Empirical status of some the axioms of Electrostatics

Note: The E field is unobservable so that all empirical axioms tests assume $\underline{F} = q\underline{E}$

a) Inverse square law <-> mass of photon

- i) Assume $1/r^{2+\epsilon}$ and put limits on ϵ
- ii) Assume a Yukawa potential $V=r^{-1}e^{-\mu r}$ (with $\underline{E}=-\nabla\cdot V$) and quote a value for μ .

According to QM, $\Delta p \Delta x \approx h$ and $\Delta x \approx 1/\mu$, $\Delta p = m_{\gamma}c$ so $m_{\gamma} \approx h \mu/c$.

Experiments use the idea that $\underline{E} = 0$ inside a conductor only if $\varepsilon = m_{\gamma} = 0$.

D.C. Cavendish 1772: $|\epsilon| < 0.02$

Maxwell 1879: $|\epsilon| < 5x10^{-5}$

4x10⁶ Hz Plimpton and Lawton 1936 $|ε| < 2x10^{-9}$

Williams et al 1971 $|\epsilon| < 2.7 \pm 3.1 \times 10^{-16}$ This imp

This implies m_{γ} <1.6x10⁻⁵⁰Kg

Geophysical estimates

If the photon had mass, then the magnetic field of the earth would have a constant field in addition to a dipole field. Satellites show that this is $<4x10^{-3}$ times smaller than the dipole, hence:

$$m_{\gamma}{\approx}{<}4x10^{\text{-}51}\text{Kg, i.e.}~\mu^{\text{-}1}{>}10^{8}\text{m}$$

Range of scales: 1/r² tests from 10⁷m to 10⁻¹⁸ m (100 GeV electrons)

b) Linear Superposition

- i) Macroscopic level: Many phenomena including microwave transmission of thousands of calls show valid to better than 0.1%
- ii) Atomic level: Huge fields: $10^{11} 10^{17}$ V/m for e- in atoms, 10^{21} V/m in nucleus... classical linearity holds to better than one part in 10^6 even here.
- iii) QM nonlinearity: arises because of "vacuum polarization" in which E-M fields can be screened by virtual e+, e- pairs (light scattering light, also virtual pair exchanges)... but this is predicted

c) Force law:

Since E is unobservable, $\underline{F} = q\underline{E}$ is needed to test axioms a,b. However if relativistic law of motion is added, then $\underline{F} = q\underline{E}$ implies particle trajectories which are extraordinarily accurate.