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Monte Carlo simulations of the randomly frustrated three-dimensional Heisenberg model 
with a moderate fraction (620%) of antiferromagnetic bonds show evidence of two distinct 
ordering events. Below T, the spins align collinearly and exhibit ferromagnetic order, 
while below TX,, the transverse components of the spins freeze leading to a noncollinear spin 
structure dominated by ferromagnetic correlations. The phase diagram and behavior of 
the calculated parameters agree qualitatively with those of experimental systems. 

INTRODUCTION 

Experimental studies of frustrated magnetic systems 
show that the presence of competing ferromagnetic (FM) 
and antiferromagnetic (AEM) interactions leads to a loss 
of collinearity in the ordered state and the formation of a 
spin glass. However, if the concentration of AFM bonds is 
small enough, it is possible to form a mixed exchange sys- 
tem with properties intermediate between the randomly 
frozen spin glass and the collinear ferromagnet.’ Such ma- 
terials exhibit’ two magnetic transitions. The upper one (at 
T,) is a continuation of the ferromagnetic transition and 
appears to mark the onset of long-range collinear magnetic 
order; however, there is a substantial transverse spin com- 
ponent present which precesses rapidly and time averages 
to zero. Below the second transition (at TX.), the system 
ceases to be collinear as the transverse degrees of freedom 
order.’ 

Theoretical support for a transverse spin freezing tran- 
sition is unclear. The mean-field solution to the mixed ex- 
change, three-dimensional (3D) Heisenberg model3 gives 
two magnetic transitions, first from the paramagnetic state 
to a collinear ferromagnet, then, at a lower temperature, to 
a mixed state where the spins acquire a significant trans- 
verse component. Recent simulation work on the 2D XY 
model aimed at obtaining a physical picture of reentrant 
magnetic transitions was interpreted in terms of a spin 
canting transition at a temperature T, which was mediated 
by the “melting” of frustrated spins.4 They also report a 
transition at a higher temperature TK: As one decreases the 
temperature below TK, the frustrated bonds make them- 
selves felt, and the system begins to order in the transverse 
direction. 

Spin canting is different from transverse spin freezing. 
On cooling through a spin canting transition, the magne- 
tization M decreases with respect to the total moment 
S,,, (since the spins tilt away from their initially collinear 
alignment), while S,, itself only exhibits the normal in- 
crease due to the reduction in thermal fluctuations. Even at 
finite temperatures, where decreasing fluctuations may al- 
low M to increase through the spin canting transition, its 
temperature dependence exhibits a marked change in 
slope. The opposite occurs during transverse spin freezing: 
Here extra components order in the plane perpendicular to 
the z axis, thus having no influence on M, but causing 

S,, to increase. Experimentally, there is a marked change 
in the behavior of S,,, at TxY, often even a break in slope, 
but no such changes are seen in M.‘*’ 

THE MODEL 

We studied the simplest system which may be expected 
to exhibit transverse spin freezing: classical Heisenberg 
spins interacting on a simple cubic lattice according to the 
nearest-neighbor Hamiltonian 

ST’= - (qj Jzjsi*Sj - He ( C Sj) 3 4 i 
with exchange strength Jij and spin lengths ISi\ = 1. The 
second term allows for an external magnetic field. For the 
ferromagnetic form of this model ( Jij = + J) the ordering 
temperature T, is TH = 1.44J.6 Exchange frustration was 
introduced by randomly replacing a fraction f of the bonds 
by -J antiferromagnetic bonds. In order to investigate 
the behavior of the transverse spin components, the z axis 
has to be specified. We have used two methods. One 
method is to define the z axis externally by applying a small 
magnetic field ( IHI = 0.03J). This I also leads to shorter 
equilibration times by reducing the system’s tendency to 
exploit global rotational degeneracy. Furthermore, most 
experimental observations of transverse spin freezing are 
made in this way. Alternatively, the z axis may be identi- 
fied with the direction of maximum spontaneous magneti- 
zation. The data presented below were obtained using the 
former method, but identical behavior is obtained in zero 
field for all values off studied here. 

The results presented here are averages over at least 20 
distinct bond configurations for each ‘value off on 83 lat- 
tices. Essentially, identical results have been obtained on 
123 and 83 lattices. For each bond configuration the system 
was prepared well above~ T,, then cooled to T = 0 in 50 
temperature steps using a Monte Carlo algorithm with 
Glauber dynamics.7 At each temperature, the system was 
allowed to equilibrate for 2000 Monte Carlo steps before 
local time averages were taken over 4000 Monte Carlo 
steps. The results were checked using 8000 Monte Carlo 
steps for time averaging with no appreciable difference. 

We monitored two local time-averaged quantities, the 
first, a time average of the spin components at each site: 
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where t = 4000 Monte Carlo steps and i is the site index. 
The second was the average of the inner product of the 
transverse spin components at each site: 

m:,=; j. [S,- (S( 2) 212. (3) 

These were then used to obtain the following global aver-. 
ages: the root-mean-square spin length, 

. 
GA) = & F (mi*mi), 

the bulk magnetization, 

M=-$ j 7 mi/ , , 

(4) 

is> 

the root-mean-square transverse spin, which is a measure 
of the average component of the spins which lie perpendic- 
ular to the z axis independent of direction or precession, 

QL==$ 2 &9 
i 

(6) 

and finally, the mean transverse spin length, which in- 
cludes rotational averaging and measures the frozen trans- 
verse spin components, 

Qxyz$ C [mi- (mf 2) P J2. 
r 

RESULTS,AND DISCUSSION 

Figure 1 shows the temperature evolution of the vari- 
ous quantities defined above for a number of frustration 
levels. For f =,O all bonds are positive and the system is a 
Heisenberg ferromagnet below T, = TM Since S,, is essen- 
tially equal to M at all T < Tc, the system is ordered 
collinearly. Q, decreases smoothly from $ above T,, corre- 
sponding to an isotropic spin distribution, to zero at T = 0, 
as expected for collinear order. QX,, - 0 at all temperatures, 
indicating that there are no ordered transverse compo- 
nents. 

New features appear for f> 0. First, QL (which mea- 
sures the length of the transverse spins regardless of their 
direction in the x-y plane) does not reach zero for any 
f > 0, indicating that some degree of noncollinearity re- 
mains in the spin system even at T = 0. More significantly, 
while the ordered transverse component monitored by 
QXY is initially zero below T, as in the ferromagnetic case, 
it starts to grow at a well defined temperature rXj, below 
and separate from T, marking the onset of transverse spin 
freezing. 

Second, the root-mean-square spin length S,,,, which 
followed the bulk magnetization M on cooling from T, to 
TV, increases above M and remains larger than it from 
Txy down to T = 0. The increase of S,, is a consequence 
of the transverse spin freezing. Above T,,, when we exam- 
ine a spin at a particular instant, it clearly possesses a 
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FIG. 1. Temperature dependence of longitudinal and transverse spin 
lengths for different levels of exchange frustration. The temperature scale 
is normalized to r,. See text for definitions. 

transverse component; however, the time average of that 
component vanishes. Thus, mi computed from (2) has only 
a z component above TX,,, making S,, and M essentially 
equal and Q,, = 0. Below T,, the transverse spin compo- 
nents freeze at random, and so their site average cancels, 
leaving LV unaffected, but they do contribute to the sum 
given in (4) and increase S,,, 

The observation that QI is large even above T,.. but 
QXY > 0 only occurs below T,, coupled with the increase of 
S,, over M at the same temperature, is direct evidence.of 
transverse spin freezing and is clearly incompatible with a 
spin canting model of this transition. 

As f is increased further, T, and Txy converge: T, falls 
as the average exchange strength declines, and Txy rises 
reflecting an increase in the exchange frustration. Finally, 
at f -0.25, T, and Txy merge, and QXY remains f for all 
temperatures. This indicates that the spins are isotropically 
frozen in a spin-glass-like configuration. The calculated or- 
dering behavior is very similar to that deduced from ex- 
periments; 1,2P8 however, we caution that the low- 
temperature behavior of a frustrated three-dimensional 
Heisenberg model is still an unresolved issue.‘-” If the 
lower critical dimension of this model is three or greater, 
there can be no spin-glass transition for T > 0. In that case, 
both our results and the experiments mentioned above de- 
scribe ordering on finite length scales within a presumably 
large correlation length. 

The phase diagram given in Fig. 2 summarizes the 
frustration dependence of the various ordering events. The 
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FIG. 2. Phase diagram for our model showing two magnetic transitions in 
the concentration region between f = 0 and the spin glass at f > 0.25. At 
I”, collinear order sets in followed by the freezing of transverse spin 
components below TXr f, marks the boundary between the ferromagnetic 
phase and spin glass. The temperature scale is normalized to Tn. 

system is paramagnetic at high temperatures. -Notwith- 
standing the reservations noted above, for f > 0.25 the sys- 
tem enters a spin-glass phase on cooling through TsG. The 
vertical line at fc = 0.25 separates the spin-glass phase from 
the ferromagnetic phase and was determined from the frus- 
tration dependence of the tluctuations in M, which corre- 
sponds to the static susceptibility. For 0 <f < 0.25; the sys- 
tem goes through a transition at T, to a ferromagnetic 
phase. For a given f, this line marks the temperature where 
S,, and M  deviate from zero. Below TO the order is dom- 
mated by strong ferromagnetic correlations, but there is a 
significant transverse spin component which time averages 
to zero. The dotted line T,.. ,marks the temperature at 
which Q,, ceases to be zero and also corresponds to the 
separation point of S,, and M. The system exhibits ferro- 
magnetic order on both sides of the line, but below TV the 
transverse spin components are frozen, whereas above it 

they are free and time average to zero. While we expect 
Txy to be a disorder line rather than a phase transition, 
further work is needed to fully determine the nature of the 
possible changes across this line. 

CONCLUSlONS 

-Our Monte Carlo simulations are in good qualitative 
agreement with experimental observations. In particular, 

“we found two magnetic transitions for moderate levels of 
frustration: collinear ordering at T, followed by transverse 
spin freezing at T+,. We interpret the behavior at Txy in 
terms of a change in short-range order rather than a phase 
transition. Further work will examine the details of the 
low-temperature phase diagram more quantitatively. 

ACKNOWLEDGMENTS :. r 
This work was supported by grants from the Natural 

Sciences and Engineering Research Council of Canada, 
and les Fonds pour la Formation de Chercheurs et l’Aide 
a’ la Recherche de la Province du Quebec. 

‘R. A. Brand, V. Manns, and W. Keune, in Heidelberg Colloquium on 
Spin Glasses, Vol. 192 of Lecture Notes in Physics (Springer, Berlin, 
1983), p. 79. 

2D. H. Ryan, J. 0. Strom-Olsen, R. Provencher, and M. Townsend, J. 
Appl. Phys. 64, 5787 (1988). 

‘M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201 ( 1981). 
4 W. M. Saslow and G. Parker, Phys. Rev. Lett. 56, 1074 (1986). 
‘B. Huck and J. Hesse, J. Magn. Magn. Mater. 78, 247 (1989). 
bC. Domb and M. S. Green, Phase Transitions and Critical Phenomena 

(Academic, London, 1974), Vol. 3. 
‘0. G. Mouritsen, Computer Studies of Phase Transitions and Critical 

Phenomena (Springer, Heidelberg, 1984) 
8 J. Souletie, Ann. Phys. Fr. 10, 69 (1985). 
9K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1086). 

“A Mauger, J. Villain, Y. Zhou, C. Rigaux, N. Bontemps, and J. F&e, 
Phys. Rev. B 41, 4587 (1990). 

5233 J. Appl. Phys., Vol. 69, No. 8,15 April 1991 Thomson eta/. 5233 


