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We have determined the phase diagrams of the site-frustrated Heisenberg model in three dimensions over the
entire concentration regime of competing ferromagnetic �F� and antiferromagnetic �A� sites for the three basic
lattice types: simple cubic �sc�, body-centered cubic �bcc� and face-centered cubic �fcc� using Monte Carlo
methods. Long-range ferromagnetic �FM� or antiferromagnetic �AF� order is established at a finite temperature,
second-order phase transition whenever F or A sites percolate. Since site percolation thresholds in three
dimensions are less than 1

2 , FM and AF order coexist over a wide composition regime. The only apparent effect
of frustration is to cause the AF and FM order to occur perpendicular to one another. Strong evidence is found
to suggest that all of the transitions remain in the Heisenberg universality class and that there exists a tetrac-
ritical point at x= 1

2 where TC=TN.
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I. INTRODUCTION

Some of the most studied spin-glass materials are made
by mixing ferromagnetic �F� and antiferromagnetic �A� sites
together in an amorphous solid, a typical example being1–3

amorphous a-�Fe1−xMnx�G, where G is a glass former, such
as Si. The concentration-temperature �x-T� phase diagram of
this material is shown in Fig. 1. The main features are �i� on
increasing x from zero, the Curie temperature TC steadily
decreases; �ii� above a critical concentration xc1

�0.17, a sec-
ond transition develops at Txy below TC where spin-glass
order coexists transverse to the established FM order; �iii�
above xc2

�0.32 FM order disappears and the material exists
as a spin glass. A minimal model, which is thought to capture
the essential physics of these types of materials, is the site-
frustrated Heisenberg model, where F and A sites are distrib-
uted at random on a lattice.

The first to study this model, to the best of our knowl-
edge, was Aharony4 who used renormalization group tech-
niques. His phase diagram, for bipartite lattices, is similar to
ours �see Figs. 2�a� and 2�b��, in that a tetracritical point
bounds a mixed phase consisting of coexisting FM and AF
order. Further work,5 however, cast doubt on his original
result, although it is important to note that a true site-
frustrated model was not being considered in this later work.
Instead, a site-frustrated model was considered to be equiva-
lent to a bond-frustrated model6 where, rather than a random
distribution of F and A sites, one considers a random mixture
of F and A bonds; the well-known Edwards-Anderson spin-
glass model.7 Within mean field theory, the phase diagram of
the bond-frustrated model is well understood8 and is thought
to capture the physics of a different class of materials, such
as Refs. 1 and 9 a-Fe1−xZrx. However, as we shall prove, the
site-frustrated model is not equivalent to a bond-frustrated
model and the phase diagrams are fundamentally different.

The best results for the site-frustrated Heisenberg model
have been obtained from Monte Carlo simulations,10–13 yet
the authors disagree in their interpretations of the phase dia-
gram. Two studies10,12 claim that a mixed noncollinear phase,
similar to spin-glass order, exists in the vicinity of x= 1

2 . On

the other hand, we13 and others11 have claimed that the
mixed phase consists of coexisting FM and AF order, and
that the AF- and FM-ordering vectors are mutually perpen-
dicular. In addition, it has been reported11,12 that the ferro-
magnetic transition belongs to the Heisenberg universality
class for small x, and that with increasing x the universality
class of the transition changes, in contradiction to the Harris
criterion.14 Bekhechi and Southern12 have also claimed that
the tetracritical point, where TC�x�=TN�x�, does not exist and
instead there exists a regime 0.52�x�0.48 where TC�x�
=TN�x�. Resolving the different interpretations is important
since one would like to identify the minimal physics neces-
sary to understand the phase diagrams of real materials.

Here we present the results of extensive Monte Carlo
simulations on three different lattice types: sc, bcc, and fcc.

FIG. 1. Phase diagram for a-�Fe1−xMnx�78Si8B14 obtained from
�SR, Mössbauer spectroscopy, and magnetometry. TC marks the
line separating paramagnetic and ferromagnetic phases. TXY marks
the onset of transverse spin freezing, occurring for 0.17�x�0.32.
TSG marks the onset of spin-glass order, occurring for x�0.32. For
details see Ref. 2.
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Our phase diagrams, shown in Fig. 2 for simple-cubic �sc�,
body-centered-cubic �bcc� and face-centered-cubic �fcc� lat-
tices, are somewhat different from the phase diagrams given
in all previous Monte Carlo studies.10–12 If F and A sites do
not interact, the model can be readily understood from the
theory of dilute magnetism:15 When a percolating cluster of
F�A� sites forms, a finite temperature transition is found at
TC�TN� and the transitions remain in the Heisenberg univer-
sality class. For bipartite lattices with symmetric interactions,
a decoupled tetracritical point is found at x=0.5, since by
symmetry TC�x�=TN�x�. The tetracritical point is referred to
as “decoupled” since the simultaneous FM- and AF-ordering
events have no impact on each other if the exchange inter-
action between F and A sites is zero. The phase diagrams for
this model, with no interaction between F and A sites, is
shown in Fig. 3 for sc, bcc, and fcc lattices. Introducing an
interaction between F and A sites yields the site-frustrated
Heisenberg model. We find that the ordering is essentially as

one would expect if F and A sites did not interact, and as
such there exists a tetracritical point at x=0.5, and the tran-
sitions remain in the Heisenberg universality class. The only
notable effects introduced by coupling the AF and FM order
together are a rescaling of the transition temperatures and
perpendicular FM- and AF-ordering vectors.

As the loss of order in the nonfrustrated model is associ-
ated with site percolation, and percolation thresholds are de-
termined by the lattice coordination, we have extended our
study of the site-frustrated model to include bcc and fcc lat-
tices. Here we show that the same site percolation mecha-
nism likely controls the loss of order in site-frustrated mod-
els as well.

Within our picture, the site-frustrated Heisenberg model
on bipartite lattices cannot account for the phase diagrams of
materials like a-�Fe1−xMnx�G since a spin-glass phase is not
realized at any composition. The lack of a spin-glass phase is
due to insufficient frustration in the bipartite lattices. Increas-
ing the concentration of frustration can be accomplished by
considering a nonbipartite lattice, such as fcc. The site-

FIG. 2. Phase diagrams of the site-frustrated Heisenberg model
for �a� simple cubic �b� bond-centered-cubic and �c� face-centered-
cubic lattices. Transitions marked by solid symbols in �a� are ob-
tained with 200+ configurations of disorder, and system sizes L
=4,6 ,8 ,10,12,16,20, and 24. Transition temperatures and errors
are given in Table II. Transitions marked by open symbols are ob-
tained from 16+ configurations only, and smaller system sizes.
Lines marking phase boundaries are guides to the eye.

FIG. 3. Phase diagrams of the nonfrustrated model with JFA

=0 for �a� simple cubic, �b� bond-centered-cubic, and �c� face-
centered-cubic lattices. The phase diagrams are, aside from a res-
caling of the transition temperatures, identical to those of the site-
frustrated Heisenberg model shown in Fig. 2. Lines marking phase
boundaries are guides to the eye.
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frustrated Heisenberg model on an fcc lattice, which is geo-
metrically frustrated with respect to AF order �as are amor-
phous solids�, is therefore more likely to capture the ordering
of glassy materials.

II. MODELS, SYMMETRIES, AND METHODS

A. Site-frustrated Heisenberg model

The site-frustrated model we consider here is a classical
Heisenberg model with the Hamiltonian

H = − �
�ij�

JijS� i · S� j , �1�

where the sum runs over all nearest-neighbor bonds Jij. The
distribution of bonds in site-frustrated models can be ex-
pressed as

Jij = JFFxixj + JAA�1 − xi��1 − xj� + JFA�xi�1 − xj� + xj�1 − xi�� ,

�2�

where xi=1 if site i is occupied by a F �ferromagnetic� site
and xi=0 if site i is occupied by an A �antiferromagnetic�
site. For random F/A occupancy, the probability of site i
being F type P�xi=1�= �1−x� and the probability of site i
being A type P�xi=0�=x. Our site-frustrated model corre-
sponds to the choice

JFF = − JAA = − JFA = 1. �3�

We have chosen JFA=−1 since in our experimental work2,3

on a-�Fe1−xMnx�G, bulk magnetization, Mössbauer spectros-
copy, and �SR measurements all show that for small x, the
Mn moments orient opposite to the Fe-rich FM bulk. How-
ever, the phase diagram is invariant with respect to the sign
of JFA for bipartite lattices, and thus, this choice of sign is
unimportant. We have considered three different lattice
types, sc, bcc, and fcc with linear dimension L containing
N=L3, N=2L3, and N=4L3 sites, respectively, with periodic
boundary conditions and L even. The phase diagrams for sc,
bcc, and fcc lattices are shown in Fig. 2.

We have also considered a related �and trivial� nonfrus-
trated model with

JFF = − JFA = 1 and JFA = 0. �4�

The phase diagrams for this model are shown in Fig. 3 for sc,
bcc, and fcc lattices. As mentioned in the Introduction, when
F and A sites do not interact �JFA=0�, we expect finite
TC�TN� provided only that F�A� sites percolate. Since for sc
lattices the percolation threshold is xp=0.312,16 one expects
this model to have a mixed phase of coexisting FM and AF
order for 0.312�x�0.688, as is observed. For bcc lattices,16

xp=0.245 and a mixed phase is expected for 0.245�x
�0.755, also observed. For the fcc lattice,16 where xp
=0.198 we observe a FM phase for 0�x�0.802. For the fcc
lattice, we have not measured the AF order, which is more
complex than in the bipartite lattices, and thus, we have not
observed a mixed phase. Note that, aside from a minor res-
caling of the transition temperatures, the phase diagrams of
site-frustrated models �Fig. 2� are identical to those of non-
frustrated models �Fig. 3�.

It is important to note that we do not consider the choice
JFF=JAA=−JFA=1, a Mattis model,17 which has no frustra-
tion. The site-frustrated model we consider here is, however,
equivalent to Luttinger’s site-frustrated model18 �with J1=
−J2=J3= 1

2 � which, for Ising spins, exhibits spin-glass order-
ing in the mean field limit.

B. Gauge invariance and symmetries

In the presence of a random distribution of bimodal inter-
actions, �Jij = ±1�, a Hamiltonian of the type shown in Eq.
�1� will possess a number of useful symmetries. Frustration

is the property that, given a set of spins 	S� i
 linked with a

closed loop of nonzero Jij, no set 	S� i
 exists that can satisfy
all of the interactions Jij. Frustration is measured by consid-
ering the value of the frustration function19,20

� = � Jij �5�

evaluated around a plaquette—the smallest closed loop of Si
linked by nonzero Jij. If ��0, then a plaquette is frustrated,
whereas if ��0, the plaquette is not frustrated. Since Eq. �5�
always contains even powers of JFA for a site-frustrated
model, frustration is independent of the sign of JFA. It fol-
lows that frustration is only present if JFF=−JAA.

Model symmetries can be found by considering a local
transformation of the spin and bond variables according to20

S� i → − S� i, Jij → − Jij , �6�

where a spin at site i is inverted as well as all of the bonds Jij
emanating from site i. Any set of such local transformations

G�	�i
��	S� i
;	Jij
� = �	�iS� i
;	�iJij� j
� �7�

with �i= ±1, called a gauge transformation, preserves both
the Hamiltonian and the distribution of frustration.20 Since
the Hamiltonian is invariant under any G�	�i
�, the partition
function and the free energy are also invariant. It follows that
any pair of models with different distributions of the vari-
ables Jij, yet having the same distribution of frustration, have
the same phase diagram �the order parameters are, in general,
different�.

A first symmetry is revealed using the gauge transforma-
tion

G��A = ± 1;�F = � 1� , �8�

which inverts the spins of either all A or all F sites in the
lattice. The bonds are transformed such that JFA→−JFA
while both JFF and JAA remain invariant. Therefore, phase
diagrams of site-frustrated models �provided �JFF � = �JAA�� are
invariant with respect to the sign of JFA.

A second symmetry occurs for bipartite lattices that can
be decomposed into two interpenetrating sublattices � and 	.
The gauge transformation

G��� = ± 1;�	 = � 1� �9�

has the effect of flipping the sign of all of the bonds so that
Jij→−Jij. This is equivalent to taking a model with a con-
centration x of A sites �1−x of F sites� and creating a model
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with a concentration 1−x of A sites �x of F sites�, while also
flipping JFA, which, as we have already shown, is irrelevant.
Therefore, for bipartite lattices, the phase diagrams must be
symmetrical about x= 1

2 .
The symmetry between ferromagnetic and antiferromag-

netic models on bipartite lattices found by using the gauge
transformation given by Eq. �9� only applies to lattices with
L even. If L is odd, as in the simulations of Matsubara et
al.,11 then two equivalent sublattices do not exist, and for this
reason we believe these results should be considered with
caution.

One effect of Eq. �9� is to transform the FM-order param-
eter mf into the AF-order parameter mst, and vice versa.
Thus, if the model orders as a collinear FM, a collinear AF,
or a mixture of the two �whose order need not be parallel�,
then gauge symmetry implies the following symmetry be-
tween the order parameters mf and mst:

mf�x,T;JFA� = mst�1 − x,T;− JFA� �10�

mst�x,T;JFA� = mf�1 − x,T;− JFA� �11�

for all x and T. This symmetry also applies to all higher-
order powers of mf and mst, and therefore the susceptibilities
are also symmetric under the exchange x→ �1−x�, JFA→
−JFA. This symmetry persists even when the ordering does
not consist of a mixture of collinear FM and AF order, as, for
example, spin-glass order. However, in the case of spin-glass
order, mf and mst would scale to zero in the limit of large L.
The fact that we observe a nonzero mf and/or mst in the limit
of large L for bipartite lattices excludes any possibility that
the mixed phase is a spin-glass phase.

C. Monte Carlo methods

Our study of the site-frustrated Heisenberg model has pro-
ceeded in two parts. In the first, we have employed a simple
Metropolis Monte Carlo algorithm with simulated annealing
to obtain the phase diagrams shown in Figs. 2 and 3. The
system sizes studied range from 4�L�16 �sc�, from 4�L
�14 �bcc�, and from 4�L�12 �fcc� for the concentrations
shown in the phase diagrams by open symbols. The range of
system sizes for sc lattices are the same as those used in
Refs. 11 and 12. For the sc and bcc lattices with JFA=0 �Figs.
3�a� and 3�b��, only x�0.5 were studied and TC,N�x�0.5�
are obtained by symmetry. The number of Monte Carlo up-
dates per lattice site �MCS� ranged from 5
103 to 5
106

after discarding the first 5
103 to 5
104 MCS at each T to
ensure equilibration. The number of MCS is chosen such that
we exceed the measured sample independence time, given by
twice the integrated autocorrelation time21,22 �, by orders of
magnitude. The large value of �, which occurs near and be-
low TC,N, limits the lattice sizes and the number of disorder
configurations studied. In this initial survey, a minimum of
16 realizations of disorder were used to obtain configura-
tional averages.

In order to increase L, and the number of configurations
C, we must reduce �. To do so, we have employed an over-
relaxation scheme,23 where the spins evolve according to

S� i → 2
S� i · B� i

B� i · B� i

B� i − S� i, �12�

where B� i=� jJijS� j is the internal field experienced at site i due

to the coupling with nearest-neighbor spins S� j. Following
each Metropolis MCS we use five overrelaxation MCSs,
which then comprises a single OR-MCS. The OR-MCS up-
date has reduced � by about a factor of 100. However, there
remains a divergence of � according to ��Lz with z unal-
tered from the value found using only Metropolis dynamics �
z�0, z�2, and z�3 for T�TC, T�TC and T�TC, respec-
tively�. Overrelaxation has been found useful in studies of
the site-frustrated Heisenberg model,11 the bond-frustrated
Heisenberg model,24 and fcc Heisenberg antiferromagnets.25

The dramatic reduction in � that occurs when employing
the overrelaxation update is illustrated in Fig. 4, where we
have plotted the normalized autocorrelation function of the
magnetization near TC for MCS and OR-MCS updates. The
autocorrelation function of the magnetization or staggered
magnetization �Af�t� and Ast�t�, respectively� at time t is
given by

Af ,st�t� = ��mf ,st�0�mf ,st�t��� − ��mf ,st��2, �13�

where the angular brackets represent a time average and the
square brackets represent a configurational average �mf and
mst are defined below�. The decays Af ,st�t� are comprised of a
discrete sum of exponential decays,22 and the derived auto-
correlation time is shown in the inset of Fig. 4 for T�TC
using the OR-MCS update.

The OR-MCS update has enabled us to equilibrate larger
sc lattices with 4�L�24. The number of configurations
used at each x and L is listed in Table I. The number of
OR-MCS used here ranges from 5
102 at high temperatures

FIG. 4. Autocorrelation function for the magnetisation �Eq.
�13�� using Metropolis �MCS� and Metropolis plus over-relaxation
�OR-MCS� dynamics for T�TC �L=10,x=0.45�. The inset shows
the integrated integrated autocorrelation time at T=0.95 using over-
relaxation plus Metroplolis dynamics.
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to 5
104 at low temperatures, after discarding between 5

102 to 5
103 OR-MCS to ensure equilibration. Again, the
number of OR-MCS is chosen to be much larger than any
measurable sample independence time. The resulting phase
diagram is shown in Fig. 2�a� by solid symbols, and summa-
rized in Table II. These results are more accurate than our
original survey, although the form of the phase diagram re-
mains unaltered.

Two characteristics of the Af ,st�t� decays have been exten-
sively checked to ensure that our results are both equilibrated
and representative of the limit t→
. Equilibrium requires
that the Af ,st�t� decays are independent of the origin of time.
For selected concentrations and temperatures, we have veri-
fied that the decays are repeatable, and thus equilibrated, by
measuring Af ,st�t� while varying the number of discarded
MCSs �or OR-MCSs� prior to the measurement. Indeed, ac-
curate measurement of Af ,st�t� requires that the number of
MCSs exceeds � by orders of magnitude, which essentially
guarantees this result. To ensure our results are equilibrated
at each temperature, we discard several �’s worth of MCSs
�or OR-MCSs� prior to our measurements.

To check that our results are representative of the long
time limit, we have compared our results when varying the
numbers of MCS or OR-MCS updates. The Af ,st�t� decays
provide a measure of � for the scalar quantity mf ,st, while our
demonstration, presented later, that the FM and AF order are
mutually perpendicular, required us to exceed � for the vec-

tor quantities m� f ,st. Since � for vector order parameters is
much larger than for scalar order parameters, the long times
necessary to demonstrate that the FM order and AF order are
perpendicular also allows us to compare mf ,st measured in
typical simulations �with �5
104 MCSs� to that measured
in a very long and atypical simulation �with �5
106

MCSs�. The comparison confirms that exceeding � by orders
of magnitude yields results that are characteristic of the limit
t→
.

The most important quantities we measure are powers of
the finite lattice magnetization and staggered magnetization.
At time t, the instantaneous values of the nth power of the
magnetization or staggered magnetization, mf and mst, are

mf ,st
n = 
�N−1�

i

Lf ,st
i Si

x�2
+ �N−1�

i

Lf ,st
i Si

y�2

+ �N−1�
i

Lf ,st
i Si

z�2�n/2
, �14�

where x ,y ,z denote Cartesian components and Lf ,st
i is an op-

erator with the symmetry of the ferromagnetic or antiferro-
magnetic state. We have not made an attempt to measure the
AF order for the fcc lattice, which is more complex than the
AF order in bipartite lattices.25 Average values are obtained
by averaging over time �angular brackets� and disorder
�square brackets� to yield ��mf

n�� and ��mst
n ��. For brevity, we

will henceforth refer to ��mf ,st�� as mf ,st with the understand-
ing that averages over time and disorder have been taken.
Other quantities of interest are the connected ferromagnetic
and antiferromagnetic susceptibilities, � f

c and �st
c , given by

� f ,st
c = N	��mf ,st

2 � − �mf ,st�2� �15�

and the disconnected ferromagnetic and antiferromagnetic
susceptibilities, � f

d and �st
d , given by

� f ,st
d = N	��mf ,st

2 �� �16�

Lastly, we have measured the Binder cumulant for the ferro-
magnetic and antiferromagnetic state, Bf ,st, given by

Bf ,st =
1

2
�5 − 3

��mf ,st
4 ��

��mf ,st
2 ��2� , �17�

which is helpful in locating TC and TN. The normalization is
chosen such that Bf ,st=0 at T=
 and, in the case of the pure
�x=0,1� models, Bf ,st=1 at T=0.

III. RESULTS

The phase diagrams we have found for JFA=−1 �Fig. 2�
and JFA=0 �Fig. 3� bear a striking similarity: FM order oc-
curs provided F sites percolate and AF order occurs �for sc
and bcc lattices� provided A sites percolate. At low tempera-
tures within the mixed phase, mf and mst account for the
majority of the total spin �at x=0.5 mf +mst�0.8�. Further-
more, bipartite lattices always show either ferromagnetic or-
der, antiferromagnetic order, or a mixture of the two, and
thus, the possibility of a spin-glass phase—which lacks any
periodic order—can be conclusively ruled out.

The important difference between our phase diagram on
the sc lattice and the phase diagrams found by others10–12

TABLE I. Number of disorder configurations �C� used for each
concentration �x� and system size �L� for sc lattices using the OR-
MCS Monte Carlo update as explained in the text.

L x=0.10 0.20 0.30 0.35 0.40 0.45 0.49 0.50

4 200 200 200 200 200 1600 1600 1600

6 200 200 200 200 200 872 592 962

8 200 200 200 200 200 976 800 560

10 200 200 200 200 200 976 403 520

12 200 200 200 200 200 744 208 728

16 200 200 200 200 200 400 240 299

20 200 200 200 200 200 400 240 286

24 256 244 224 184 208 288 234 240

TABLE II. Critical temperatures for the site-frustrated Heisen-
berg model for the sc lattice type. Note that by symmetry TC�x�
=TN�1−x�.

x TC�x� TN�x�

0.10 1.4155�6�
0.20 1.3389�9�
0.30 1.2189�7�
0.35 1.1420�17� 0.2980�22�
0.40 1.0546�8� 0.4862�23�
0.45 0.9491�6� 0.6576�25�
0.49 0.8259�18� 0.7536�32�
0.50 0.7804�13� 0.7794�4�
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are: �i� Both Matsubara et al.11 and Bekhechi et al.12 have
claimed that for large enough x, TC�x�, and by symmetry
TN�1−x�, do not remain in the Heisenberg universality class
and �ii� the existence of a tetracritical point has been
challenged;12 instead they suggest that there is a range of
concentrations for which TC�x�=TN�x�. Our results are at
odds with both since we find �i� that all transitions remain in
the Heisenberg universality class and �ii� there is no evidence
to support the existence of a range of concentrations for
which TC�x�=TN�x�. Instead, we conclude that the model, for
bipartite lattices, possess a tetracritical point. The differences
are related, we believe, to a misidentification of the transition
temperatures.

In all cases where Bekhechi and Southern12 claim that the
model remains in the Heisenberg universality class, our esti-
mates of TC,N are in agreement with theirs. By constrast, in
all cases where they claim the model does not remain in the
Heisenberg universality class, our estimates of TC,N are not in
agreement.

To determine the form of the phase diagram, we have
extracted the system-size dependent pseudotransition tem-
peratures TC,N�L� from the peak in � f ,st

c and the maximum
slope in Bf ,st. According to finite size scaling theory, we ex-
pect that TC,N�L� should, for large enough L, scale according
to

TC,N�L� = TC,N + aL−1/�, �18�

where � is the exponent of the correlation length. Equation
�18� allows us to locate TC and TN. We begin by assuming
that the model remains in the Heisenberg universality class,
for which the exponent � takes the value �=0.704.26,27 Scal-
ing plots for several concentrations are shown for the sc lat-
tice in Fig. 5 for both TC and TN. With increasing L, the data
begin to fall onto straight lines �see also Fig. 9�b��, indicating
that corrections to scaling are important for the smaller lat-
tices. For L�8 �� f ,st

c � and L�10 �Bf ,st�, the TC,N�L� are lin-
ear in L−1/� and yield the same estimates for TC and TN
within error. In the case of the pure model �x=0�, the
asymptotic scaling regime beyond which corrections to scal-
ing become negligible is also27 L�10, and so the deviations
at small L are to be expected. Straight-line fits for L�10
yield two independent estimates for both TC and TN, and the
weighted average of the two estimates are summarized in
Table II for x�0.5. Although the estimates for TC and TN so
obtained are our most precise results, they do depend on the
assumption of universality. However, estimates found assum-
ing universality are consistent with other estimates, in par-
ticular, those found from crossings of the Binder cumulant,
which make no reference to a particular universality class.

The analysis that led to the phase diagram shown in Fig.
2�a� assumed that the site-frustrated Heisenberg model re-
mains in the three-dimensional Heisenberg universality class.
That the transition temperatures found assuming this univer-
sality are correct is demonstrated in Fig. 6, where we have
plotted the crossing of the Binder cumulant Bf for x=0.45.
According to finite size scaling theory, Bf ,st should scale as

Bf ,st = Bf ,st�tL1/�� , �19�

where t= �T−TC,N� /TC,N is the reduced temperature. Thus, a
plot of Bf ,st for different L should exhibit a crossing at TC,N.
Note that the location of this crossing is independent of the
universality class of the transition. The crossing near TC
=0.947�5� is clear and agrees well with our estimate TC

=0.9491�6� found from Fig. 5, where we assumed that the
model was in the Heisenberg universality class in order to
extract TC. Our value is both far from the earlier estimate12

TC=0.925�5�, and more precise. At x=0.45, they estimated
that ��1.12 However, as shown in the inset of Fig. 6, the
Binder parameter scales very well using Eq. �19� with �
=0.704 provided L�8.

More evidence to support our conjecture that the model
remains within the Heisenberg universality class is found in
the scaling of the order parameters and their fluctuations.

FIG. 5. Finite size scaling of the pseudotransition temperatures
TC�L� and TN�L� for the site-frustrated Heisenberg model on sc
lattices. Lattice sizes L=4,6 ,8 ,10,12,16,20, and 24. The exponent
�=0.704 is taken for the Heisenberg universality class. Solid lines
are fits, for L�8, to TC,N�L� �Eq. �18��, obtained from the peak in
�c. Dashed lines are fits, for L�10, to TC,N�L� obtained from the
maximum slope in Bf ,st. Where error bars are not apparent, they are
smaller than the symbol size.
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Finite size scaling theory predicts that in the vicinity of TC,N,
mf ,st and � f ,st scale according to

mf ,st = L−	/�M�tL1/�� �20�

� f ,st = L�/�X�tL1/�� �21�

for large enough L. In Fig. 7, we show scaling plots for mf ,st
and � f ,st

d at x=0.45, where it has been estimated12 that 	 /�
�0.35 and, from hyperscaling, � /�=2.3. In the four plots
we have used the exponent ratios 	 /�=0.514 and � /�
=1.973, with �=0.704, as found for the pure Heisenberg
model26,27 �x=0� in three dimensions. The values of TC,N are
taken from our Table II. The collapse is excellent for 8�L
�24, which strongly suggests that the transitions remain
within the Heisenberg universality class.

Undoing the collapse of the x axis shown in Fig. 7 pro-
vides further support that the site-frustrated model remains in
the Heisenberg universality class. If we plot mf ,stL

	/� or
� f ,st

d L−�/� vs T for different L, then Eqs. �20� and �21� predict
that we should observe a crossing of the data at TC,N similar
to that observed for Bf ,st, as shown in Fig. 6. In Fig. 8, we
show such plots for the ferromagnetic transition at
x=0.45—the same data used in the left panels of Fig. 7. A
clear crossing is observed just below T=0.95.

We now turn to the form of the phase diagram near x
=0.5. Aharony4 first postulated the existence of a tetracritical
point where the lines of second-order phase transitions, TC�x�
and TN�x� cross. The phase diagram of Nielsen et al.10 also
exhibits a tetracritical point, as does the phase diagram of
Matsubara et al.,11 although in the latter case it was assumed.
In contrast, it has been suggested12 that the tetracritical point

does not exist and instead there exists a regime from 0.48
�x�0.52 where TC�x�=TN�x�. We have recently reported13

that the scaling of TC,N�L� according to Eq. �18� at x
=0.49,0.495, and 0.5 �for L�20 and C=100� disagrees with
this conjecture. Our updated results at x=0.49 and x=0.5
�with L�24 and C�200�, as listed in Table II, confirms that
TC�x��TN�x� with the exception of x=0.5.

FIG. 6. Binder cumulant Bf of the ferromagnetic order near TC

for frustrated sc lattice at x=0.45. Lines are guides to the eye. Inset
shows collapse of the data according to Eq. �19� using the exponent
�=0.704. Where error bars are not apparent, they are smaller than
the symbol size.

FIG. 7. Finite size scaling collapse of mf and � f
d with TC

=0.9491 and mst and �st
d with TN=0.6576 for L=8,10,12,16,20,

and 24. We have used the ratios 	 /�=0.514 and � /�=1.973 of the
three-dimensional Heisenberg universality class.

FIG. 8. Scaling plot of mfL
	/� and � f

dL−�/� vs temperature at x
=0.45. Exponents are the same as in Fig. 7. A clear crossing is
observed near TC=0.9491. A further scaling the x axis according to
tL1/� results in the collapse shown in Fig. 7. Where error bars are
not apparent, they are smaller than the symbol size.
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Further evidence in favor of a tetracritical point is pro-
vided by examining the behavior of the transition tempera-
tures while varying the magnitude of the intersite coupling
�JFA�. Setting JFA=0 decouples F and A sites, giving the non-
frustrated model and, hence, TC=TN only at x=0.5. Else-
where, TC�TN and the phase diagram possess a decoupled
tetracritical point at x=0.5. If the ordering scenerio in Ref.
12 were correct and TC=TN at x=0.49 when JFA=1, then TC
and TN would evolve with increasing JFA such that the two
transition temperatures merged. Conversely, if the transition
temperatures remain distinct, as one expects if the site-
frustrated model possess a tetracritical point, then TC and TN
must remain distinct as JFA increases.

In Fig. 9, we show the evolution of both TC and TN at x
=0.49 for the sc lattice with JFA=0, −1, −2, and −3. It is
clear from the plot that both TC and TN increase with increas-
ing JFA in this regime, and that TC is never equal to TN. In
Fig. 9�a�, we show the difference, TC−TN, which clearly in-
dicates that the transition temperatures do not merge. Instead,
the difference steadily increases �the difference between TC
and TN is �10��. We have observed28 the same behavior for
the bcc lattice at x=0.4 up to JFA=30. As shown in Fig. 9�b�,
the scaling of the pseudotransition temperatures �as in Fig. 5�
at x=0.49 with JFA=−1 is typical of all our measurements
and does not indicate anything that might suggest that TC
=TN. We conclude that the site-frustrated model possess a
tetracritical point at x=0.5 and that TC�TN for all other x.

IV. DISCUSSION

A. Frustration density and distribution

To understand the phase diagrams of the site-frustrated
Heisenberg model, it is necessary to consider both the den-

sity and distribution of frustration within the model. The den-
sity of frustration can easily be calculated from the probabil-
ity that a plaquette exists in a frustrated configuration. In Fig.
10, we show examples of frustrated plaquettes for a four-spin
plaquette, appropriate for sc and bcc lattices, and for a three-
spin plaquette, appropriate for fcc lattices. In the case of sc
and bcc lattices, site-frustrated models produce frustrated
plaquettes only when the plaquette contains two neighboring
F sites and two neighboring A sites. For fcc lattices, a
plaquette is frustrated when it contains either two or three A
sites. The density of frustrated plaquettes xf is

xf = 4x2�1 − x�2 �22�

for sc and bcc lattices and

xf = 3x2�1 − x� + x3 �23�

for fcc lattices. In the same way, the density of frustrated
plaquette in the bond-frustrated model is

xf = 4x�1 − x�3 + 4x3�1 − x� �24�

for sc and bcc lattices and

xf = 3x�1 − x�2 + x3 �25�

for fcc lattices, where for bond-frustrated models x is the
concentration of antiferromagnetic bonds, while for site-
frustrated models x is the concentration of antiferromagnetic
sites. The densities of frustrated plaquettes given by Eqs.
�22�–�25� are plotted in Fig. 11.

If site and bond-frustrated models were gauge equivalent,
as has been previously assumed,5 then xf would be the same
for both the site-frustrated model and its gauge equivalent
bond-frustrated counterpart, since xf is gauge invariant. The
site-frustrated model on sc and bcc lattices has a maximum
of xf =0.25, and thus, the assumed gauge equivalent bond-
frustrated model must have x�0.08 �or x�0.92�, so that
xf �0.25 �see Fig. 11�. At this concentration of antiferromag-
netic �ferromagnetic� bonds, 3d bond-frustrated models are

FIG. 9. TC and TN vs. �JFA� with JFF=−JAA= +1 for the sc lattice
at x=0.49. Inset �a� shows the difference, TC−TN. Inset �b� shows
the scaling of the pseudotransition temperatures for JFA=−1. Where
error bars are not apparent, they are smaller than the symbol size.

FIG. 10. Examples of frustrated and satisfied plaquettes for the
site-frustrated model for a four-spin plaquette geometry appropriate
for sc and bcc lattices and for a three-spin plaquette geometry ap-
propriate for fcc lattices.
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ordered ferromagnets24,29,30 �antiferromagnets�. Assuming
gauge equivalence between site- and bond-frustrated models
in three dimensions shows that the site-frustrated model
consists31 of FM or AF order for all x, and rules out the
possibility of spin-glass order. This result is in direct contra-
diction of the assumption5 that the equivalence of bond and
site frustration leads to spin-glass order in site-frustrated
models.

It is easy, however, to prove that site and bond frustration
are not gauge equivalent on bipartite lattices. To do so, con-
sider the probability that, given a frustrated plaquette, all of
the neighboring plaquettes exist in a frustrated configuration.
For a bond-frustrated model, this probability is finite for 0
�x�1, whereas for site-frustrated models this probability is
zero for 0�x�1, which is sufficient to prove that site- and
bond-frustrated models are not gauge equivalent.

It is also interesting to note that the site-frustrated model
on an fcc lattice exists as an ordered ferromagnet until xf
�0.9 �x�0.8� while for the sc bond-frustrated model ferro-
magnetism is lost by xf �0.44 �x=0.208�2�� for Heisenberg24

spins. This serves to emphasize that the density of frustration
alone is not responsible for the destruction of periodic order,
but the distribution, which, as we have shown, is quite dif-
ferent for site- and bond-frustrated models.

For sc and bcc lattices, frustrated plaquettes exist only
when a plaquette contains two neighboring F sites and two
neighboring A sites. If the lattice is considered to be a col-
lection of F and A clusters, it follows that all of the frustrated
plaquettes exist on the surfaces separating the clusters. Since
all of the frustration exists at the interface, which separates
clusters of F and A sites, unsatisfied bonds are likely to also
reside near that interface. Given this situation, the phase dia-
grams of site frustrated models �Fig. 2� can be expected to
mimic those of the nonfrustrated models �Fig. 3�, as we have
observed.

The effect of concentrating all of the frustrated plaquettes
onto the surfaces separating clusters of F/A sites will be ex-

plored by considering simple Ising spins since algorithms
exist for determining exact ground states. In two dimensions,
ground states for Ising spins with ±J interactions are deter-
mined by pairing frustrated plaquettes with a line called a
dual string. Bonds traversed by the dual string are broken
with the remaining bonds satisfied. It then follows that the
ground state is determined by minimizing the total length of
all dual strings.20

We first consider a diagonal, �1 1�, surface separating
clusters of F and A sites. This configuration of bonds, shown
in Fig. 12�a�, has no frustration, and the ordering which takes
place belongs to the pure, ferromagnetic, two-dimensional
Ising universality class.

A �1 0� interface, shown in Fig. 12�b�, while superficially
similar to �1 1� interface, actually creates a configuration
with an infinite number of frustrated plaquettes. The lowest
energy state then consists of all F sites ordered ferromagneti-
cally and all A sites ordered antiferromagnetically. Satisfied
and unsatisfied bonds alternate along the interface leading to
a two fold degeneracy, decoupling the two regions. The ori-
entation of the FM order is free to point up or down with
respect to a fixed AF order, this effectively mimics the model
where JFA=0.

The third configuration we consider is two frustrated
plaquettes separated by a finite distance shown in Fig. 12�c�.
The lowest energy state consists of F sites ordered FM and A
sites ordered AF with a line of unsatisfied bonds along the
shortest path connecting the two frustrated plaquettes. In this
case, a preferred relative orientation �unidirectional aniso-
tropy� is imposed on, for instance, the FM order if the AF
ordering has already taken place.

The last configuration we consider consists of an interface
with randomly placed frustrated plaquettes, shown in Fig.

FIG. 11. The density of frustration for site- and bond-frustrated
models on sc, bcc, and fcc lattices. Note that the density of frustra-
tion is much less for the site-frustrated model on sc and bcc lattices
as compared to the bond-frustrated model.

FIG. 12. Two-dimensional square lattices showing various pos-
sible interfaces between F and A sites where frustration occurs. �a�
Flat �1 1� interface, no frustration. �b� Flat �1 0� interface, infinite
number of frustrated plaquettes �crosses� on interface. �c� Two frus-
trated plaquettes separated by a finite distance, energy is propor-
tional to the length of the dual string �broken line� linking them. �d�
Rough �1 0� interface, random linear distribution of frustration.
Only one of the two shortest linkings is shown.
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12�d�. The two shortest ways of connecting these plaquettes
with dual strings �A–B, C–D, E–F, etc., and B–C, D–E, F–G,
etc.� need not have the same energy, leading to unidirectional
anisotropy. However, for a very long interface, the difference
in energy associated with these two possible linkings be-
comes infinitesimally small, and the FM-ordered F sites and
AF-ordered A sites are again decoupled, mimicking the
model with JFA=0.

The examples considered here demonstrate that frustra-
tion at the interface of F/A clusters tends to either decouple
the FM and AF ordering, Figs. 12�b� and 12�d�, or to intro-
duce unidirectional anisotropies, Figs. 12�c� and 12�d�. This
behavior will only occur if the dual strings, which link frus-
trated, plaquettes, reside near the interface and do not pass
through the volume of the cluster. However, if we constrain
our interest to percolating F/A clusters, the density of frus-
tration at the interface is large ��25% � so that the total
length of the associated dual strings linking the frustrated
plaquettes will be minimized by using short elements tra-
versing the interface. Equivalently, bonds that compose the
volume of a percolating cluster, �Ld, are satisfied at the ex-
pense of the bonds at the interface of the percolating cluster,
�Ld−1 leading to the conclusion that percolating clusters of F
or A sites order FM or AF, identical to the respective pure
models. Decoupling of the FM- and AF-ordered clusters will
then occur when the number of satisfied and unsatisfied
bonds at the interface are equal so that the ordered clusters
are free to take any possible orientation.

Given the configuration of bonds in Fig. 12�b�, where for
Ising spins there is a decoupling of the AF and FM order, it
can be imagined that for Heisenberg spins the energy of the
system can be further reduced: If the AF and FM ordering
directions are chosen to be mutually perpendicular, there is a
net reduction in the interface energy if the AF-ordered spins
near the interface cant either up �JFA= +1� or down �JFA=
−1� with respect to the FM order, minimizing exchange en-
ergy from the JFA bonds at the expense of the JAA bonds.
This net energy change would then give rise to mutually
perpendicular FM and AF order.11 The perpendicular nature
of the FM and AF order is shown in Fig. 13, where we depict
the parallel and perpendicular components of mst with re-
spect to mf for both the frustrated and nonfrustrated
models.32 The situation is analogous to isotropic antiferro-
magnets in a uniform external field33 where the AF ordering
is transverse to the applied field, with the moments canting
upward along the applied field in order to minimize the total
energy.

The difference in phase diagrams between sc and bcc lat-
tices compared to fcc lattices leaves open the possibility that
spin-glass ordering is permissible for fcc lattices in the con-
centration regime 0.8�x�1. However, we do not believe
that spin-glass ordering occurs for fcc lattices. Rather, based
on the observed phase diagrams for sc and bcc lattices, the
percolating structure of A sites likely decouples and orders
identically to the appropriate pure model: the geometrically
frustrated fcc antiferromagnet. Ordering of the fcc Heisen-
berg antiferromagnet �x=1� occurs at T=0.223,25 and thus,
our phase diagram for fcc lattices lacks a line of low-
temperature transitions TN�x� from 0.2�x�1, as we have
not attempted to measure it. The FM ordering for fcc lattices,

which survives for an extremely high level of frustration xf
�0.9 �almost twice that of the sc bond-frustrated model,
which is a spin glass34� demonstrates again that it is not the
amount of frustration that determines spin-glass order but its
distribution. When frustration is pushed out to the surface of
a percolating cluster, periodic ordering takes place.

B. Experimental consequences

The primary motivation for this work has been our experi-
mental study of the amorphous alloy a-�Fe1−xMnx�G.2,3 In
this alloy, Fe moments couple to neighboring Fe moments
ferromagnetically and Mn moments couple to both Fe and
Mn antiferromagnetically, hence, our choice JFA=−1. The
magnetic response of this alloy, therefore, may be considered
prototypical of a site-frustrated magnet. An important differ-
ence between the model and the alloy is the disorder inherent
to the glass structure. Despite this difference, many impor-
tant details of the a-�Fe1−xMnx�G phase diagram can be un-
derstood based on the model discussed here. For small x, the
material remains ferromagnetic and the small concentration
of Mn moments order antiparallel to the Fe-dominated FM
order. Beyond a concentration of Mn sites x�0.2, spin-
glass-like ordering transverse to the magnetization occurs,
which is dominated by Mn moments. This concentration cor-
responds to site percolation of Mn moments for an amor-
phous alloy35 with 12 nearest neighbors. Because of struc-
tural disorder, the percolating cluster of Mn moments cannot
order as a periodic AF and orders as a spin glass. The phase
diagram of this alloy is likely to be captured by the fcc phase

FIG. 13. Parallel �mst
� � and perpendicular �mst

�� components of
the total staggered magnetization �mst� relative to the magnetization
�mf� for the site-frustrated Heisenberg model with x=0.45 for a sc
lattice with L=10. The total staggered magnetization is also shown.
Inset shows the same data for the nonfrustrated model �JFA=0�. It is
evident that the effect of the JFA bonds is to orient the AF order
transverse to the FM order in the mixed phase.
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diagram �Fig. 2�c��, where, in addition to FM ordering at TC,
a line of AF-type ordering characteristic of the fully frus-
trated Heisenberg antiferromagnet may occur at low tem-
peratures. This transition, observed for the pure model25 at
TN=0.223, is analogous to the spin-glass ordering occurring
at Txy for x�0.2 in a-�Fe1−xMnx�G.

The transverse nature of the FM and AF order appears to
be the only significant consequence of coupling the two
types of sites together via JFA. The FM and AF ordering is in
no way weakened or destroyed by the frustrated coupling
between the two types of sites. This result stands in stark
contrast to claims that the ordering behavior of iron-rich
a-FexZr100−x alloys is due to competition between antiferro-
magnetic clusters embedded in a ferromagnetic matrix,36 and
that ordering of the AF clusters destroys the preexisting FM
order. Although there is now strong experimental evidence
against this view,37 the model studied here actually has this
specific structure. For appropriate compositions, it could be
described as a FM matrix with AF clusters, but the ordering
of these AF clusters clearly does not destroy the preexisting
FM order.

V. CONCLUSIONS

We have used Monte Carlo methods to investigate the
ordering of Heisenberg spins on sc, bcc, and fcc lattices for a
site-frustrated model. At all concentrations, the system forms
at least one percolating network of F or A sites and, in the
mixed phase, both F and A sites percolate. When both F and
A sites percolate on bipartite lattices, they both order as one
would expect if the frustration were removed, a fact readily

apparent from the similarity between Figs. 2 and 3. In the
case of the fcc lattice, AF ordering of A sites likely occurs for
0.2�x�1, and thus, we expect that a tetracritical point
should occur here as well. The resulting phase diagrams for
frustrated �Fig. 2� and nonfrustrated models �Fig. 3� are
closely related, sharing similar, if not the same, critical con-
centrations. The universality class of the transitions remain
in the three-dimensional Heisenberg universality class, in
agreement with the Haris criteria. The JFA bonds coupling
the A and F sites lead only to minor changes in the ordering:
�i� The transition temperatures are slightly increased �see
Fig. 9�, and �ii� the F and A clusters have mutually perpen-
dicular ordering directions �see Fig. 13�.

For bipartite lattices, there is a tetracritical point at x= 1
2

where FM and AF order develop simultaneously in the infi-
nite percolating F and A clusters. The presence of long-range
periodic order at all concentrations allows us to rule out spin-
glass ordering in these models for bipartite lattices. In the
case of fcc lattices, we have attempted to detect the ferro-
magnetic transition only. However, by analogy with the sc
and bcc lattices, we expect that the percolating A cluster
undergoes the ordering characteristic of the fully frustrated
fcc model.
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