Neutron diffraction study of the magnetic structure of ErFe_{11.5}Ta_{0.5}

J M Cadogan[†]¶, D H Ryan[‡], I P Swainson[§] and R Gagnon[‡]

† School of Physics, The University of New South Wales, Sydney NSW 2052, Australia
‡ Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
§ Neutron Programme for Materials Research, Steacie Institute for Molecular Sciences, National Research Council, Chalk River Laboratories, Ontario, Canada K0J 1J0

E-mail: j.cadogan@unsw.edu.au

Received 4 August 1999

Abstract. We have used high-resolution neutron powder diffraction over the temperature range 9–65 K to determine the magnetic structure of $\text{ErFe}_{11.5}\text{Ta}_{0.5}$. Above 49 K the magnetic structure is a collinear ferrimagnet with an easy *c*-axis. Below 49 K, the magnetization cants away from the *c*-axis and eventually reaches a canting angle of $9.0(1.3)^\circ$ from the *c*-axis, as $T \rightarrow 0$ K. This behaviour may be understood in terms of the competition between different order terms in the Er^{3+} crystal-field Hamiltonian: the spin-reorientation away from the *c*-axis is driven by the 6th-order crystal-field term.

1. Introduction

The ThMn₁₂ structure is tetragonal with the space group *I4/mmm* (#139). There are two formula units (*f.u.*) per unit cell and the site occupancies are 2*a* for Th and 8*f*, 8*i* and 8*j* for Mn. This structure forms the basis for many series of iron-rich, rare-earth-iron intermetallic phases, some of which become potential permanent magnet materials after interstitial modification with nitrogen or carbon [1]. The R atom takes the place of Th and the Fe takes the place of Mn. Unfortunately, binary RFe₁₂ compounds do not form and a third element is required to stabilize this structure. To date, RFe_{12-x}M_x compounds have been formed with M = Ti, V, Cr, Mn, Nb, Mo, W, Re, Al and Si. Minimizing the M content while retaining the ThMn₁₂ structure is important as it maximizes the Fe content and thus the net magnetization of the phase. The minimum M content is around 0.5–0.7 for M = Mo and Nb [2].

Recently, Piquer *et al* [3] reported on the preparation of $\text{RFe}_{12-x}\text{Ta}_x$ compounds with $x \sim 0.5$. They found that this Ta-stabilized phase only forms with the heavier rare-earth elements Tb, Dy, Ho, Er and Lu. Single-phase samples could not be produced and all samples contained impurities, the most common being α -Fe and Fe₂Ta. The Curie temperatures of the RFe_{11.5}Ta_{0.5} compounds range from 499 K (R = Lu) to 576 K (R = Tb) and the easy direction of magnetization at room temperature is the tetragonal *c*-axis for all R except Tb, which is planar at room temperature. Magnetometry and ac-susceptometry work showed that both $\text{ErFe}_{11.5}\text{Ta}_{0.5}$ and $\text{DyFe}_{11.5}\text{Ta}_{0.5}$ undergo spin-reorientations at 40 K for R = Er, and at 185 K and 265 K for R = Dy. This group also used x-ray diffraction to show that Ta occupies the 8i site [4].

0953-8984/99/468975+06\$30.00 © 1999 IOP Publishing Ltd

[¶] Author to whom any correspondence should be addressed.

8976 J M Cadogan et al

The RFe_{12-x}Ta_x compounds can accommodate interstitial elements as shown by Vert *et al* [5], who studied HoFe_{11.4}Ta_{0.6}X_{0.6} with X = H and C. Both interstitials lead to a volume expansion (1.0% with H and 2.9% with C), resulting in an increase in Curie temperature from 526 K to 716 K and an increase in magnetization (at 4 K) from 11.4 $\mu_B/f.u.$ to 13.0 $\mu_B/f.u.$ for HoFe_{11.4}Ta_{0.6}C_{0.6}. Interestingly, a spin-reorientation at 118 K was observed for HoFe_{11.4}Ta_{0.6}H_{0.6}, although the parent HoFe_{11.4}Ta_{0.6} shows no such behaviour.

Vert *et al* [6] also studied the phase compositions of samples as a function of Ta starting content. They confirmed that single-phase samples do not form, with the usual impurities being α -Fe and Fe₂Ta, as mentioned earlier. Furthermore, significant amounts (>15 at.%) of hexagonal R₂Fe₁₇ can also form and a rather narrow Ta content range of $0.5 \le x \le 0.7$ is required to maximize the R(Fe, Ta)₁₂ content.

From a fundamental point of view, the tetragonal $R(Fe, M)_{12}$ compounds have provided much useful information on (i) the crystal-field interactions at the R^{3+} ion, (ii) the R–Fe and Fe–Fe exchange interactions and (iii) the complex interplay between the crystal-field and the exchange. Much of this information has been deduced from the numerous spin-reorientations which occur in the $R(Fe, M)_{12}$ compounds at low temperatures. Such changes in the magnetic structure of a compound are generally due to either (i) competition between the R and Fe anisotropies and/or (ii) competition between the 2nd-, 4th- and 6th-order terms in the crystalfield acting on the R^{3+} ion, with the higher-order terms playing a more significant role as the temperature is reduced. Thus, the determination of both spin-reorientation temperatures and canting angles of the magnetic structure has provided valuable data for the characterization of both crystal-field and exchange interactions.

In this paper we present the results of our study of the spin-reorientation in $\text{ErFe}_{11.5}\text{Ta}_{0.5}$ using high-resolution neutron powder diffraction. Our results confirm the existence of a spinreorientation below 49 K, during which the magnetization gradually tips away from the *c*-axis, reaching an angle of $\theta = 9.0(1.3)^\circ$ from the *c*-axis as $T \to 0$ K.

2. Experimental methods

The ErFe_{11.5}Ta_{0.5} sample was prepared by arc-melting stoichiometric amounts of the pure elements under Ti-gettered argon. The sample was subsequently annealed at 900 °C for 2 weeks, sealed under vacuum in a quartz tube. Powder x-ray diffraction patterns were obtained using Cu-K_{α} radiation on an automated Nicolet–Stoe diffractometer. Thermogravimetric analysis (TGA) was carried out on a Perkin-Elmer TGA-7 in a small magnetic field gradient to determine the magnetic ordering temperature. ac-susceptibility was measured on a Quantum Design PPMS system at a frequency of 377 Hz with an ac magnetic field amplitude of 398 A m⁻¹.

Neutron powder diffraction experiments were carried out on ~ 4 g samples on the DUALSPEC C2 high-resolution powder diffractometer located at the NRU reactor, Chalk River Laboratories, Ontario, operated by Atomic Energy Canada Ltd. The neutron wavelength was 2.3688(1) Å. A detailed review of the neutron scattering facilities at Chalk River, including a description of C2, can be found in [7]. A total of 15 diffraction patterns were obtained over the temperature range 9–65 K and all diffraction patterns were analysed using the Rietveld method with the FULLPROF program [8].

3. Results and discussion

It proved impossible to prepare single-phase $\text{ErFe}_{11.5}\text{Ta}_{0.5}$ in agreement with the findings of Vert *et al* [5, 6]. Our sample contained α -Fe and Fe₂Ta in the amounts 3 wt.% and 4wt.%,

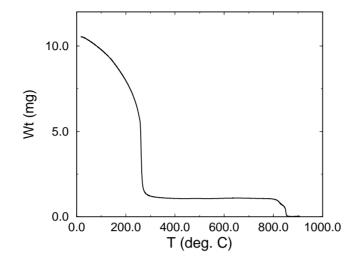


Figure 1. TGA trace of ErFe_{11.5}Ta_{0.5}.

respectively, as determined from the fits to the neutron diffraction patterns.

In figure 1 we show the TGA trace of $\text{ErFe}_{11.5}\text{Ta}_{0.5}$, from which we derive a magnetic ordering temperature of 541(5) K for $\text{ErFe}_{11.5}\text{Ta}_{0.5}$. The residual magnetic order of the impurity α -Fe is clear. Fe₂Ta is a Pauli paramagnet [9] and does not contribute to the TGA data.

In figure 2 we show the ac-susceptibility trace of $ErFe_{11.5}Ta_{0.5}$. The spin-reorientation is clear with an onset temperature of 49(2) K and a peak temperature of 41(2) K.

In figure 3 we show neutron diffraction patterns of $\text{ErFe}_{11.5}\text{Ta}_{0.5}$ obtained at 65 K and 9 K, i.e., above and below the spin-reorientation temperature, respectively. Most of the 1:12-stabilizing elements studied to date show preferential occupation of the *8i* site and our neutron work confirms this for Ta. The refined Ta content in the 1:12 phase is slightly larger than the nominal starting composition of Ta_{0.5}, corresponding to $\text{ErFe}_{11.38}$ Ta_{0.62}. The refined atomic

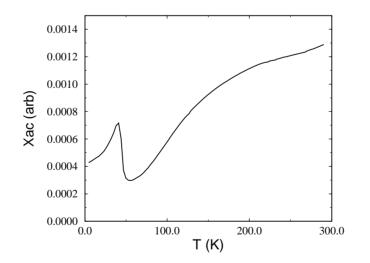


Figure 2. ac-susceptibility of ErFe_{11.5}Ta_{0.5}.

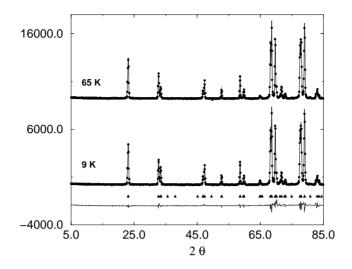


Figure 3. Neutron powder diffraction patterns of nominal ErFe_{11.5}Ta_{0.5} at 9 K and 65 K.

and magnetic parameters are given in table 1. The refinement 'R-factors (%)' for all 15 patterns obtained during this study lie within the following ranges: R(Bragg) = 2.9-4.5, R(F-structure) = 1.9-3.0, R(wp) = 9.4-12.1, R(exp) = 4.4-4.7 and R(mag) = 3.3-5.1.

Table 1. Lattice parameters, atomic positions, magnetic moments (in μ_B), magnetization and canting angle (degrees) of ErFe_{11.5}Ta_{0.5} deduced from the neutron diffraction pattern obtained at 9 K.

c(Å) 4.7747(3)	<i>x</i> (8 <i>j</i>) 0.276(1)	<i>x</i> (8 <i>i</i>) 0.359(1)
$\mu(Fe - 8f)$ 1.67(8)	$\mu(Fe - 8j)$ 1.89(9)	$\mu(Fe - 8i)$ 2.21(13)
θ 8.9(11)	B _{iso} (Å ²) 0.08(6)	
	4.7747(3) $\mu(Fe - 8f)$ 1.67(8) θ	$\begin{array}{ccc} 4.7747(3) & 0.276(1) \\ \mu(Fe-8f) & \mu(Fe-8j) \\ 1.67(8) & 1.89(9) \\ \theta & \mathbf{B}_{iso}(\mathring{\mathbf{A}}^2) \end{array}$

In figure 4 we show the canting angle of the net magnetization of $ErFe_{11.5}Ta_{0.5}$ relative to the crystal *c*-axis, derived from our neutron diffraction data.

The magnetocrystalline anisotropy of the R^{3+} sublattice in the R(Fe, M)₁₂ compounds is determined by the crystal-field Hamiltonian appropriate to the 4/mmm point symmetry of the R^{3+} site

$$\mathcal{H}_{cf} = B_{20}O_{20} + B_{40}O_{40} + B_{44}O_{44} + B_{60}O_{60} + B_{64}O_{64} \tag{1}$$

where the B_{nm} are the crystal-field parameters and the O_{nm} are the standard Stevens spinoperators [10].

From experiments on numerous $R(Fe, M)_{12}$ systems it is well established that the Fe sublattice has easy *c*-axis anisotropy over the entire magnetically-ordered temperature range. Hu *et al* [11] have determined a set of crystal-field energy terms from a study of the

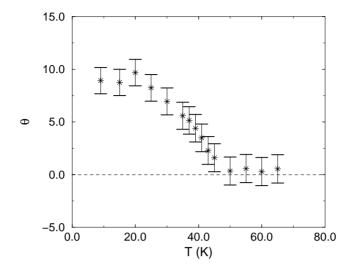


Figure 4. Canting angle (in degrees) of the net magnetization of ErFe_{11.5}Ta_{0.5} relative to the *c*-axis.

RFe_{11.35}Nb_{0.65} series, and for ErFe_{11.35}Nb_{0.65} in the limit T = 0 K they find: $B_{20}\langle O_{20} \rangle = -6.12$ K, $B_{40}\langle O_{40} \rangle = -11.4$ K, $B_{44}\langle O_{40} \rangle = 109$ K, $B_{60}\langle O_{60} \rangle = 23.0$ K and $B_{64}\langle O_{60} \rangle = 5.7$ K. The axial or planar anisotropy is determined principally by the diagonal terms such as $B_{20}\langle O_{20} \rangle$, while the anisotropy within the *a*-*b*-plane is determined by the off-diagonal terms $B_{44}\langle O_{40} \rangle$ and $B_{64}\langle O_{60} \rangle$. The 2nd- and 4th-order diagonal crystal-field energy terms for Er³⁺ are negative and thus favour easy *c*-axis anisotropy. Hence, it is clear that the observed spin-reorientation away from the *c*-axis observed in ErFe_{11.5}Ta_{0.5} is driven by the 6th-order crystal-field term acting on the Er³⁺ ion.

Finally, the rotational transformation properties of the spin-operators O_{nm} in the above crystal-field Hamiltonian (tabulated by Rudowicz [12]) may be used to show that the anisotropy of the R³⁺ sublattice can be written in the phenomenological form [13]:

$$E_a = K_1 \sin^2 \theta + (K_2 + K_2' \cos 4\phi) \sin^4 \theta + (K_3 + K_3' \cos 4\phi) \sin^6 \theta$$
(2)

where θ and ϕ are the polar angles of the R³⁺ magnetization relative to the crystal axes. The *in-plane* terms K'_2 and K'_3 are related to the crystal-field energy terms by

$$K_2' = \frac{1}{8} [B_{44} \langle O_{40} \rangle + 5B_{64} \langle O_{60} \rangle] \tag{3}$$

$$K'_{3} = -\frac{11}{16} [B_{64} \langle O_{60} \rangle] \tag{4}$$

and, if the relative magnitudes and signs of the crystal-field parameters deduced for the $Er(Fe, Nb)_{12}$ compound are applicable to $Er(Fe, Ta)_{12}$, then the fact that both off-diagonal terms in (1) are positive indicates that in the canted or tipped magnetic state the planar projection of the net magnetization is along the [110] direction, a fact inaccessible to neutron diffraction due to the tetragonal symmetry [14].

8980 J M Cadogan et al

4. Conclusion

ErFe_{11.5}Ta_{0.5} is a collinear ferrimagnet with an ordering temperature of 541(5) K. The easy direction of magnetic order is the *c*-axis in the temperature range $\sim 50 \leq T(K) \leq 541$. A spin-reorientation commences at 49(2) K below which temperature the net magnetization is canted away from the *c*-axis. Using high-resolution neutron powder diffraction we have determined the temperature dependence of the canting angle and find a maximum canting of 9.0(1.3)° as $T \rightarrow 0$ K. The neutron diffraction results also confirm that the Ta occupies the 8*i* crystallographic site.

Acknowledgments

This work was supported by grants from the Australian Research Council, the Natural Sciences and Engineering Research Council of Canada and Fonds pour la formation de chercheurs et l'aide à la recherche, Québec.

References

- [1] Coey J M D, Sun H and Hurley D P F 1991 J. Magn. Magn. Mater. 101 310-6
- [2] See, for example, Szytula A and Leciejewicz J 1994 Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics (Boca Raton: CRC) pp 193–202
- [3] Piquer C, Artigas M, Rubin J and Bartolomé J 1998 J. Phys.: Condens. Matter 10 11055-65
- [4] Artigas M, Piquer C, Rubin J and Bartolomé J 1999 J. Magn. Magn. Mater. 196–197 653–4
- [5] Vert R, Bououdina M, Fruchart D, Gignoux D, Kalychak Y, Ouladdiaf B and Skolozdra R V 1999 J. Alloys and Compounds 285 56–63
- [6] Vert R, Bououdina M, Fruchart D, Gignoux D, Kalychak Y and Skolozdra R V 1999 J. Alloys and Compounds 287 38–44
- [7] Powell B M 1990 Neutron News 1 16–20
- [8] Rodríguez-Carvajal J 1993 Physica B 192 55-69
- [9] Wijn H P J (ed) 1991 Magnetic Properties of Metals—d-elements, Alloys and Compounds (Berlin: Springer) p 72
- [10] Hutchings M T 1964 Solid State Physics 16 227-73
- [11] Hu B P, Wang K Y, Wang Y Z, Wang Z X, Yan Q W, Zhang P L and Sun X D 1995 Phys. Rev. B 51 2905–19
- [12] Rudowicz C 1985 J. Phys. C: Solid State Phys. 18 1415-30
- [13] Hu B P, Li H S, Gavigan J P and Coey J M D 1989 J. Phys.: Condens. Matter 1 755-70
- [14] Shirane G 1959 Acta Crystallogr. 12 282-3