
1. Motivation
Hydrogen resist lithography allows atomically precise placement of P or 
As  atoms on silicon. Then, dopants are encapsulated with an additional 
layer of silicon [1,3,5].   

Many interesting questions arise:

1.  How big is the coupling between dopant atoms?
2.  What is the coherence time?
3. How far do dopant atoms diffuse in  the silicon crystal?
4. How are the energy levels affected by the environment?

2. Sample
We studied a contacted Single Electron Transistor sample with a 
single 10x10nm Quantum Dot 

3. Navigation:  finding the QD

5. Novel Microscope at McGill University

6. Outlook
 - Optimize Navigation remains challenging at low temperatures

- Find QD fast. Perform bias spectroscopy on them.
- Reduce size of QDs to single atom limit.
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4. Preliminary Results:
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-We were able to find the relevant region on 
the sample following the etched markers and 
the metal contacts. 

We present here the scans done 
on the sample overlayed on the 
original fabrication layout. 

frequency modulation AFM, 
Vb=4V, Δf=5Hz
Q factor= 20k, P=1e-3mbar

4.1 We can control the voltage of the STM dopant defined 
regions. 

4.2 We can identify the same 
terraces 
in the the target region using
etched markers, native 
silicon terraces and KPFM.

Spectroscopy technique

Signal: back action of electron 
tunneling on cantilever

Metal

Vcpd=0.086V

AFM  in McGill

STM in UCL London (UK)

4.3. The microscope works at low temperature (4.5 K)

Features:

- Optical access for prepositioning. 
- 11.4μm scan range. 
- 2mm x4mm coarse motion range 
- Capacitive position sensors [4]
- Optical cantilever excitation [2]

Low Temperature AFM with 
coarse positioning capabili- 
ties. The design is based on 
a previous AFM with no 
coarse positioner [2].
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The tip can be used as a both, a movable gate and a single electron sensor [2]   

Scans taken at low temperature 
over the metal and the silicon. The 
silicon is covered by a layer of 
silicon dioxide. The height  is 
consistent with vertical atomic 
resolution. 

Vcpd= -0.4607

NC-AFM scan 
T=4.5K 
P=1e-3mbar
Δf=5Hz
Vbias=4V
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Example: QD single electron transistor structure
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We compared these two circuit configurations and 
scanned on top of the STM patterned region. 
Vb=4V

Topography images in grayscale and in color. The electrostatic force causes the measured fore to change. Left, same potential in all 
the sample. Right, 100mV DC voltage applied to the Gate2 and the drain with respect to Gate1 and the electrode at the back of the 
sample. 
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KPFM in McGill 

Oxide

KPFM parabolas of the metal and 
oxide regions 
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