches the Chan-
drasekhar mass the electrons become more and more relativistic and γ → 4/3. (The
positive ions also have a pressure, but it is much smaller than the electrons. That is
because the ions are non-degenerate, so their pressure is a factor ∼ kBT/EF times
smaller.)

As we mentioned earlier, the solutions of the stellar structure equations (1.6) and
(1.7) for P ∝ ργ ∝ ρ1+1/n are known as polytropes. You can look up the properties
of polytropes for different values of polytropic index n, in particular the numerical
solutions give the values of

αn =
Pc

GM2/R4
βn =

ρc
⟨ρ⟩

,
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where ⟨ρ⟩ = 3M/4πR3 is the mean density. For γ = 5/3, n = 3/2, α = 0.77 and
β = 5.99. For γ = 4/3, n = 3, α = 11.1 and β = 54.2.

To get the white dwarf mass–radius relation, we write the equation of state at the
center as Pc = Knrρ

5/3
c , where

Knr =
P

ρ5/3
=

2

5

nEF

ρ5/3
=

2

5

n

ρ5/3
p2F
2m

=
2

5

h̄2(3π2)2/3

2m

(
n

ρ

)5/3

= 9.9× 1012 cgs Y 5/3
e .

Thenusing then = 3/2polytrope results forα and β gives thewhite dwarfmass-radius
relation at low masses

R5/3 = M−1/3

(
Knr

α3/2G

)(
3β3/2

4π

)5/3

≈ 9× 108 cm
(

M

M⊙

)−1/3( Ye
0.5

)5/3

.

(We write R5/3 to indicate that this is the white dwarf radius assuming γ = 5/3). As
the star gets more massive, the radius shrinks. The central density increases rapidly
with mass, ρc ∝ M/R3 ∝ M2.

Doing the same thing for the equation of state Pc = Krρ
4/3
c , the radius drops out

and we get an expression for the Chandrasekhar mass

MCh =

(
Kr

α3G

)3/2(3β3
4π

)2

= 1.45 M⊙

(
Ye
0.5

)2

.

We can interpolate between the two limits by using the fitting formula obtained by
Paczynski (1983) for the pressure of degenerate electrons

P−2
e ≈ P−2

e,nr + P−2
e,r , (1.8)

which interpolates between non-relativistic and relativistic electrons (and Pacynski
found was accurate to a few percent). If you use this formula for the central pressure,
you will find

R ≈ R5/3

[
1−

(
M

MCh

)4/3
]1/2

.

Here is a plot of this M(R) relation:
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As themass approaches theChandrasekharmass, the central density increases dra-
matically (because of decreasing radius but also the increasing value of βn as γ → 4/3,
see above). Once it gets to ρc ∼ 109 g cm−3, interesting things can happen. One pos-
sibility is carbon fusion leading to a Type Ia supernova. The other is that electrons
can capture into the nuclei, removing pressure support and leading to collapse to a
neutron star. (White dwarfs can reach these large masses either through merging or
accretion, or through stellar evolution, e.g. the iron core of a massive star).

Neutron stars
We saw that the radius of a γ = 5/3 star is R ∝ M−1/3Knr. The key point for neutron
stars is that Knr ∝ 1/m where m is the mass of the degenerate particle. For white
dwarfs this is the electron mass; for neutron stars, the star is held up by degenerate
neutron pressure and we should takem = mn the neutron mass. We expect the radius
of a neutron star to be smaller than a white dwarf by a factor of mn/me ≈ 2000, or
RNS ∼ 109cm/2000 ≈ 5 km. This is about right. Detailed models give neutron star
radii ≈ 10–13 km. They are a little larger because the neutrons repel each other when
they are very close, so that the equation of state is stiffer than γ = 5/3, in fact closer to
γ ≈ 2. As we argued in the beginning, this gives radius almost independent of mass,
which is seen in detailed calculations of mass–radius relations.
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Coulomb pressure and planets
If you plug in Jupiter’s massMJ ≈ 10−3M⊙ into the white dwarf mass-radius relation,
you’ll get a radius≈ 1010 cmwhich is not too far off (1RJ ≈ 0.1R⊙ ≈ 7×109 cm). But
clearly, as we reduce mass further something else must happen: eventually, we expect
to see radius get smaller with decreasing mass. For example, if we scale up from the
Earth assuming the same density (M ∝ R3) then that is also not so far off — Jupiter
is about 10 times the radius of Earth and about 300 times the mass5. Somehow the
mass–radius relation must turnover and change from M ∝ R−3 to M ∝ R3 at low
masses.

What happens is that the Coulomb attraction of the positive ions and electrons
in the plasma becomes important, leading to a negative contribution to the pressure,
the Couloumb pressure. To calculate the size of this effect, first note that it is a good
approximation to assume the electrons are uniformly distributed in space because
EF ≫ Ze2/a where a is the interion spacing, so the electrons barely notice the ions.
Then we can use the Wigner-Seitz approximation to calculate the energy associated
with each ion. We consider an electrically-neutral sphere of radius RZ around each
ion that contains Z electrons, ie. (4πR3

Z/3)ne = Z. The electrostatic energy of the
sphere has two contributions:

Uee =
3

5

(Ze)2

RZ
electron− electron repulsion

Uei = −3

2

(Ze)2

RZ
electron− ion attraction.

The total energy per unit volume is then

UC = −ne
9

10

Ze2

RZ
= − 9

10

(
4π

3

)1/3

Z2/3e2n4/3
e

(where I used ni = ne/Z). Notice thatUC becomesmore negative as density increases,
giving a negative pressure! The pressure is −∂(UCV )/∂V for volume V , giving PC =
(1/3)UC or

PC ≈ −6× 1012 erg cm−3 (ρYe)
4/3Z2/3.

We can do two interesting things with this. The first is the zero pressure solid. We
write down the total pressure from electrons and Coulomb:

Ptot = Keρ
5/3 −KCρ

4/3. (1.9)

There is a zero-pressure solution with density

ρ0 =

(
KC

Ke

)3

≈ 0.2 g cm−3 ZA.

5I’m ignoring factors from composition differences in this paragraph. Earth is about 4 times denser
than Jupiter, and the Ye in a white dwarf is ≈ 0.5 whereas Jupiter is mostly hydrogen so will have Ye

closer to 1.
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This overpredicts the density of terrestrial metals: for example, copper has A ≈ 64
and Z = 29, giving ρ0 ∼ 300 g cm−3 (actual density is 9 g cm−3), but the electronic
configuration is much more complex than we have assumed in our simple model. The
important point is that we have found a self-bound state which exists without any
confining pressure. So in the low mass limit we might expect to see M ∼ ρ0R

3 as
expected.

The second thing is then to add in gravity:

GM2

R4
≈ Ke

(
M

R3

)5/3

−KC

(
M

R3

)4/3

.

Solving for R, we get
R =

Ke

GM1/3 +KCM−1/3
.

The two limits are R = (Ke/G)M−1/3 “white dwarf” and R = (Ke/KC)M
1/3 “rock”.

The maximum radius is where M = (KC/G)3/2 ≈ 0.4 MJ .
The interplay between degeneracy pressure and Coulomb pressure, leading to the

turnover of the R(M) relation, is the reason why the radii of brown dwarfs are about
the same as Jupiter, despite being 30–100 times more massive!
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Exercises

1. Gravitational energy of a star. Even without any knowledge of the equation of state,
there are certain integral relations that can be derived using only the fact that a star is
in hydrostatic balance. Here is an example. The gravitational binding energy of a star
is

Ω = −
∫

Gm

r
dm.

Using equations (1.6) and (1.7) and an integration by parts, show that

Ω = −3

∫
PdV,

where dV = 4πr2dr is the volume element.

2. Gravitational energy of a polytrope. We can use the result from exercise 1 to derive an
expression for the gravitational energy of a polytrope.

(a) First show by integrating by parts that∫
PdV =

∫
m d

(
P

ρ

)
=

(
γ − 1

γ

)∫
m
dP

ρ
.

(b) Next, use equation (1.6) to change integration variables to r and integrate by
parts to find ∫

PdV =

(
γ − 1

γ

)[
GM2

R
+ 2Ω

]
.

(c) Now apply the result from exercise 1 to show that

−Ω =
3(γ − 1)

5γ − 6

GM2

R
=

3

5− n

GM2

R
.

As a check, what is the answer for an incompressible equation of state? Does it look
familiar?
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Appendix: TOV equations
When calculating the structure of a neutron star, general relativistic corrections are
important, since

GM

Rc2
= 0.15

(
M

M⊙

)(
R

10 km

)−1

.

TheGRversion of the stellar structure equations are knownas the Tolman-Oppenheimer-
Volkoff (TOV) equations. They are

dm

dr
= 4πr2ρ

dP

dr
= −ρ

Gm

r2

(
1 +

P

ρc2

)(
1 +

4πr3P

Gm

)(
1− 2Gm

rc2

)−1

dΦ

dr
= − 1

ρc2
dP

dr

(
1 +

P

ρc2

)−1

.

As well as the continuity and momentum equations, there is an additional equation
for the metric function Φ, which is defined such that the metric is

ds2 = −e2Φdt2 + e2λdr2 + r2dΩ,

with
e2λ(r) =

(
1− 2Gm

r

)−1

.

Tomatch onto the exterior Schwarzschildmetric,Φ(R) = (1/2) ln(1−2GM/Rc2) at the
surface of the star. Note that r is defined such that it corresponds to the sphere with
surface area 4πr2 (or circumference 2πr). The proper distance between two shells is
dr(1− 2Gm/rc2)−1/2, giving a volume element(

1− 2Gm

rc2

)−1/2

4πr2dr.

The quantity m(r) is the gravitational mass interior to coordinate r, equal to M at the
surface.

25



Computational Exercise 1: The white dwarf mass–radius rela-
tion

Overview. The goal of this exercise is to calculate the mass-radius relation for T = 0
white dwarfs. This requires numerically integrating the equation of hydrostatic bal-
ance. You can do this using whatever method you wish, but to help you I describe a
possible procedure below.

Equations and boundary conditions. The structure of the white dwarf is given by the
equations of hydrostatic balance

dP

dr
= −Gmρ

r2
dm

dr
= 4πr2ρ.

The boundary conditions are m = 0 at r = 0 and P = ρ = 0 at r = R.

Equation of state. The integration variables arem and P , so at each step youwill need to
compute the density from the pressure using the equation of state. Usually the equa-
tion of state is given the other way round, as a function P (ρ), often as a numerical table
for complex equations of state. Given P (ρ), you can find the density ρ0 corresponding
to a particular pressure P0 by solving the equation P (ρ0) = P0 numerically using a
root-finding algorithm.

You can use this root-finding technique in your code, but there is also another op-
tion since we have an analytic expression for the equation of state. In this case, we can
change integration variables from P → ρ, ie. use the analytic equation of state to write
dP/dr in terms of dρ/dr. As the white dwarf mass increases, the electrons go from
being non-relativistic (P ∝ ρ5/3) to relativistic (P ∝ ρ4/3). To take this into account,
we can use the analytic fitting formula for the equation of state derived by Paczynksi
(1983) that I mentioned in the notes:

P−2 = P−2
nr + P−2

r ,

where Pnr = Knrρ
5/3 is the non-relativistic degenerate electron pressure and Pr =

Krρ
4/3 is the relativistic degenerate electron pressure. It is then straightforward to

show that
d lnP

dr
=

d ln ρ

dr

[
5

3

(
P

Pnr

)2

+
4

3

(
P

Pr

)2
]
.

Use the class notes to determine the constants Knr and Kr. Assume a carbon/oxygen
white dwarf which has Ye = 0.5.

Integration. Now the idea is to integrate outwards from the center of the star to the
surface. At the center, there is a problem at r = 0 since the equation for dP/dr has an
r in the denominator and we can’t divide by zero! To avoid this, start the integration
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at a small distance r = ϵ from the center, where ρ ≈ ρc and m ≈ 4πρcϵ
3/3. Here I’ve

written the central density as ρc.
Integrate outwards until the density falls to zero. The radius at which ρ = 0 is the

radius of the star r = R, and the value ofm at this point is the massM of the star. How
you do this step in practice depends on your integrator. Most likely you will have to
tell your integration routine to integrate from r = r1 = 0 to r = r2. In that case, try
different values of r2 until you find the one that gives ρ = 0 at the edge.

Repeat this integration for several different choices for central density ρc logarith-
mically spaced from about 106 g cm−3 to 109 g cm−3. You’ll have to experiment to get
the correct range in central density that covers a mass range up to the Chandrasekhar
mass at ≈ 1.4 M⊙.

Questions

1. Mass-radius relation. Plot the curve of radius against mass. For lowmasses, when
the central density is small and γ = 5/3, you should find R ∝ M−1/3, but you’ll
see the slope changes at large masses. How does your answer compare with the
analytic approximation from the lecture notes,

R = 8.7× 108 cm
(

M

M⊙

)−1/3
[
1−

(
M

MCh

)4/3
]1/2

,

and what do you determine to be the Chandrasekhar mass?

2. Investigate the density profile. Plot the density profile as a function of radius for
different mass white dwarfs. How does the density profile change as you change
the white dwarf mass?

3. The extent to which the electrons are relativistic. Plot the value of γ and EF /mec
2 at

the center of the white dwarf as a function of mass.

A possible extension is to add the Coulomb energy of the ions (see eq. [4] of the
notes) to the pressure. Are there masses where the Coulomb energy becomes impor-
tant?
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Week 3: Hot Stars — Energy Transport, Nuclear Burning, and
Stellar Evolution
We now move onto “hot stars” for which kBT ≫ EF and temperature matters in de-
scribing their structure. An important difference from cold stars is that hot stars can
cool, so we need to understand energy sources and sinks and energy transport inside
the star.

Radiative diffusion, opacity, and the luminosity of stars
The main energy transport mechanism in stars is diffusion of photons. The mean free
path of a photon is λ = 1/nσ where n is the number density of scatterers or absorbers
and σ is the cross-section. In astrophysics, we usually write everything per gram, so
that λ = 1/ρκ where κ is the cross-section per gram, or the opacity. For example, free
electrons scatter photons with the Thomson cross-section

σT =
8π

3

(
e2

mec2

)2

= 6.67× 10−25 cm2.

For pure hydrogen, the opacity is κ = σT /mp = 0.40 cm2 g−1. The photon mean free
path in the center of the Sun is then λ ≈ 10−2 cm (taking ρ = 150 g cm−3). This is
obviously much less than the solar radius, so photons are scattered or absorbed many
times on traversing the Sun, but it is also much longer than the particle mean free path
(∼ 10−6 cm; as we discussed in Week 1), so that photons carry information about
the temperature at their origin to the location where they are absorbed. Other impor-
tant opacity sources in stars are free-free and bound-free absorption, associated with an
electron absorbing a photon in the presence of a nucleus. Unlike electron scattering,
the bound-free and free-free opacities depend on density and temperature, with the
Kramer’s scaling κ ∝ ρT−7/2.

The heat flux carried by the diffusing photons is

F = −1

3
c λ

d

dr

(
aT 4

)
= −4acT 3

3κρ

dT

dr
.

The outwards luminosity at radius r is then L = 4πr2F . Note that in general the
opacity depends on the local density, temperature and composition so we can write
κ(ρ, T,Xi) where Xi is a set of mass fractions describing the composition. The heat
flux is of the form we discussed in Week 1, F = −K∇T where K ∝ T 3/κρ is the
thermal conductivity.

Let’s use the radiative diffusion equation to estimate the luminosity of a star. We
mentioned last time that hydrostatic balance is enough to estimate the central temper-
ature of a star if we know its mass and radius,

kBTc ≈
GMmp

R
⇒ Tc ≈ 2× 107 K

(
M

M⊙

)(
R

R⊙

)−1

.
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The hot interior implies a luminosity

L ∼ 4πR2 4acT
4

3κR

3R3

4πM
∼ 4acT 4R4

κM
,

where we write r ≈ R, ρ ≈ (4π/3)(M/R3), and dT/dr ≈ T/R. Now putting in Tc for
the temperature,

L ∼ 4ac

κ

(
Gmp

kB

)4

M3 ∼ 8× 1036 erg s−1
(

M

M⊙

)3( κ

0.4 cm2 g−1

)−1

.

This is about 1000 times too big for the Sun which has L⊙ ≈ 4 × 1033 erg s−1; putting
in an average temperature (e.g. at r ≈ 0.5R the temperature in the Sun is about Tc/5)
would give a more reasonable value. The important thing is the scaling L ∝ M3 which
is seen in models for stars with mass M ≳ M⊙ for which the central temperature
is large enough that electron scattering dominates the opacity. For M ≲ 1M⊙, free-
free opacity dominates instead, introducing a temperature and density scaling into κ.
These low mass main-sequence stars have a steeper dependence L ∝ M5.5.

An alternative energy transport mechanism in stars is convection, in which fluid
motions transport heat. We’ll look more into this when we talk about instabilities, but
the basic idea is that if the temperature gradient is steep enough, the entropy gradient
in the star can become negative (entropy decreases outwards). High entropy mate-
rial underneath low entropy material is unstable to mixing and results in convection.
Stars can be fully-convective (lowmass stars≲ 0.3M⊙), have a surface convection zone
(M ∼ M⊙), or a convective core (M ≳ M⊙).

Thermonuclear reactions
We’ve seen that a star must be hot to hold itself up against gravity Tc ∝ M/R, and
that implies a certain luminosity (L ∝ M3 for electron scattering). The luminosity
is supplied by nuclear burning – at each stage of a star’s life, the radius of the star
adjusts to give the right central temperature at which nuclear burning can balance the
luminosity.

For two nuclei to fuse, theymust approach to a distance∼ 10−13 cm (about the size
of a nucleus) at which strong forces operate. In practise, this is not possible because of
Coulomb repulsion between nuclei. For example, at the Sun’s central temperature, the
average energy of protons is ≈ 1 keV. We know that the binding energy of hydrogen
e2/a0 is about 10 eV for a0 ∼ 10−8 cm, so at 1 keV, the closest approach distancemust be
∼ 10−10 cm. This is a factor of 1000 too large for fusion to occur. How then do nuclear
reactions happen? The answer is that the protons tunnel through the Coulomb barrier.

We can estimate the probability for quantum tunnelling by saying that the wave-
function drops by a factor of e−kx for a barrier of width x where k ≈

√
2mV0/h̄ is the

wavevector of the evanescing wavefunction. For a closest approach rc, the potential
barrier height is V0 ∼ e2/rc and the width of the barrier is rc ≈ e2/E where E is the
center of mass energy of the two protons. Therefore

kx ∼ e

h̄

√
2mrc ∼

√
2mc2

E

e2

h̄c
=

√
2α2mc2

E
,
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where α = e2/h̄c = 1/137 is the fine-structure constant. A more detailed treatment
which integrates through the barrier gives a similar result but with an extra factor of
π in the prefactor. Also including the charges of the fusing nuclei Z1 and Z2, the final
tunnelling probability is

Prob ∝ exp
(
−
√

EG

E

)
where

EG = 2π2α2mc2(Z1Z2)
2 ≈ 1 MeV Z2

1Z
2
2

(
m

mp

)
is the Gamow energy and m is the reduced mass m = m1m2/(m1 +m2).

The higher the energy E, the more likely tunnelling is to occur, but the probability
two particles have that energy is smaller, ∝ e−E/kBT . The tunnelling rate is therefore a
convolution between the tunnelling probability and Maxwell-Boltzmann distribution
of particle energies. The tunnelling is most likely for energyE0 where exp(−E0/kBT−√

EG/E0) has a maximum, or E0 = (kBT )
2/3(EG/2)

1/3. For kBT ≈ 1 keV and EG ≈
1MeV, this is E0 ≈ 6 keV. The energies around E0 where the reaction is most likely to
occur is called the Gamow window. For many reactions, the energy-dependence of the
cross-section must also be taken in to account, particularly when there is a resonance
which boosts the cross-section at the resonant energy.

The fact that nuclear fusion is happening only for particles in the tail of theMaxwell-
Boltzmanndistributionmeans that thermonuclear reaction rates are extremely temper-
ature sensitive. Another property of nuclear burning is that heavier nuclei have larger
Z’s and so a larger Coulomb barrier, and require higher temperatures to fuse. The
larger Z nuclei have a larger factor in the exponent and so have reaction rates that are
more temperature sensitive than lower Z nuclei. One impact of this for main sequence
stars is that massive main sequence starsM ≳ M⊙ which burn hydrogen via the CNO
cycle have Tc roughly independent of mass and soR ∝ M . (It’s actually a bit shallower
because Tc increases a little bit with M .)

Stellar evolution
The full set of equations that are needed to follow the evolution of a hot star are

∂m

∂r
= 4πr2ρ

∂P

∂r
= −ρGm

r2

T
∂S

∂t
= ϵnuc − ϵν −

1

4πr2ρ

∂L

∂r

∂T

∂r
=

∂P

∂r

T

P
∇

∂Xi

∂t
=

mi

ρ

∑
j

(rji − rij) +D∇2Xi
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where the temperature gradient ∇ is determined by the energy transport process. If
radiation is transporting energy,

∇ = ∇rad =
3κPL

16πacGmT 4
,

from the radiative diffusion equation. When convection operates, the temperature gra-
dient is usually close to the adiabatic gradient ∇ = ∇ad (because this is the entropy-
neutral gradient that marks the onset of convection). The nuclear energy generation
rate per gram is written as ϵnuc (units are erg g−1 s−1). In massive stars in late burn-
ing stages the temperature and density can be large enough that neutrinos become
an effective cooling source. The local neutrino cooling rate is written as ϵν . The last
equation is actually a set of equations, one for each species, which follow the change in
composition as nuclear reactions occur and as diffusion, convection or other processes
mix composition in the star (for simplicity, I just put a diffusion term here).

Overall, the life of a star involves moving to higher central temperatures and den-
sities, stopping at various nuclear burning stages, until the core becomes degener-
ate. This is illustrated in the figure below, taken from Iben (1985) http://adsabs.
harvard.edu/abs/1985QJRAS..26....1I.

Several codes to follow stellar evolution are available. An interesting one to try is
MESA (Modules for Experiments in Stellar Astrophysics). See theirwebsite at http://
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mesa.sourceforge.net for references andmore details. Here are twomovies showing
the evolution of main sequence stars:
1 solar mass – https://www.youtube.com/watch?v=oZY3TtA63sE
3 solar masses – https://www.youtube.com/watch?v=C4tucmhAaSk
Watching these movies you’ll see that the nuclear burning is often unstable, leading to
a rapid local rise in temperature within the star. This happens either when the nuclear
burning is in a degenerate region (e.g. when helium ignites in the core of the solarmass
star) or when the burning is in a thin shell (He burning or H burning shells in giants).
In either of these situations, the star is not able to lower the presure by expansion in
response to nuclear energy release. The temperature rises and the nuclear burning
runs away.

Cores and envelopes
In stellar evolution, there is an interesting interplay between cores and envelopes. In a
main sequence star like the Sun, the star is relatively compact, with a smooth change
in density, temperature and composition from the center to the surface. However, once
hydrogen runs out in the core and the main sequence lifetime ends, the star adopts a
very different structure. The star contracts and heats up until the hydrogen at the edge
of the helium core is hot enough to ignite. The ignition of a shell source has a dramatic
effect on the hydrostatic structure of the star, which becomes a red giant, with a large,
lowdensity, extended hydrogen envelope sitting on top of a compact helium core in the
center. This is a general feature: if the nuclear burning is central, the star will be compact;
if burning is in a shell source, the star adopts a giant structure.

In a red giant, the core is isothermal at a temperature that is regulated by the shell
H burning. An interesting aspect of an isothermal non-degenerate core is that there
is a maximum mass envelope that it can support. The way to see this is to write an
equation for the pressure at the surface of the core Ps. Integrating the hydrostatic
balance equation from the center to the surface of the core gives

Ps = A
TcMc

R3
c

−B
GM2

c

R4
c

(1.10)

for constantsA andB that depend on the internal density profile (the core hasmassMc

and radius Rc). Think of this as saying that the surface pressure is the mean pressure
in the core reduced by the weight of the core. For zero pressure at the surface, the
radius is R0 = BGMc/ATc (which shows the T ∝ M/R scaling we’ve seen before).

Equation (1.10) has the interesting feature that there is a maximum pressure. At
large core radius, both terms go to zero, so the surface pressure becomes small. At
small core radius, the gravitational term increases faster than the mean pressure term,
also reducing the pressure. The maximum surface pressure is

Ps,max =
27

256
B
GM2

c

R4
0

∝ T 4
c

M2
c

at a radius R = (4/3)R0 ∝ Mc/Tc.
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The maximum surface pressure means that there is a maximum mass envelope
that the core can support hydrostatically. This is known as the Schönberg-Chandrasekhar
limit, and can bewritten as a ratio of coremass to totalmass. This is becausemost of the
mass of the star is contained in the envelope, so the pressure at the base of the envelope
is Pb ≈ GM2/R4 ∝ T 4

c /M
2 since the (base of the) envelope is at the same temperature

as the core and T ∝ M/R. This means that Pb/Ps,max ∝ (Mc/M)2. Typically the limit
is found to be Mc/M ≲ 0.1 for stability.

For red giants, this can lead to collapse of the helium core: as the hydrogen shell
addsmore andmore helium to the core, it grows inmass. Once it reaches the Schönberg-
Chandrasekhar mass, it collapses, initiating helium burning in the core. In practise,
this happens only in a limited range of masses, because massive stars leave the main
sequence with a helium core that already exceeds the Schönberg-Chandrasekhar limit.

Note that the surface pressure does not have this behaviour for a degenerate core:
then the pressure ∝ 1/R5 rather than 1/R3 and the radius can always adjust to sup-
ply any surface pressure needed. In that case, the helium burning starts in an unstable
way once the core temperature reaches a critical value, giving a core helium flash. This
means that there is a separation in stellar evolution between stars that develop a de-
generate helium core and undergo a helium core flash (≲ 2 M⊙) and those that have
a non-degenerate helium core and do not undergo a core flash (≳ 2 M⊙).

Papers
• Stevenson 1982 “Formation of the Giant Planets” http://adsabs.harvard.edu/

abs/1982P%26SS...30..755S

• Ushomirsky et al. 1998 “Light element depletion in contracting brown dwarfs
andpre-main-sequence stars” http://adsabs.harvard.edu/abs/1998ApJ...497.
.253U

• Deloye & Bildsten 2003 “The stellar structure of finite-entropy objects” http://
adsabs.harvard.edu/abs/2003ApJ...598.1217D

• Woosley & Heger 2015 “The remarkable deaths of 9-11 solar mass stars” http:
//adsabs.harvard.edu/abs/2015ApJ...810...34W

Appendix: Gravothermal heat capacity
In class, we discussed the fact that the heat capacity of a star is negative: the tempera-
ture decreases in response to energy input. Here’s how this works, following a similar
argument to the one in Kippenhahn and Wiegert’s book on stellar structure. We can
ask: what is the response of the gas to entropy changes?

First, write the entropy change in terms of temperature and pressure:

dS =
∂S

∂T

∣∣∣∣
P

dT +
∂S

∂P

∣∣∣∣
T

dP.
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Using the fact that the heat capacity at constant pressure is cP = T ∂S/∂T |P , and the
identity

∂S

∂T

∣∣∣∣
P

∂T

∂P

∣∣∣∣
S

∂P

∂S

∣∣∣∣
T

= −1,

we can write this as
TdS = cP

(
dT − T

P
∇addP

)
, (1.11)

where ∇ad = ∂ lnT/∂ lnP |S .
So far, this is just thermodynamics, but now we put in the fact that the star is in

hydrostatic balance, so that P ∝ 1/R4 and ρ ∝ 1/R3. This means that we must have

dP

P
=

4

3

dρ

ρ
. (1.12)

But the equation of state relates density to pressure and temperature changes through

d lnP = χTd lnT + χρd ln ρ

where χX ≡ (∂ lnP/∂ lnX) with other variables held constant. Equation (1.12) be-
comes

δP

P
=

4χT

4− 3χρ

δT

T
. (1.13)

Combining equations (1.31) and (1.12) gives

T
dS

dT
= cP

(
1− 4χT∇ad

4− 3χρ

)
= c⋆,

where c⋆ is the effective heat capacity.
Now look at different limits:

• For an ideal gas, χT = 1, χρ = 1, and for a monatomic gas ∇ad = 2/5, so that
c⋆ = −(3/5)cP < 0. (The Sun is stable).

• For a degenerate gas, χT ∼ kBT/EF → 0 so that the correction term becomes
small and c⋆ → cP > 0. (Helium core flash).

• If the burning is in a thin shell, equation (1.12) is no longer correct. To see this,
consider a shell that has mass ∆M , thickness H and is located at radius r. If the
shell changes its thickness by δH , the pressure change is of order δH/r, since
pressure is∼ GM∆M/4πr4. On the other hand the change in density is of order
δH/H (since mass conservation ⇒ r2ρH =constant). Therefore for a thin shell,

δP

P
∼ H

R

δρ

ρ
,

whichmeans that c⋆ ≈ cP to first order inH/r. Burning in a thin shell is therefore
unstable. This is the origin of the term thin shell flash.
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Week 4: Compressible fluids — Sound waves and shocks
Sound waves
Compressions in a gas propagate as sound waves. The simplest case to consider is a
gas at uniform density and at rest. Small perturbations in the density, velocity, and
pressure

ρ → ρ+ δρ, v → v+ δv, P → P + δP

then obey the equations
∂δρ

∂t
= −ρ∇ · δv (1.14)

and
ρ
∂δv
∂t

= −∇δP, (1.15)

where we have kept only terms first order in the perturbations. These equations show
the physics of the wave: compression leads to a local increase in density and therefore
pressure; the pressure gradient acts as a restoring force trying to remove the compres-
sion.

To see that there is a wave, we assume that the perturbations are rapid enough that
there is no time for heat to flow into or out of a fluid element, so that the perturbations
are adiabatic, with

δP

P
= γ

δρ

ρ
.

In that case, equations (1.14) and (1.15) can be combined into a wave equation

∂2v
∂t2

=
γP

ρ
∇2v = c2s∇2v,

where the adiabatic sound speed6 cs is given by c2s = γP/ρ. This is the sound speed that
we usually think of – looking up values for atmospheric pressure ≈ 105 Pa, density of
air at STP ≈ 1.2 kg m−3, and γ = 7/5 for a diatomic gas, I get 340 m/s.

Looking for plane wave solutions, ie. perturbations∝ e−iωt+k·r, we find a dispersion
relation

ω2 = c2sk
2.

The linear dispersion relation ω ∝ k means that these waves are non-dispersive. They
have frequency-independent and equal phase and group velocities: the phase velocity
is ω/k = cs and group velocity is dω/dk = cs.

6Note that in general, the sound speed is

c2s =
∂P

∂ρ

with the partial derivative taken under whatever conditions are appropriate for the perturbations. We
considered adiabatic perturbations so the derivative is taken at constant entropy. When heat transfer
is very rapid for example, we would keep temperature constant when taking the derivative, giving the
isothermal sound speed c2T = P/ρ.
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Things get more complicated when the fluid is magnetized. As we discussed in the
first week, amagnetized plasma has amagnetic pressure that acts perpendicular to the
field lines. Acoustic waves that are travelling across themagnetic field lines experience
an extra restoring force and travel more quickly. For the perpendicular case k ⊥ B, the
dispersion relation is

ω2 = k2(c2s + v2A)

where
vA =

1√
4πρ

B

is the Alfven velocity. This mode is known as the fast magnetosonic mode. An acoustic
wave travelling along the field direction k ∥ B does not feel the magnetic pressure and
has the usual dispersion relation ω2 = c2sk

2. These are known as slow magnetosonic
modes.

Just to give a bit of the flavour of the calculation, the magnetic field enters through
the J× B force. If the background field is uniform with J = 0, the perturbations give a
J× B force

δJ× B
c

=
(∇× δB)× B

4π
=

i

4π
(k× δB)× B.

We also need the induction equation

iωδB = ∇× (δv× B).

With these two extra ingredients, you can show that (try it!)

δv(ω2 − (k · vA)2)− (k · δv)
[
k(c2s + v2A)− vA(k · vA)

]
+ k(k · vA)(δv · vA) = 0.

This is quite a complicated dispersion relation, which why it helps to think about par-
ticular limits. Setting k · vA = 0 makes several terms vanish, and you can straightfor-
wardly show that ω2 = k2(c2s + v2A), the fast magnetosonic mode mentioned above. If
instead we assume k ∥ vA, then things simplify to

δv(ω2 − k2v2A) = (k · δv)k(c2s − v2A). (1.16)

Dotting this equation with k gives ω2 = k2c2s the slow magnetosonic wave mentioned
earlier.

We should mention that there is also a non-compressive wave in the magnetized
case, the Alfven wave. The tension of magnetic field lines supports a transverse wave
similar to awave on a string. To see this, set k·δv = 0 (an incompressible perturbation)
in equation (1.16). There is a solution if

ω2 = v2Ak
2

which is the dispersion relation for Alfven waves. You can use the induction equation
to show that for these waves k · δB = 0, ie. they are transverse to the magnetic field.
They propagate at the Alfven speed vA.
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Compressible vs. incompressible flow
An important point to make is that compressibility is a flow property as well as a ma-
terial property. Flows that are subsonic, with fluid velocities much smaller than the
sound speed, are incompressible with ∇ · v ≈ 0, even though the material itself may
be compressible. A way to think of this is that there is plenty of time for compressions
to be smoothed out by propagation of sound waves if the flow is subsonic.

A simple illustration is given by a steady 1D isentropic flow. Isentropic means that
we canwrite the pressure gradient termas ∂P/∂x = c2s∂ρ/∂x, where cs is the isentropic
sound speed. The momentum equation is then

v
dv

dx
= −c2s

ρ

dρ

dx

⇒ v

ρ

dρ

dv
= −v2

c2s

⇒ 1

ρ

d

dv
(ρv) = 1− v2

c2s
. (1.17)

Equation (1.17) shows that for subsonic flow, the mass flux ρv increases with ve-
locity. This is what we would expect for an incompressible flow: at constant density,
if you move faster the mass flux is larger. But note what happens at speeds faster than
the sound speed. Then, the mass flux decreases as the flow speed increases. Despite
moving faster, the density drops giving a smaller mass flux.

“Real-life” examples of these two limits are a river, which flows faster when the
river narrows or slower when the river widens, and traffic on the freeway, which flows
faster when the road widens and slows when the road narrows.

Steepening
When deriving the sound speed, we considered linear waves, ie. small perturbations
to a background state. However, we know that the fluid equations have a non-linear
term (v.∇)v, so that for large amplitudes it is not very useful to write the flow as a sum
of plane waves. Whereas in a linear problem the plane waves evolve independently,
and so it makes sense to use a Fourier decomposition, the non-linear terms couple the
amplitudes of the different modes.

An important effect of the non-linear terms is that they lead to steepening of the
velocity profile. We can see this by looking at the equation

∂v

∂t
+ v

∂v

∂x
= 0. (1.18)

The general solution to this equation is

v = f(x− vt) = f(ξ),

where f(ξ) is some arbitrary function of ξ = x− vt. To see this, change variables

∂v

∂t
=

df

dξ

∂ξ

∂t
= f ′

(
−v − t

∂v

∂t

)
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⇒ ∂v

∂t
=

−vf ′

1 + f ′t
.

Similarly,
∂v

∂x
=

f ′

1 + f ′t
. (1.19)

Combining these derivatives, we see that equation (1.18) is indeed satisfied.
More importantly, we see an interesting behaviour in the spatial derivative given

by equation (1.19). An initial profile with ∂v/∂x|t=0 = f ′ < 0 will reach ∂v/∂x → ∞
after a time

t =

∣∣∣∣− 1

f ′

∣∣∣∣ = ∣∣∣∣− 1

∂v/∂x|t=0

∣∣∣∣
which we can think of as a local “turnover time” for the fluid.

The profile steepens in as illustrated in the sketch below.

A shock forms in which the velocity v changes its value on a very short lengthscale.
The thickness of the shock is set by the viscous term in the momentum equation which
becomes important as dv/dx becomes large. Viscous stresses act to smooth out the
velocity gradient and eventually will balance the steepening from the non-linear term.
The lengthscale on which this happens is very short, of order the microscopic mean
free path. In fact, we don’t need to understand the details of what happens inside the
shock, we can instead treat the shock as a discontinuity and relate the fluid velocity,
density and temperature on each side using conservation of mass, momentum and
energy. We do that in the next section.
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A classical example of a situation in which a shock forms is the “shock tube” in
which a piston moves into a cylinder. A shock propagates ahead of the cylinder, accel-
erating the fluid from rest to the speed of the cylinder, and at the same time compress-
ing the gas. Another situation is supersonic flow around an object. A shock forms
which acts to slow the fluid from supersonic to subsonic. The fact that the flow is sub-
sonic near the object means that the sound crossing time can be shorter than the flow
time, in this way the fluid flow around the obstacle.

Shock jump conditions
To derive the shock jump conditions, also known as the Rankine-Hugoniot relations,
we first move into the frame of the shock as illustrated below. On the left, you see the
shock moving to the right at speed vs; on the right in the shock frame the unshocked
fluid is moving to the left at speed vs. Across the shock, the fluid changes velocity from
v1 = −vs to v2, and density and pressure change from values ρ1 and P1 to ρ2 and P2.
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We then integrate the fluid equations across the shock. For a steady 1D flow, con-
tinuity is

∂

∂x
(ρv) = 0.

Integrating, ∫ ϵ

−ϵ
dx

∂

∂x
(ρv) = [ρv]ϵ−ϵ = 0

or
ρ1v1 = ρ2v2. (1.20)

Momentum is
ρv

dv

dx
=

d

dx
(ρv2) = −dP

dx
,

which when integrated gives

P1 + ρv21 = P2 + ρv22. (1.21)

The total energy equation is

d

dx

[
v

(
1

2
ρv2 + ρe+ P

)]
= 0

⇒ 1

2
v21 + e1 +

P1

ρ1
=

1

2
v22 + e2 +

P2

ρ2
.

For an ideal gas, P = (γ − 1)ρe, so we can rewrite this

1

2
v21 +

γ

γ − 1

P1

ρ1
=

1

2
v22 +

γ

γ − 1

P2

ρ2
. (1.22)

Equations (1.20)-(1.22) are the shock jump conditions, relating the “upstream” condi-
tions (v1, ρ1, P1) to the “downstream” ones (v2, ρ2, P2) .

The jump conditions can be combined to derive a number of useful results. One of
them is

ρ2
ρ1

=
v1
v2

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

where M1 = u1/c1 is the upstream Mach number, the shock velocity divided by the
upstream sound speed. This shows that there is amaximumcompressionwhich occurs
for a strong shock (M1 ≫ 1), ρ2/ρ1 = (γ + 1)/(γ − 1). This compression factor is 4 for
a monatomic gas (γ = 5/3).
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While the compression is limited, note that the pressure and therefore temperature
jump can be large. The pressure jump is

P2

P1
=

2γM2
1 − (γ − 1)

γ + 1

which is ∝ M2
1 for a strong shock.

The P2–ρ2 relation is known as the shock adiabat or the Hugoniot curve. But note
that the flow across the shock is definitely not adiabatic! There is a large jump in en-
tropy as the ordered kinetic energy of the rapid upstream flow is converted into heat in
the compressed slow-moving gas downstream. For example, for a strong shock with
γ = 5/3 you should be able to show that the downstream temperature is

kBT2

µ1mp
=

3

16
v2s .

More complex cases that you could look at are:
• an oblique shock, in which the flow direction is not perpendicular to the shock.

These occur in flow around an object, where the shocks help to redirect the fluid.

• a magnetized shock. As you might expect from our discussion of fast and slow
magnetosonicwaves, the direction of themagnetic field relative to the shock front
makes a difference. A magnetic field perpendicular to the flow and parallel to
the shock is compressed and gives an extra pressure that must be included in the
jump conditions. There is also a jump condition on B coming from integrating
the induction equation across the shock. For example, you can show that the ratio
B/ρ is the same on both sides when the magnetic field is parallel to the shock.
Compression of the fluid also implies a larger field strength because of magnetic
flux conservation.

• a radiative shock. Shocks in astrophysics are often very radiative: the tempera-
ture immediately after the shock is so great that it leads to rapid cooling of the
shocked gas. The net result can be much larger compression factors than in the
strong shock case. A limit to consider is the isothermal shock in which the cooling
is strong enough to equalize the temperature of the pre-shock and post-shock
gas. Then the compression ratio is ρ2/ρ1 = u21/c

2
T where cT is the isothermal

sound speed.

Papers
• Goldreich, Murray, & Kumar (1994) “Excitation of acoustic modes in the Sun”

http://adsabs.harvard.edu/abs/1994ApJ...424..466G

• Bazer and Ericson (1957) “Hydromagnetic shocks”
http://adsabs.harvard.edu/abs/1959ApJ...129..758B

• Taylor (1950) “The formation of a blast wave by a very intense explosion”
http://adsabs.harvard.edu/abs/1950RSPSA.201..159T
http://adsabs.harvard.edu/abs/1950RSPSA.201..175T
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Week 5: Introduction to Numerical Methods
These notes give an introduction to numerical methods for solving the fluid equations.
They draw upon material in the book Numerical Recipes by Press & Teukolsky (see in
particular section 19.1 of that book), and the course on hydrodynamics by P. Dulle-
mond at the University of Heidelberg 7. I focus here on finite differencing because
this is the technique mostly used in astrophysics, where the geometry of the flow is
usually quite simple, e.g. spherical (star or outflow), cylindrical (accretion disk) or
plane-parallel (local box). An alternative technique is finite elements, used a lot in en-
gineering applications that have complex geometries (e.g. flow around an aeroplane).

Finite difference approximation for derivatives
We solve for fluid properties on a numerical grid, at locations xj = j∆xwhere j labels
the grid point. For simplicity here, we assume constant grid spacing∆x, although the
results can be generalized to non-constant spacing. Quantities on neighbouring grid
points are related by a Taylor expansion

fj+1 = fj +∆xf ′
j +

(∆x)2

2
f ′′
j +O(∆x3)

fj−1 = fj −∆xf ′
j +

(∆x)2

2
f ′′
j +O(∆x3).

Considering either of these gives a first order expression for the first derivative,

f ′
j =

fj − fj−1

∆x
+O(∆x) f ′

j =
fj+1 − fj

∆x
+O(∆x).

Adding and subtracting instead gives a second order expression for the derivative and
second derivative,

f ′
j =

fj+1 − fj−1

2∆x
+O(∆x2)

f ′′
j =

fj+1 − 2fj + fj−1

(∆x)2
+O(∆x2).

The advection equation; numerical stability and numerical diffusion
First consider advection,

∂f

∂t
+ v

∂f

∂x
= 0.

Using our expressions for the derivatives, we might write

fn+1
j − fn

j

∆t
= −v

fn
j+1 − fn

j−1

2∆x
,

7You can find the notes at
http://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2011/index.shtml
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where n labels the timestep. This gives an expression for the quantity f at the next
timestep n+ 1 in terms of the value at the current timestep n:

fn+1
j = fn

j − v∆t

2∆x

(
fn
j+1 − fn

j−1

)
.

This is known as the forward-time centered-space (FTCS) scheme. This kind of scheme
is referred to as explicit because the new values are written explicitly in terms of the old
ones.

In fact, it turns out that this scheme is always numerically unstable. You can see
this by looking for a solution

fn
j = (ξ)neikxj ,

where k is the wavevector and ξ is a complex amplitude. If |ξ| > 1 for any value of
k, that mode will grow exponentially with increasing timestep n, and the numerical
scheme is unstable. Trying a solution like this for the FTCS scheme gives

|ξ|2 = 1 +

(
v∆t

∆x

)2

sin2 (k∆x) ,

which is indeed greater than unity for any value of k.
Fortunately, there is a simple way to write a stable method, the Lax method:

fn+1
j =

1

2

(
fn
j+1 + fn

j−1

)
− v∆t

2∆x

(
fn
j+1 − fn

j−1

)
.

This has

|ξ|2 = 1 +

[(
v∆t

∆x

)2

− 1

]
sin2 (k∆x) ,

and so we see that the scheme is stable as long as

v∆t

∆x
≤ 1.

This condition on the timestep is the Courant-Friedrichs-Levy criterion or “Courant con-
dition”. The criterion states that our timestep must not exceed the fluid travel time
between two grid points, whichmakes sense physically because the information about
fluid quantities is advected at that speed. Larger timesteps require information from
grid points further away than ∆x, not included in our update.

A way to understand why the scheme is stable is to separate out the FTCS part and
see what additional terms have been added. The Lax method can be rewritten

fn+1
j − fn

j

∆t
= −v

fn
j+1 − fn

j−1

2∆x
+

(
∆x2

2∆t

)
fn
j+1 − 2fn

j + fn
j−1

(∆x)2
.

The additional term on the right is a diffusion term with diffusivity (∆x)2/2∆t. This
is known as numerical diffusion, it provides numerical dissipation that stabilizes the
method. The damping is largest for short wavelengths where k∆x ∼ 1which are most
unstable.

The Lax scheme provides a good illustration of different types of error:
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• When v∆t < ∆x, |ξ| < 1, giving an amplitude error: the amplitude of any given
mode k decreases over time (it should stay constant under advection)

• Phase error. The factor ξ in the Lax scheme can be rewritten as

ξ = e−ik∆x + i

(
1− v∆t

∆x

)
sin k∆x.

For a timestep ∆t = ∆x/v, the phase of each mode is shifted by k∆x, equiva-
lent to advecting by one grid point. But for timesteps ∆t < ∆x/v the phase shift
depends on k, so that different modes are advected at different speeds. Again,
this should not happen under advection. The numerical method introduces dis-
persion as the component waves of the profile we are trying to advect move with
different speeds.

• Transport errors: in the Lax scheme, the information from cells j − 1 and j + 1
propagates to cell j in the next timestep. But physically, if the velocity is to the
right for example, only information in cell j − 1 should be used to update cell
j. A way around this is upwind differencing which avoids this problem, but at the
expense of being first order:

fn+1
j − fn

j

∆t
= −vj

fn
j − fn

j−1

∆x
vnj > 0

fn+1
j − fn

j

∆t
= −vj

fn
j+1 − fn

j

∆x
vnj < 0.

Everything we’ve discussed here is first order in time, but there are higher order
methods that you can read about in Numerical Recipes. A useful one is staggered-
leapfrog which uses a second-order time-derivative

fn+1
j = fn−1

j − v∆t

2∆x

(
fn
j+1 − fn

j−1

)
.

Numerically this requires storing the previous two timesteps in order to do the update.
This method has the advantage that |ξ| = 1 for all modes no matter what timestep is
used: the stability analysis gives

ξ = −i
v∆t

∆x
sin k∆x±

√
1−

(
v∆t

∆x
sin k∆x

)2

,

so while there is dispersion (the phase evolution is different for different modes), the
amplitude of eachmode stays constant, much better than the very dispersive first order
Lax method. Note that staggered leapfrog also has a limit ∆t ≤ ∆x/v for stability.

44



The diffusion equation: implicit methods
In the case of diffusion, the simplest differencing that you might write down is stable
for small enough timesteps. The update is

fn+1
j − fn

j

∆t
= D

fn
j+1 − 2fn

j + fn
j−1

(∆x)2
,

with
D∆t

(∆x)2
≤ 1

2

for stability. The physical interpretation is that the timestep is constrained by the dif-
fusion time between grid cells.

Solving diffusion problems with explicit schemes is particularly slow, because the
distance diffused in time t grows slowly with time, as L ∝ t1/2. The number of
timesteps needed to followdiffusion over a lengthscaleL isL2/D∆t ≥ 2(L/∆x)2 ∼ N2

where N is the number of grid points.
An alternative scheme that allows larger timesteps, at the expense of accuracy on

small scales, is an implicit scheme

fn+1
j − fn

j

∆t
= D

fn+1
j+1 − 2fn+1

j + fn+1
j−1

(∆x)2
,

in which we write the update in terms of the values at the next timestep rather than at
the current timestep (hence the name implicit). Rearranging, we can write

−αfn+1
j+1 + (1 + 2α)fn+1

j − αfn+1
j−1 = fn

j

where α = D∆t/(∆x)2. Written as a matrix equation this is

Afn+1 = fn

for the vectors fn+1 and fn, where the matrix A is tridiagonal, with entries 1 + 2α on
the diagonal and −α on the upper and lower diagonals. This system can be solved by
finding the inverse of the matrix A, since then fn+1 = A−1fn.

This fully-implicit scheme has the feature that it goes to the steady-state solution
for large time-steps ∆t → ∞. Although small scales are not followed accurately for
large timesteps, they go the correct steady-state solution. An alternative semi-implicit
scheme is Crank-Nicholson

fn+1
j − fn

j

∆t
=

D

(∆x)2

[
1

2

(
fn
j+1 − 2fn

j + fn
j−1

)
+

1

2

(
fn+1
j+1 − 2fn+1

j + fn+1
j−1

)]
which is also stable for large timesteps. It has the advantage that it is second order in
both space and time, whereas fully-implicit is second order in space, but first order in
time.
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Operator splitting
You will often have multiple operators in the equation you are solving. A simple ex-
ample is the advection-diffusion equation

∂f

∂t
= −v

∂f

∂x
+D

∂2f

∂x2
.

One way to deal with this is to calculate the update for each operator separately. Start-
ing with fn, generate fn+ 1

2 by updating with the diffusion operator with timestep ∆t,
then update fn+ 1

2 with the advection operator with timestep ∆t to obtain the final
values fn.

Flux-conservative schemes
We know that the fluid equations arise from the conservation laws for mass, momen-
tum and energy. We can take advantage of that and work with the equations in flux-
conservative form, so that the numerical method exactly conserves these quantities.

In finite-volume methods, we divide the volume into cells such that the grid points
xj are the locations of the cell centres, and the cell boundaries are at locations xj±1/2 =
(1/2)(xj + xj±1). We then solve the equation

∂f

∂t
= −∂J

∂x
,

or in discretized form
fn+1
j − fn

j

∆t
= −

J
n+ 1

2

j+ 1
2

− J
n+ 1

2

j− 1
2

∆x
,

where we write the flux of quantity f at the cell boundaries (j ± 1/2) averaged over
the timestep:

J
n+ 1

2

j+ 1
2

=
1

∆t

∫ t+∆t

t
dt Jj+ 1

2
(t).

This formulation automatically conserves the quantity f , since the flux out of one cell
equals the flux into the neighbouring cell.

The simplest choice for the flux J is to write

Jj+ 1
2
= vj+ 1

2
fn
j vj+ 1

2
> 0

Jj+ 1
2
= vj+ 1

2
fn
j+1 vj+ 1

2
< 0

Jj− 1
2
= vj− 1

2
fn
j−1 vj− 1

2
> 0

Jj− 1
2
= vj− 1

2
fn
j vj+ 1

2
< 0

which is known as donor cell advection (equivalent to the upwind differencing discussed
earlier). Depending on the sign of the velocity, the contents are either advected out of
cell j or into cell j from the left or right neighbour. The assumption here is that the
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profile of f within the cell is well-approximated by a constant (given by the value at
the center fj). More complex assumptions about the profile of f give rise to higher
order methods. For example, assuming f is linear across the cell (with slope chosen
to be consistent with the difference in f between cell j and its neighbours) gives a
scheme that is 2nd order in time. These piecewise linear schemes are discussed in
detail in Chapter 4 of the Heidelberg notes I linked to earlier (see footnote on page 1).

Papers
This week, the paper discussion will involve researching a (magneto)hydrodynamics
code such as PLUTO, PENCIL, FLASH, ZEUS, Castro.

You should discuss:

• What equations is the code solving?

• What numerical methods are used?

• What microphysics is included?

• What geometry can the code simulate?

• What are some of the applications that the code has been used for?
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Computational Exercise 2: Steepening

Overview. The goal of this exercise is towrite a 1D hydro code and use it to demonstrate
the steepening of a sound wave.

Algorithm. The lecture notes on hydrodynamics from the University of Heidelberg
give a simple algorithm that you can use to solve the 1D hydro equations (in Chapter
5). First, the fluid equations are written in flux-conservative form, with conserved
quantities

f1 = ρ

f2 = ρv

(the mass and momentum densities) and it is assumed that P = c2sρ with constant
sound speed cs. The equations to solve are then

∂f1
∂t

+
∂

∂x
(vf1) = 0

∂f2
∂t

+
∂

∂x
(vf2) = −∂P

∂x
.

These are in flux-conservative form with the pressure gradient acting as a source term
for the momentum density f2. Note that given f2 and f1, the velocity at the grid centre
can be obtained from the ratio f2/f1.

The algorithm has two steps:

1. Use donor-cell advection to update f1 and f2. To calculate the velocity at the cell
boundaries, you can take an average of the velocity at the cell centres

vj+ 1
2
=

1

2
(vj + vj+1) .

2. Add an additional update to the value of f2 from step 1 to take into account the
source term. You can do this by writing

∂P

∂x
= c2s

∂ρ

∂x

and using a first order difference to calculate the density gradient in terms of the
new values of f1 you found in step 1.

Questions

1. Choose an initial condition that has a sinusoidal variation in density and/or ve-
locity. Check that for small amplitudes, the wave propagates as expected.

2. Do you see steepening at larger wave amplitudes?
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3. How large a timestep can you take and still be numerically stable?

4. Do you form a shock in your simulation? What sets its thickness?

Possible extensions

• An interesting extension is to add the energy equation to your code. We need a
third quantity

f3 = ρetot

where e is the specific total energy (sum of kinetic and internal energy). The
energy equation is

∂f3
∂t

+
∂

∂x
(vf3) = − ∂

∂x
(vP ) .

As for momentum, we can solve this by advecting f3 in step 1 and then updating
f3 using the source term on the right hand side in step 2. The pressure is

P = (γ − 1)ρe

where
e = etot −

v2

2

is the thermal energy.
With the energy equation included, you will be able to validate the shock jump
conditions, e.g. check that the compression factor is (γ + 1)/(γ − 1) for a strong
shock.

• As a next step, you couldmodify your code towork in spherical symmetry (adding
appropriate r2 factors), and then model the Sedov-Taylor blast wave.

• Another area to investigate is to use a higher order approximation for the ad-
vection step (section 4.3 in the Heidelberg notes) and see how it improves the
results.
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Week 6: Inflows and Outflows
Outflows and inflows are important in astrophysics in systemswithwinds (star, galax-
ies, planets, accretion disks), jets (e.g. from accreting black holes) and accretion onto
a central object (e.g. in compact binaries, star or planet formation, black hole growth).
These notes discuss some different examples. We start with the simplest case of a
spherically-symmetric wind from or accretion flow onto a point mass. We then con-
sider some more complex examples that break spherical symmetry: stellar wind from
a magnetized star and jets.

These flows have some common features that you should look out for. One is that
there are conserved quantities that we can use to learn about the flow without nec-
essarily solving for the detailed structure. Another feature is the existence of critical
points at which the flow speed equals a wave speed, for example a sonic point at which
the flow transitions from subsonic to supersonic.

Bondi accretion and Parker wind
Consider spherically-symmetric, steady, radial flow either onto or away from a point
mass. The continuity equation is ∇ · ρv = 0, which in spherical coordinates is

1

r2
d

dr

(
r2ρv

)
= 0,

which shows that r2ρv is constant throughout the flow. It is convenient to write this in
terms of the mass loss rate or accretion rate

Ṁ = 4πr2ρv

(units of g s−1). The momentum equation is

ρv
dv

dr
= −dP

dr
− ρ

GM

r2
, (1.23)

where we assume that the gravitational acceleration is dominated by the mass of the
central star, ie. there is negligible mass in the flow itself.

As usual to simplify things we canmake an assumption about the relation between
P and ρ so that we don’t have to worry about the energy equation. For an isothermal
gas, P = c2sρ with cs constant, giving

v
dv

dr
= −c2s

d ln ρ

dr
− GM

r2
. (1.24)

From the continuity equation,

d ln ρ

dr
= −2

r
− d ln v

dr

and so, eliminating the density gradient from the momentum equation,(
v − c2s

v

)
dv

dr
=

2c2s
r

− GM

r2
.
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Defining the sonic radius
rs =

GM

2c2s

we can rewrite this as (
1− v2

c2s

)
d ln v

d ln r
= 2

(rs
r
− 1
)
.

This shows that if the flow makes a transition from subsonic to supersonic or vice-
versa, that must happen at r = rs in order for the velocity gradient to remain finite.
This is known as the sonic point.

The velocity and density profiles v(r) and ρ(r) can be obtained by integrating the
continuity and momentum equations. (In fact, in the case of an isothermal flow, this
integration can be done analytically). Two solutions are possible which go through
the sonic point: (i) subsonic flow close to the star v < cs with v increasing outwards,
becoming supersonic at r > rs, or (ii) subsonic flow beyond the sonic point r > rs
and v increasing inwards, becoming supersonic at r < rs. Option (i) corresponds to a
wind, discussed by Parker (1958) in the context of the Sun, whereas option (ii) with
v < 0 corresponds to accretion of mass onto the central star, first discussed by Bondi
(1952).

Themass accretion rate ormass loss rate can bewritten in terms of the sound speed
(or equivalently temperature) by evaluating equation (1.23) at the sonic point where
v = cs and ρ = ρs:

Ṁ = 4πr2scsρs = π
(GM)2

c3s
ρs.

To find ρs for a given situation, wemap from the boundary as appropriate. Integrating
equation (1.24) gives

1

2
v2 + c2s ln ρ− GM

r
= B = constant.

For the accretion case, v → 0 and GM/r → 0 at large distance, so B = c2s ln ρ∞. At the
sonic point therefore

1

2
c2s + c2s ln ρs −

GM

rs
= c2s ln ρ∞,

or ρs = ρ∞e3/2. This gives the Bondi accretion rate

Ṁ = πe3/2
(GM)2

c3s
ρ∞,

the accretion rate onto a point mass8 placed in a gas with sound speed cs and density
ρ∞ (assuming the flow is isothermal). For the case of a wind, we apply the boundary

8Hoyle & Lyttleton (1939) derived a similar formula but they considered accretion by a star moving
through the interstellar medium (theywere interested inwhether accretion could power stellar luminosi-
ties). Their result is Ṁ ∼ ρ∞(GM)2/v3⋆, the same scalings but with cs → v⋆. The geometry of the flow is
quite different in that case, with the incoming matter being gravitationally-focussed behind the star (in
the star’s frame) and then falling in.
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conditions at the stellar surface r = R where we take v = 0 and ρ = ρ⋆, giving

B = c2s ln ρ⋆ −
GM

R
.

Therefore
ln
(
ρs
ρ⋆

)
=

3

2
− GM

Rc2s
=

3

2
− 2rs

R
< 0, (1.25)

and the mass loss rate in the wind is

Ṁ = πe3/2
(GM)2

c3s
ρ⋆e

−GM/Rc2s .

Magnetized stellar wind and angular momentum loss
Magnetic fields can play an important role in stellar winds from rotating stars. In par-
ticular, through magnetic forces in the azimuthal direction, the magnetic field deter-
mines the angular momentum loss rate in the wind, and therefore how quickly the star
spins down.

Weber & Davis (1967) made a simple model in which they considered only the
equatorial plane and assumed that the wind had “combed out” the magnetic field, so
that the magnetic field lies in the equatorial plane

B = Br(r)êr +Bϕ(r)êϕ.

Everything is assumed to be axisymmetric and so only depends on r, and steady. Be-
cause the magnetic field has to be divergence free,

∇ · B =
1

r2
∂

∂r

(
r2Br

)
= 0,

r2Br must be constant, i.e. Br ∝ 1/r2. The velocity is

v = vr(r)êr + vϕ(r)êϕ.

As in the Parker wind, mass continuity tells us that r2ρvr = Ṁ/4π is constant. With v
and B being in the equatorial plane, and ∂/∂ϕ = 0, the only possible non-zero compo-
nent of the induction equation is

∂Bϕ

∂t
= −c(∇× E)ϕ = −1

r

d

dr
[r (vrBϕ − vϕBr)] .

In a steady state, we must therefore have

r (vrBϕ − vϕBr) = constant = −R2ΩBr(R) = −r2ΩBr

where Ω is the spin of the star. This tells us that

Bϕ

Br
=

vϕ − Ωr

vr
(1.26)
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so that the flow is along the magnetic field lines everywhere in the rotating frame.
There is a steady pattern in the rotating frame.

To focus on the angular momentum, let’s look at the ϕ component of the momen-
tum equation. This is

ρvr
1

r

d

dr
(rvϕ) =

1

c
(J× B)ϕ =

Br

4πr

d

dr
(rBϕ) ,

where we use
J = c

4π
∇× B = − c

4π

1

r

d

dr
(rBϕ) êθ.

But ρvr ∝ 1/r2 and Br ∝ 1/r2, and so we can integrate this:

rvϕ − Br

4πρvr
rBϕ = constant = L. (1.27)

We call the constant L because we see from the first term that this is the angular mo-
mentum per unit mass. If the magnetic field was not present, rVϕ would be constant,
but the magnetic torques cause this to change across the flow.

The Alfven velocity v2A = B2
r/4πρ can be used to define a radial Alfven Mach num-

ber
MA =

vr
vA

=

√
4πρvr
Br

.

Equation (1.27) becomes
rvϕ − 1

M2
A

rvr
Bϕ

Br
= L. (1.28)

We see that since Br ∝ ρvr, M2
A ∝ vr/Br ∝ 1/ρ, so the Alfven Mach number increases

through the flow.
Together, equations (1.26) and (1.28) can be used to solve for vϕ:

rvϕ =
LM2

A − r2Ω

M2
A − 1

.

Close to the star, MA ≪ 1, vϕ ≈ rΩ which corresponds to rigid rotation at the stellar
spin frequency. Far from the star,MA ≫ 1 and rvϕ = L , so the flow has constant angu-
lar momentum per unit mass. What’s happening is that close to the star the magnetic
field is strong enough to keep the fluid moving rigidly with the star; far from the star
the magnetic torques are no longer important and so the fluid moves outwards with
constant angular momentum. The transition occurs at a particular radius, the Alfven
radius rA = (L/Ω)1/2 at which MA = 1.

The angular momentum loss in the wind is therefore

Ṁr2AΩ

which can be much greater than ṀR2
⋆Ω which would be the angular momentum loss

rate for the Parker wind. The magnetic field keeps the plasma rotating rigidly out to
r = rA which gives a larger “lever arm” for the torque.
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In their paper, Weber & Davis go on to look at the radial structure of the wind. As
well as the Alfven point (at∼ 30R⊙ in their model), there is also a sonic point as in the
spherical solution (located much closer to the Sun at a few solar radii). (In fact, there
are multiple critical points where the flow velocity matches one of the wave speeds as
they discuss in detail in the paper).

The plot below is taken from Pneuman & Kopp (1973) which was an early paper
doing a multi-D model of the wind, with the stellar field assumed to be a dipole. We
see the same ideas apply: a closed zone close to the star where the magnetic torques
dominate, and open field lines further out where the field becomes flow-aligned.

Jets as nozzles
Next, let’s discuss an example which is more one-dimensional: the collimation of a
jet. Active galaxies in particular show jets that remain remarkably collimated over
huge scales (much larger than the size of the host galaxy). An early idea discussed by
Blandford & Rees (1974) is that the pressure of the gas around the source could act to
collimate the jet and achieve a supersonic outflow.

We showed earlier that for a 1D isentropic flow, the mass flux increases with veloc-
ity for subsonic flows (incompressible flow) but decreases with velocity for supersonic
flows (compressible flow; see eq. [4] of theWeek 4 notes). One place where this comes
up is in designing a nozzle through which gas can flow and become supersonic. If a
sonic transition is to occur with a steady flow, the product of area and mass flux must
be constant. This means that the nozzle must be designed to have a decreasing area
at first while the flow is subsonic, but then increase again later so that the flow can
continue to accelerate. This kind of nozzle is known as a de Laval nozzle.

Blandford & Rees proposed that a similar effect is happening in radio galaxies,
except the area of the nozzle is not specified in advance but rather that the confining
pressure from the external gas sets the area of the flow. The figure below from their
paper shows the overall idea:
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For a 1D isentropic flow, the momentum equation can be written

d

dx

(
1

2
v2 +

c2s
γ − 1

)
= 0

where c2s = γP/ρ is the adiabatic sound speed and P ∝ ργ . The Bernoulli constant

B =
1

2
v2 +

c2s
γ − 1

is a constant of the flow. If there is some pressure and density P0 and ρ0 at which v = 0
(in the nozzle context, this is the pressure and density in the container; for the jet it’s
the pressure and density at the base of the flow) then keeping B constant implies

v2

c2s
=

2

γ − 1

[
1−

(
P

P0

)(γ−1)/γ
]

which gives the velocity as a function of pressure. For a large enough pressure drop
in the external gas, the flow will make a transition to supersonic flow. Blandford &
Rees made essentially this argument, although they used relativistic equations since
the flow speed is a significant fraction of c for the radio jets.

Papers
• Blandford&Rees 1974 “A ‘twin-exhaust’model for double radio sources” https:

//ui.adsabs.harvard.edu/#abs/1974MNRAS.169..395B/abstract

• Bondi 1952 “OnSpherically SymmetricalAccretion” https://ui.adsabs.harvard.
edu/#abs/1952MNRAS.112..195B/abstract

• Hoyle & Lyttleton 1939 “The effect of interstellar matter on climatic variation”
https://ui.adsabs.harvard.edu/#abs/1939PCPS...35..405H/abstract

• Parker 1958 “Dynamics of the Interplanetary Gas and Magnetic Fields” https:
//ui.adsabs.harvard.edu/#abs/1958ApJ...128..664P/abstract

• Pneuman&Kopp 1973 “The solarwind and the temperature-density structure of
the solar corona” https://link.springer.com/article/10.1007/BF00152928
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https://link.springer.com/article/10.1007/BF00152928


• Weber & Davis 1967 “The Angular Momentum of the Solar Wind” https://ui.
adsabs.harvard.edu/#abs/1967ApJ...148..217W/abstract
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Week 7: Oscillations and Instabilities
We’ve already seen two examples of waves in a fluid system: soundwaves in a uniform
gas, and fast and slowmagnetosonic waves and Alfvenwaves in amagnetized plasma.
Here I go through two examples of linear stability analysis as examples of more com-
plex situations: first what happens when we include the energy equation explicitly for
sound waves, and second how to deal with a background that has a gradient.

Sound waves with thermal conduction
Earlier, we derived the dispersion relation for sound waves by assuming a relation
between the pressure and density perturbations

δP =
∂P

∂ρ
δρ = c2sδρ.

The partial derivative can be taken at constant entropy, in which case c2s = γP/ρ is
the adiabatic sound speed, or at constant temperature, giving the isothermal sound
speed c2s = P/ρ = kBT/µmp. These two cases can be understood as limits of either
very inefficient heat transfer (adiabatic) or efficient heat transfer (isothermal) on the
timescale of the sound wave period (2π/ω = 2π/csk = λ/cs).

Instead of making this assumption, let’s instead include the energy equation in
the calculation. We will assume ideal gas, in which case the pressure, density and
temperature perturbations are related by

δP

P
=

δρ

ρ
+

δT

T
(1.29)

(since P ∝ ρT ). The entropy equation is

T
Ds

Dt
= −1

ρ
∇ · F =

1

ρ
∇ · (K∇T ) ,

where K is the thermal conductivity (we will assume this is a constant).
Perturbing the entropy equation gives

−iωTδs = −k2KδT

ρ
(1.30)

(the background is stationary, so only the time derivative term ofD/Dt contributes at
linear order). This is the extra equation that we need to eliminate δT and derive the
relation between δP and δρ. To do this, write

Tds = T
∂s

∂T

∣∣∣∣
P

dT + T
∂s

∂P

∣∣∣∣
T

dP. (1.31)

We then use the fact that T ∂S/∂T |P = cP the heat capacity at constant pressure, the
identity

∂s

∂P

∣∣∣∣
T

∂P

∂T

∣∣∣∣
s

∂T

∂s

∣∣∣∣
P

= −1,
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and the adiabatic index
γ − 1

γ
=

∂ lnT

∂ lnP

∣∣∣∣
s

to rewrite equation (1.31) as

Tds = cp

(
dT − γ − 1

γ

T

P
dP

)
. (1.32)

This allows us to write down δs in terms of δT and δP . Equation (1.30) then gives

cPT

(
δT

T
− γ − 1

γ

δP

P

)
=

k2KT

iωρ

(
δT

T

)
.

Using the ideal gas relation from equation (1.29) to eliminate δT in favour of δP and
δρ, we find

1

γ

δP

P
− δρ

ρ
=

k2K

iωρcP

(
δP

P
− δρ

ρ

)
(1.33)

I’ve put a box around this result because it is the relation between δP and δρ that
we’ve been looking for. The quantity D = K/ρcP is the thermal diffusivity (units of
cm2/s), since we can write

T
Ds

Dt
= cP

DT

Dt
=

K

ρ
∇2T ⇒ DT

Dt
=

K

ρcP
∇2T = D∇2T

(working at constant pressure for simplicity and again assuming constant K). The
thermal timescale associated with the perturbation is therefore 1/(k2D). When the
mode frequency ω is either large or small comparedwith k2D, we recover the adiabatic
or isothermal limits discussed earlier. However, in general, we see that the relation
between δP and δρ has a complex prefactor. The dispersion relation will be

ω2

k2
= c2s =

γP

ρ

(
iω − k2D

iω − γk2D

)
.

In general we see that k2 will be complex, so that for a given ω there will be a propa-
gating wave (real part of k) but with a decaying amplitude (imaginary part of k).

I will leave this as an exercise, but for example one limit to consider is when the
wave is almost adiabatic, so that k = kR + ikI with kI ≪ kR. In this limit, ω2 ≈ k2Rc

2
ad,

where cad is the adiabatic sound speed, and

kI
kR

≈ γ − 1

2

k2RD

ω
≈ γ − 1

2

ωD

c2ad
.

For air, cs ≈ 330 m s−1 and D ≈ 2 × 10−5 m2/s, giving a decay length of about 106
wavelengths.
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Gravity waves
As a second example, let’s look at the waves in a plane-parallel atmosphere. The ad-
ditional ingredient here is gravity, since the atmosphere is in hydrostatic balance

dP

dz
= −ρg

so that there are background pressure, density and temperature gradients.
When dealing with problems with background gradients, it can be useful to write

things in terms of Lagrangian perturbations. The perturbations we have been writing
down so far are Eulerian, since at any given time t they give the difference between the
perturbed and unperturbed flows at the same point in space, e.g.

δρ (r, t) = ρ (r, t)− ρ0 (r, t) ,

where ρ is the perturbed density and ρ0 is the unperturbed density. Instead we could
define the Lagrangian perturbation

∆ρ (x0, t) = ρ (r(x0, t), t)− ρ0 (r0(x0, t), t) ,

where x0 is a Lagrangian label that identifies the fluid element, for example a good
choice would be the initial location of the fluid element. The difference in the positions
of the fluid element in the unperturbed flow r0(x0, t) and perturbed flows r(x0, t) is the
Lagrangian displacement

ξ = r(x0, t)− r0(x0, t).
The Eulerian and Lagrangian perturbations at a particular spatial location r are related
by

∆ρ (r(x0, t), t)− δρ (r, t) = −ρ0 (r0(x0, t), t) + ρ0 (r, t) ≈ ξ · ∇ρ0(r),
or

∆ρ = δρ+ ξ · ∇ρ

As an application, consider the perturbed continuity equation

−iωδρ = −∇ · (ρδv) .

We assume v = 0 in the background, in which case we can also write

δv =
∂ξ

∂t
= −iωξ

and so
δρ = −∇ · (ρξ) = −ρ∇ · ξ − ξ · ∇ρ

⇒ ∆ρ

ρ
= −∇ · ξ (1.34)

If the Lagrangrian displacements have a non-zero divergence, it implies a Lagrangian
density change. Note that if the background is moving then δv and ξ have a more
complex relation.
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Going back to the plane-parallel atmosphere, the perturbed continuity equation is
therefore equation (1.34). We consider adiabatic perturbations which we can immedi-
ately write down taking advantage of the Lagrangian formalism as

∆P

P
= γ

∆ρ

ρ
.

Therefore
δP

P
= γ

δρ

ρ
− ξz

[
d lnP

dz
− γ

d ln ρ

dz

]
or

δP

ρc2s
=

δρ

ρ
− N2ξz

g
, (1.35)

wherewedefine the Brunt-Väisälä frequencyN and convective discriminantA according
to

N2 = −gA = −g

[
d ln ρ

dz
− 1

γ

d lnP

dz

]
.

The momentum equations are

−ρω2ξz = −dδP

dz
+ gδρ (1.36)

−ρω2ξx = −ikxδP. (1.37)

Note that whereas we have assumed an x-dependence for the perturbations of eikxx,
we do not specify a functional form for the z-dependence; it will be determined by
how the background changes with height. To solve the equations in a realistic atmo-
sphere or star requires integration of the equations over height z. The equations form
an eigenvalue problem: in general, only a certain set of frequencies ωn give solutions
that satisfy the boundary conditions at z = 0 or z = ∞ (r = 0 and r = R in the case of
a star).

A useful limit to consider however is when the vertical wavelength of the waves is
much smaller than the pressure or density scale heights. Then the coefficients in the
equations remain constant on the scale of a wavelength, and we can write a local WKB
solution eikzz . Substituting this into the continuity equation, momentum equations
and adiabatic condition (eqs. [1.34], [1.35], [1.36], and [1.37]) gives the dispersion
relation

c2sk
2
z =

(
ω2 −N2

)(
1− k2xc

2
s

ω2

)
.

Avertically-propagatingwave requires k2z > 0 so that kz is real. This can happen in two
ways. The first is ω2 ≫ N2, when ω2 = c2s(k

2
z + k2x) = c2sk

2. These are the sound waves
or acoustic waves we have encountered before. We see them again in the plane-parallel
atmosphere.

The second solution for propagating waves is when ω2 < N2 and ω2 < c2sk
2. Then

both terms on the right hand side of the dispersion relation are negative and so k2z > 0.
The dispersion relation when ω2 ≪ N2 is

ω2 = N2

(
kx
k

)2

.
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These waves are internal gravity waves. They are incompressible waves, ie. they satisfy
∇·ξ ≈ 0 (if you repeat the calculation setting∇·ξ = 0 exactly, you’ll find that the sound
waves go away but the gravity waves survive). The restoring force for the wave is from
horizontal pressure gradients that arise from horizontal variations in the hydrostatic
column that arise as the fluid moves. One interesting fact about gravity waves is that
the phase and group velocities of a wavepacket are orthogonal (try proving this using
the dispersion relation). In the context of stars, standing gravity waves or acoustic
waves can exist that occupy the entire stellar volume in some cases or may propagate
in only a limited region of the stellar interior (where k2 > 0). In this context, gravity
waves are referred to as g-modes and the acoustic waves as p-modes (g for gravity and
p for pressure).

The convective discriminant A is so-named because it indicates whether the atmo-
sphere is unstable to convection. In a situation in which A > 0, N2 < 0 and ω2 < 0
indicating instability. Theway to understand this is to considermoving a fluid element
upwards slowly enough that it stays in pressure equilibriumwith its surroundings, but
quickly enough that the motion is adiabatic. The density contrast between the fluid el-
ement and its surroundings after moving a vertical distance ∆z is

∆z
∂ρ

∂P

∣∣∣∣
S

dP

dz
−∆z

dρ

dz
= −ρ∆z

[
d ln ρ

dz
− 1

γ

d lnP

dz

]
= −ρ∆zA.

If A > 0, we see that the fluid element will be less dense than its surroundings and so
will buoyantly rise further: the atmosphere is unstable to vertical perturbations. The
criterion A > 0 is the Schwarzschild criterion for convection.
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Papers
There are many different types of waves and instabilities relevant for astrophysical
objects. Here is a selection of recent papers that give some nice examples:

• Fuller (2014) “Saturn ring seismology: Evidence for stable stratification in the
deep interior of Saturn”
http://adsabs.harvard.edu/abs/2014Icar..242..283F

• Showman & Polvani (2011) “Equatorial Superrotation on Tidally Locked Exo-
planets”
http://adsabs.harvard.edu/abs/2011ApJ...738...71S

• Philippov et al. (2016) “Spreading Layers in Accreting Objects: Role of Acous-
tic Waves for Angular Momentum Transport, Mixing, and Thermodynamics”
https://ui.adsabs.harvard.edu/#abs/2016ApJ...817...62P/abstract

• Levin (2007) “On the theory of magnetar QPOs”
https://ui.adsabs.harvard.edu/#abs/2007MNRAS.377..159L/abstract
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Appendix: Perturbation equations in spherical geometry
For stellar or planetary oscillations, we need the perturbation equations in spherical
geometry. We assume the background is spherically-symmetric, so pressure or density
depend only on r. We take density perturbations of the form

δρ = δρ(r)eimϕPm
ℓ (cos θ)e−iωt

and similarly for the pressure perturbation δP and radial displacement ξr. The non-
radial displacements have a different angular dependence:

ξθ = ξθ(r)e
imϕ dP

m
ℓ (cos θ)
dθ

e−iωt

ξϕ = ξϕ(r)e
imϕ imPm

ℓ (cos θ)
sin θ

e−iωt

With these choices for the angular dependences, the perturbation equations then de-
pend only on r, as follows:

Adiabatic perturbations
∆ρ

ρ
=

1

γ

∆P

P

⇒ δρ

ρ
=

1

γ

δP

P
+

N2ξr
g

(using the definition of N2 from the text; g(r) = Gm(r)/r2).
Continuity

∆ρ

ρ
= −∇ · ξ

1

γ

δP

P
+

ξr
γ

d lnP

dr
= − 1

r2
d(r2ξr)

dr
− ξθ

r sin θPm
ℓ

∂

∂θ
(sin θ

∂Pm
ℓ

∂θ
) +

m2ξϕ
r sin2 θ

⇒ 1

γ

δP

P
+

ξr
γ

d lnP

dr
= − 1

r2
d(r2ξr)

dr
+ ℓ(ℓ+ 1)

ξθ
r

Momentum
−ρω2ξr = −dδP

dr
− gδρ

−ρω2ξ⊥ = −δP

r
ξϕ = ξθ = ξ⊥

We have made the approximation that the perturbations do not change the gravi-
tational potential, so δg = 0; this is known as the Cowling approximation.

These simplify to give two ODEs to integrate:

1

r2
d(r2ξr)

dr
=

g

c2s
ξr −

δP

ρ

[
1

c2s
− ℓ(ℓ+ 1)

ω2r2

]
(1.38)

dδP

dr
= − g

c2s
δP + ρ(ω2 −N2)ξr. (1.39)
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We have used the fact that γH = γP/ρg = c2s/g, where c2s is the adiabatic sound speed
and H = −dz/d lnP is the pressure scale height.

The boundary condition at the stellar surface is that the Lagrangian pressure per-
turbation should vanish there

∆P

P
= 0 ⇒ δP

P
=

ξr
H

at r = R. (1.40)

At the center r = 0, we see that there are terms that diverge, so we need to step away
from the origin and begin our integration at a small non-zero value of r. The boundary
conditions for ℓ > 0 (non-radial oscillations) are

dδP

dr
=

ℓ

r
δP

dξr
dr

=
ℓ− 1

r
ξr,

or for ℓ = 0 (radial oscillations)

dδP

dr
= 0

dξr
dr

=
ξr
r
.

An equivalent way to write the first ℓ > 0 boundary condition is

ξr = ℓξ⊥, (1.41)

where ξ⊥ can be expressed in terms of δP using the horizontal momentum equation.
Equations (1.38) and (1.39) and the boundary conditions of equations (1.40) and

(1.41) define an eigenvalue problem for the mode frequency ω.
There are three “quantum numbers” that label the modes: ℓ, m, and the number

of radial nodes n. However note that the azimuthal wavenumber m doesn’t enter into
the equations, so the frequency of the mode depends on the number of radial nodes n
and the angular quantum number ℓ, but not m. This changes if spherically symmetry
is broken, eg. a rotating or magnetized star.
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Computational Exercise 3: Oscillation modes of the Sun

Overview. The goal of this exercise is to compute the oscillation frequencies and eigen-
modes of the Sun. You will be able to identify the p-modes and g-modes and study
their frequencies, and their eigenfunctions and how they relate to the internal struc-
ture.

Perturbation equations. The equations describing adiabatic perturbations of a spherically-
symmetric star are derived in the Appendix of the notes for Week 7 — see equations
(10) and (11) of those notes, as well as equations (12) and (13) which give the bound-
ary conditions at the centre and surface of the star.

The perturbation equations consist of two ODEs for the radial displacement ξr and
the pressure perturbation δP in the mode. They form an eigenvalue problem in that
the boundary conditions at the centre and surface of the star can only be satisfied for a
discrete set of mode frequencies (the eigenvalues). The idea here is to integrate these
equations using background quantities (N2, g, cs, ρ) from a model of the Sun, and to
find the eigenvalues and corresponding eigenfunctions.

Solar model. You can find a model of a 1 solar mass star here:
http://www.physics.mcgill.ca/~cumming/teaching/643/code/solar_model.dat
This file is a profile file from the 1M_pre_ms_to_wd test suite in the MESA stellar
evolution code. I ran this with the max_age parameter set to 5 Gyr to make this model,
so it should be a reasonable approximation to the Sun.

The first few lines of the file give some parameters of the model, and then you
will see the radial profile of various quantities in the star. Here are descriptions of the
different columns taken from MESA (the profile_columns.list file in MESA):

zone ! numbers start with 1 at the surface
mass ! m/Msun. mass coordinate of outer boundary of cell.
logR ! log10(radius/Rsun) at outer boundary of zone
logT ! log10(temperature) at center of zone
logRho ! log10(density) at center of zone
logP ! log10(pressure) at center of zone
x_mass_fraction_H
y_mass_fraction_He
z_mass_fraction_metals
log_g ! log10 gravitational acceleration (cm sec^2)
pressure_scale_height ! in Rsun units
gamma1 ! dlnP_dlnRho at constant S
csound ! sound speed
brunt_N2 ! brunt-vaisala frequency squared

It is a good idea to make some plots of these different quantities (for example against
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r). Do they match what you would expect for the Sun?

Shooting method. One way to solve the equations for the eigenvalues and eigenmodes is
to start at the centre of the star, make a guess for the frequency ω, integrate out to the
surface and checkwhether the boundary condition is satisfied there. If not, modify the
guess for ω and integrate again, repeating until the outer boundary is satisfied. This
method is known as a shooting method.

When integrating the ODEs, you will need to evaluate the background quantities
such as N2 at different locations r. To do this, you can interpolate between the values
of r given in the model file. A useful routine for this is scipy.interpolate.interp1d.

By writing a function that calculates how well the outer boundary condition is sat-
isfied as a function of ω, ie. it calculates δP/P − ξr/H at r = R for any given value of
ω, you can find the modes using a root finder such as scipy.optimize.brentq.

Exploring the mode spectrum. Once you have your code working, explore the spectrum
of modes. One way to begin is to first fix ℓ = 1 and try to find the modes with a small
number of radial nodes n (places where ξr crosses zero — you will see this if you plot
the eigenfunction, but you can also get your code to calculate that for you). Typical
frequencies for these should be of order ∼ 100 µHz. Then work your way up and
down in frequency from there.

Questions:
1. What do the eigenfunctions look like for the different modes? Can you separate

the g and p modes?
2. How do the frequencies of the g and p modes scale with the number of radial

nodes? Does this scaling match what you would expect from the dispersion relation?
3. Do you see trapping of the modes in particular regions of the star? To help with

this, you can plotN2 and ℓ(ℓ+1)c2s/r
2 on the same plot as your eigenfunction. A guide

towhere themodes should propagate is where k2 from the analytic dispersion relation
is positive.

4. We mentioned that g modes are incompressible modes. Check this using your
solutions.

There is a nice set of lecture notes on stellar oscillations by JørgenChristensen-Dalsgaard,
which you can find here: http://astro.phys.au.dk/~jcd/oscilnotes/. Chapter 5
shows some results for the Sun that you can compare against (in particular Figs. 5.2,
5.6, 5.8, and 5.10).
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