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We report an experimental technique for Kelvin probe force microscopy using the dissipation signal of
frequency-modulation atomic force microscopy for bias-voltage feedback. It features a simple imple-
mentation and faster scanning as it requires no low-frequency modulation. The dissipation is caused by the
oscillating electrostatic force that is coherent with the tip oscillation, which is induced by a sinusoidally
oscillating voltage applied between the tip and sample. We analyze the effect of the phase of the oscillating
force on the frequency shift and dissipation and found that the relative phase of 90° that causes only the
dissipation is the most appropriate for Kelvin-probe-force-microscopy measurements. The present
technique requires a significantly smaller ac-voltage amplitude by virtue of enhanced force detection
due to the resonance enhancement and the use of fundamental flexural-mode oscillation for electrostatic
force detection. This feature will be of great importance in the electrical characterizations of technically
relevant materials whose electrical properties are influenced by the externally applied electric field as is the
case in semiconductor electronic devices.

DOI: 10.1103/PhysRevApplied.4.054011

I. INTRODUCTION

Kelvin probe force microscopy (KPFM), a variant of
atomic force microscopy (AFM) has become one of the
indispensable tools used to investigate electronic properties
of nanoscale material as well as nanoscale devices. In
KPFM, a surface potential of a sample is measured by
detecting a capacitive electrostatic force that is a function of
the surface potential and applied bias voltage. In order to
separate the electrostatic force component from other force
components such as the van der Waals force, chemical
bonding force, and magnetic force, the electrostatic force is
modulated by applying an ac bias voltage and the resulting
modulated component of the measured force is detected by
lock-in detection [1].
KPFM has been implemented in a variety of ways that

can be classified into two distinct categories, amplitude
modulation (AM) [2–4] and frequency modulation (FM)
[4,5]. The former implementation takes advantage of
enhanced electrostatic force-detection sensitivity by tuning
the modulation frequency to one of the resonance frequen-
cies of the AFM cantilever, leading to an enhanced
detection of the electrostatic force by its quality (Q) factor
that can reach over 10 000 in vacuum [6].
The latter method (FM KPFM) detects the modulation in

the resonance frequency shift that is induced by a low-
frequency ac voltage. While this method requires a much
higher ac-voltage amplitude, it offers higher spatial reso-
lution because the resonance frequency shift is determined

by the electrostatic force gradient with respect to the
tip-sample distance rather than the force itself [3,4,7].
Here, we report a KPFM implementation (D KPFM)

using the dissipation signal of conventional FM-AFM
systems to detect the electrostatic force. The dissipation
arises from an oscillating electrostatic force acting on the
AFM tip that is coherent with the tip oscillation (trajectory).
The oscillating electrostatic force is induced by applying an
ac voltage between the tip and sample. By setting the phase
of the ac voltage to 90° out of phase with respect to the tip
oscillation, an electrically induced dissipation can result
without affecting the resonance frequency shift, allowing
topography imaging to be performed in constant frequency-
shift mode. The KPFM feedback loop can be implemented
with the electrically induced dissipation signal as it is
proportional to the effective dc potential difference between
the tip and sample ðVbias − VCPDÞ, where Vbias and VCPD
are an applied dc voltage and the contact potential differ-
ence, respectively.
This technique makes it possible to take full advantage of

the enhanced force sensitivity by the high Q-factor funda-
mental resonance mode, as there is no need to excite higher
flexural modes for the electrostatic force detection. In
conventional AM KPFM [2,3], because the fundamental
mode is used for topography imaging, the frequency of ac
bias voltage is typically configured to excite a higher
resonance mode (typically second flexural mode) that has a
much higher effective spring constant as well as lower
quality factor [8], canceling the resonance enhancement.
The enhanced sensitivity of the technique presented here
allows the use of a much smaller ac voltage enabling less
invasive potential measurements, which is of great impor-
tance in the electrical characterizations of technically
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relevant materials whose electrical properties are influ-
enced by the externally applied electric field as is the case
in semiconductor electronic devices.
Although a similar technique has already been reported

by Fukuma et al. [9], it has not been adopted widely,
probably because of the complexity in its implementation.
The present technique is simpler in implementation and
even requires no additional lock-in amplifier, as there is no
low-frequency modulation involved.

II. THEORY

The electrostatic force between two conductors con-
nected to an ac and dc voltage source Felec is described as
follows [10]:

Felec ¼
1

2

∂C
∂z fVbias − VCPD þ Vac cosðωeltþ ϕÞg2

¼ αfVdc þ Vac cosðωeltþ ϕÞg2
¼ F0 þ F1 þ F2

α≡ 1

2

∂C
∂z ;

Vdc ≡ Vbias − VCPD; ð1Þ

where C is the tip-sample capacitance, Vbias and VCPD are
the applied dc voltage and the contact potential difference,
and Vac, ωel, and ϕ are the amplitude, angular frequency,
and phase of the ac bias voltage. z is the position of the tip
with respect to the sample surface and the oscillating tip
around its mean position z0, expressed as zðtÞ ¼ z0þ
A cosðωmtÞ, with ωm and A being its oscillation angular
frequency and amplitude, respectively. We assume that the
tip oscillation is driven by another means such as piezoa-
coustic or photothermal excitation and its frequency fm ¼
ωm=2π is chosen to be that of the fundamental flexural
resonance mode f0.
Expanding Eq. (1) and isolating each harmonic compo-

nent, F0, F1, and F2, which result from the applied ac bias
voltage, yields the following terms:

F0 ¼ α

�
V2
dc þ

V2
ac

2

�
; ð2Þ

F1 ¼ 2αVdcVac cosðωeltþ ϕÞ; ð3Þ

F2 ¼
1

2
αV2

ac cosf2ðωeltþ ϕÞg: ð4Þ

Notice that the z dependence of α ¼ 1
2
ð∂C=∂zÞðzÞ must

be taken into account in order to correctly describe the
response of the oscillating cantilever subject to the oscil-
lating electrostatic force induced by the coherent ac
voltage.

By expanding α around the mean position z0, and taking
the first order term, α is expressed as follows [11]:

αðzÞ ≈ αðz0Þ þ α0ðz − z0Þ ¼ α0 þ α0A cosðωmtÞ: ð5Þ

Substituting Eq. (5) into Eq. (2) and rearranging, it yields

F0ðtÞ ¼ fα0 þ α0A cosðωmtÞg
�
V2
dc þ

V2
ac

2

�

¼ α0

�
V2
dc þ

V2
ac

2

�
þ α0A

�
V2
dc þ

V2
ac

2

�
cosðωmtÞ:

ð6Þ

Note that the second term expresses an oscillating force
whose frequency is ωm=2π while the first term expresses
the static deflection of the cantilever. As this oscillating
force is in phase with respect to zðtÞ, it results in a shift in
resonance frequency [12].
Substituting Eq. (5) into the expression of F1 [Eq. (3)]

gives

F1ðtÞ ¼ 2fα0 þ α0A cosðωmtÞgVdcVac cosðωeltþ ϕÞ
¼ 2α0VdcVac cosðωeltþ ϕÞ
þ α0AVdcVac½cosfðωel þ ωmÞtþ ϕÞg
þ cosfðωel − ωmÞt − ϕg�: ð7Þ

We focus on a special case where ωel ¼ ωm. F1ðtÞ can be
simplified as follows:

F1ðtÞ ¼ α0AVdcVac cosϕþ 2α0VdcVac cosðωmtþ ϕÞ
þ α0AVdcVac cosð2ωmtþ ϕÞ: ð8Þ

We notice that the interaction between the mechanical
oscillation of the tip and the oscillating electrostatic force
produce a static force and two harmonic forces with
frequency ωm and 2ωm.
Likewise, F2ðtÞ [Eq. (4)] contains three harmonic terms

with their frequency, ωm, 2ωm, and 3ωm under the same
condition (ωm ¼ ωel) as follows:

F2ðtÞ ¼
1

2
fα0 þ α0A cosðωmtÞgV2

ac cosf2ðωeltþ ϕÞg

¼ 1

2
α0V2

ac cosf2ðωmtþ ϕÞg

þ 1

4
α0AV2

acfcosðωmtþ 2ϕÞ þ cosð3ωmtþ 2ϕÞg:
ð9Þ

As is shown in the theory of FM-AFM [12–14], the
resonance frequency shift and dissipation signal are essen-
tially determined by the in-phase and quadrature compo-
nent of the fundamental harmonic component (in this case
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ωm) of the oscillating force, respectively. Putting together
all theωm components from F0, F1, and F2 and rearranging
them, we get the following expression:

FωðtÞ ¼ Fin cosωmtþ Fquad sinωmt; ð10Þ

where

Fin ¼ α0A
�
Vdc þ

α0 cosϕ
α0A

Vac

�
2

ð11Þ

−
�
α20cos

2ϕ

α0A
−
α0A
2

�
1þ cos 2ϕ

2

��
V2
ac; ð12Þ

Fquad ¼ −2α0VdcVac sinðϕÞ −
1

2
α0AV2

ac sinðϕÞ cosðϕÞ:
ð13Þ

These Fin and Fquad cause the resonance frequency shift
and dissipation signal in FM-AFM, respectively. As can be
seen in the formula for Fin, the frequency shift versus Vdc
curve will be a parabola whose minimum is shifted from
VCPD by the value determined by the phase ϕ and amplitude
Vac of the oscillating bias voltage. This indicates that the
bias voltage at the parabola minimum is no longer VCPD.
However, in the special case where ϕ ¼ 90°, we find

Fin ¼ α0A
�
V2
dc þ

V2
ac

4

�
; ð14Þ

Fquad ¼ −2α0VdcVac ¼ −2α0ðVbias − VCPDÞVac: ð15Þ

The resulting resonance frequency shift Δf and the
dissipation signal g are obtained using the formulas found
in Refs. [12–14] as follows:

Δf ¼ −
1

2

f0
k
Fin

A

¼ −
1

2

f0
k
α0
�
ðVbias − VCPDÞ2 þ

V2
ac

4

�
; ð16Þ

g ¼ g0

�
1 −

Q
kA

Fquad

�

¼ g0
n
1þ 2

Q
kA

α0ðVbias − VCPDÞVac

o
; ð17Þ

where k is the effective spring constant of the fundamental
flexural mode of the cantilever and g0 is the dissipation
without the ac bias voltage which is given by the mechani-
cal Q factor of the cantilever. In the case where the applied
bias Vbias is equal to the contact potential difference VCPD,
the dissipation goes back to its original value g0. It is
therefore possible to use the dissipation signal g as the
KPFM bias-voltage feedback signal with g0 as its control

setpoint value. We notice that the frequency shift is
proportional to the electrostatic force gradient, whereas
the dissipation signal is proportional to the electrostatic
force and Q=k, which is the case for AM KPFM.

III. EXPERIMENT

Figure 1 depicts the block diagram of the experimental
setup used for D-KPFM measurements. As we notice, the
D-KPFM technique requires only two additional compo-
nents, a phase shifter and proportional-integrator (PI) con-
troller compared to normal FM-AFM systems. The
fundamental flexural-mode oscillation of the AFM cantilever
is controlled by a self-oscillation feedback loop electronics
which consists of a phase shifter and an amplitude controller.
The amplitude controller is used to maintain a constant
oscillation amplitude and composed of a root-mean-square
(rms) amplitude detector and a PI controller (NanoSurf
easyPLLplus oscillator controller). The output of the ampli-
tude feedback PI controller is the dissipation signal which
will be used for controlling the dc bias voltage. The detection
bandwidth of the rms amplitude detector is extended to about
1 kHz by replacing the integration capacitor in the original
rms detector circuit.
The deflection signal is fed into the additional phase

shifter, which serves to adjust the relative phase ϕ to produce
the ac voltage which is 90° out of phase to the cantilever
deflection. Because of the phase delay in the deflection
sensing electronics, the actual phase-shift value set by the
phase shifter may be different from 90°. The dissipation
signal acts as the input signal to the PI controller, which
adjusts the applied dc bias Vbias to maintain a constant
dissipation equal to the value without Vac applied, g0.
We use a JEOL JSPM-5200 atomic force microscope for

the experiments with the modifications described below. The
original laser diode is replaced by a fiber-optic collimator
with a focusing lens that is connected to a fiber-coupled laser
diode module (OZ Optics). The laser diode is mounted on a
temperature-controlled fixture and its driving current is

Phase
shifter 1

Amplitude
controller

Frequency
detector

Piezoelectric
 actuator
 

Distance
feedback

Self-oscillation loop Nanosurf
easy PLL

Dissipation

PI
controller

Phase
shifter 2

Vdc

VacVac+Vdc

VCPD
signal

f

Topography
signal

Deflection
sensor

Piezo.
scanner

FIG. 1. Block diagram of the experimental setup for D-KPFM
measurements.
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modulated with a radio-frequency signal to reduce the
deflection detection noise [15]. The bias voltage is applied
to the sample with reference to the grounded AFM tip to
reduce the effect of the capacitive crosstalk of Vac to the
piezoelectric actuator used for cantilever excitation [16,17].
The piezoelectric actuator is shunted with a chip resistor
with low resistance (∼10 Ω) to further reduce the effect. The
original controller is replaced with an open-source controller
GXSM [18] with the dedicated acquisition hardware
(MK2-A810, SoftdB).
Commercial silicon AFM cantilevers (NSC15,

MikroMasch) with a typical spring constant of ∼20 N=m
and resonance frequency of ∼300 kHz are used in a high-
vacuum environment with the pressure of ∼5 × 10−7 mbar.

IV. RESULTS AND DISCUSSION

Figure 2 shows simultaneously measured Δf and g
versus Vbias curves with a coherent sinusoidally oscillating
voltage with the amplitude Vac ¼ 100 mVp-p and various
phase ϕ. The curves are taken on a Si substrate with a
200-nm-thick oxide SiO2. A fitted curve with a parabola for
Δf-Vbias curves [Eq. (12)] or a linear line for g-Vbias curves
[Eq. (13)] is overlaid on each experimental curve, indicat-
ing a very good agreement between the theory and experi-
ments. As can be seen in Figs. 2(a) and 2(b), the position of
the parabola vertex shifts and the slope of the g-Vbias curve
changes systematically with varying phase.
In order to further validate the theoretical analysis, the

voltage for the parabola maximum of the Δf-Vbias curves
and the slope of the g-Vbias curves are plotted against the
phase ϕ in Fig. 3. Each plot is overlaid with a fitted curve
(solid curve) with the cosine function [Eq. (12)] for the
parabola maximum and with the sine function [Eq. (13)] for
the dissipation slope, demonstrating an excellent agreement
between the experiment and theory. The voltage for the
parabola maximum versus the phase curve intersects the
value for the parabola without ac bias voltage at the phase
of 97° as opposed to 90°, which is predicted by the theory.
This deviation is mainly due to the phase delay in the
photodiode preamplifer electronics. The dissipation slope
takes its maximum value at around 81°, again deviating
from the theoretical value of 90°. This deviation is probably
due to the residual capacitive crosstalk to the piezoelectric
actuator [16,17].
Figure 4 shows topography and potential images of a

patterned MoS2 on the 200-nm-thick SiO2=Si substrate
taken by (a) D-KPFM, (b) AM-KPFM, and (c) FM-KPFM
techniques. The D-KPFM and FM-KPFM images are
taken with the same cantilever tip (resonance frequency,
306 553 Hz; spring constant, 20.8 N=m; quality factor,
14 963), and the AM-KPFM image is taken with a
different one (resonance frequency, 298044 Hz; spring
constant, 27.2 N=m; quality factor, 14 700). These two
cantilevers are of the same type and taken from the same
batch. In D-KPFM imaging, a sinusoidally oscillating

voltage with an amplitude of Vac ¼ 100 mVp-p phase
locked with the tip oscillation is applied to the sample.
In AM-KPFM imaging, a sinusoidally oscillating voltage
with an amplitude of Vac ¼ 8 Vp-p whose frequency is
tuned to the second flexural resonance peak (resonance
frequency, 1 903 500 Hz; quality factor, 2400) is applied
to the sample. The resulting oscillation amplitude is
detected by a high-speed lock-in amplifier (HF2LI,
Zurich Instruments) and used for the dc bias-voltage
feedback [2,3]. In FM-KPFM imaging, a sinusoidally
oscillating voltage with the amplitude of Vac ¼ 2.0 Vp-p

FIG. 2. (a) Frequency shift Δf and (b) dissipation signal g
versus dc bias voltage Vbias curves taken with a coherent
sinusoidally oscillating voltage with the amplitude Vac ¼
100 mVp-p and various phases ϕ applied to a 200-nm-thick
SiO2-on-Si substrate. The dissipation signal is normalized with
the value without the ac bias voltage (indicated with the
horizontal blue dashed line). In both figures, each of the dashed
lines represent fitted curves assuming a parabola for Δf and a
linear line for g as indicated in Eqs. (12) and (13), respectively.
The oscillation amplitude of the tip is 7.2 nmp-p and the quality
factor of the cantilever is 9046.
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and frequency of 300 Hz is applied to the sample.
The number of pixels in the images is 512 × 512. The
scanning time for D-KPFM, AM-KPFM, and FM-KPFM
imaging are 2 s=line, resulting in the total scanning time
of 1024 s=frame. In all the imaging modes, the frequency-
shift signal is used for topography feedback.
A flake of MoS2 is deposited onto a SiO2=Si substrate by

mechanical exfoliation and a stripe pattern is created by
reactive ion etching on the top of the flake. The topography
images show an unetched ridge located between the etched
regions. The height of the ridge is approximately 20 nm
with respect to the etched regions. A clear fractal-like
pattern can be seen on the ridge in all of the potential images.
The potential contrast can be ascribed to the residue of the
etch resist (PMMA) as the topography images show the
similar contrast whose thickness is about 1 nm.
When comparing the potential images taken by D KPFM

[Fig. 4(a)] and AM KPFM [Fig. 4(b)], the D-KPFM
potential image shows better clarity than that by AM
KPFM. The difference is due to the lower signal-to-noise
ratio of the amplitude signal of the second flexural-mode
oscillation even though a much higher Vac ¼ 8 Vp-p is
applied in AM KPFM. The higher (∼40 times higher than
the first mode [19]) effective spring constant and lower
observed quality factor (2400 compared with 14 700 for the
first mode) account for the difference as the signal in both
operating modes is proportional to Q=k. Figure 4(d) shows
the line profiles of potential on the same location indicated
in the potential images as a white line. Two profiles are in a
very good agreement, indicating the similarity of D KPFM
and AM KPFM, both of which are sensitive to the
electrostatic force. The constant offset between two profiles
is probably due to the different tips used in the two separate
experiments.

Although both potential images taken with D KPFM and
FMKPFM show a very similar pattern on the ridge with the
nearly same clarity, we notice a lower contrast in the
potential image taken with D KPFM than that with FM
KPFM from the inspection of the line profiles (Figs. 4(d)
and (e)). The peak-to-peak value of the potential variation
in the D-KPFM image is ∼0.12 V, about one-half that in
the FM-KPFM image (∼0.3 V). The similar difference in
the potential contrast taken with FM KPFM and AM
KPFM has also been reported in the literature and is
ascribed to the fact that the AM KPFM is sensitive to
electrostatic force, whereas FM KPFM uses the modulation

FIG. 3. Voltage of minimum of the measured Δf-Vbias curves
(red circles) [Fig. 2(a)] and the slope of dissipation-Vbias curves
(blue circles) [Fig. 2(b)]. Each solid line represents the fitted
curve with the cosine function [Eq. (12)] for the parabola
minimum and with the sine function [Eq. (13)] for the dissipation
slope. The horizontal dashed line indicates the voltage for
parabola minimum without the ac bias voltage.

(a) D KPFM

(c) FM KPFM Topography

Potential

Potential

Topography

(b) AM KPFM PotentialTopography

(e) FM KPFM(d) D KPFM, AM KPFM

µ µ

FIG. 4. Simultaneously taken topography (left) and potential
(right) images of patterned MoS2 on a SiO2=Si substrate by
(a) D-KPFM techniques (Δf¼−10.3Hz, A ¼ 6.2 nmp-p, Vac ¼
100 mVp-p), (b) AM-KPFM techniques (Δf ¼ −13.4 Hz,
A ¼ 16 nmp-p, Vac ¼ 8 Vp-p, fac ¼ 1903 500 Hz), and
(c) FM-KPFM techniques (Δf ¼ −7.0 Hz, A ¼ 7 nmp-p,
Vac ¼ 2.0 Vp-p, fac ¼ 300 Hz). (d) Line profiles of the D-KPFM
(blue) and AM-KPFM (red) potential images. (e) Line profile of
the FM-KPFM potential image. The scale bar is 1 μm.
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in the resonance frequency shift which is sensitive to force
gradient [4,20]. The similarity between D KPFM and AM
KPFM is apparent in the expression of g [Eq. (17)] which is
proportional to α0 ¼ 1

2
ð∂C=∂zÞjz0 rather than α0. This

indicates that the smaller potential contrast observed in
D KPFM resulted from a larger spatial average due to the
stray capacitance including the body of the tip and the
cantilever [21–24].
In spite of lower potential contrast, D KPFM has a clear

advantage in that it requires much smaller Vac ¼ 100 mVp-p
compared with 1 Vp-p for FM KPFM and 8 Vp-p for AM
KPFM. This advantage is important for such samples as a
semiconductor where the influence of the large Vac can be
very important due to band-bending effects.
The detection bandwidth of D KPFM is determined by

the bandwidth of the amplitude-control feedback loop used
in FM AFM. In fact, applying the coherent Vac causing
dissipative force can be used to measure the dynamics of
the amplitude-control feedback system. In FM AFM, the
AFM cantilever serves for the frequency-determining
element of an oscillator circuit (i.e., self-oscillator) so that
the oscillation frequency of the oscillator keeps track of
the resonance frequency of the cantilever. In this way, the
conservative force has no influence on the drive amplitude
[25,26] and the amplitude controller compensates for the
effective Q factor change caused by dissipative force.
Therefore, by modulating Vbias at a low frequency (< a
few kHz) together with applying the coherent Vac, the
amplitude of the dissipative force can be modulated as can
been seen in Eq. (15) and the frequency response of the
amplitude feedback loop can thus be measured with a lock-
in amplifier. The measured −3 dB bandwidth of the
amplitude feedback loop is as high as 1 kHz, which is
wider than that of the phase locked loop (PLL) frequency
detector (400 Hz). Note that in contrast to the settling time
of the oscillation amplitude of a cantilever subject to a
change in conservative force which is τ ∼Q=f0 [26], the
amplitude response time to a dissipative force is not limited
by Q and can be faster because of the active damping
mechanism built in the amplitude-control feedback loop
[27] as well as the induced energy dissipation which is
given by πFquadA in addition to the internal dissipation of
the cantilever, πkA2=Q. This explains the observed fast
response of the amplitude feedback loop, resulting in the
wider bandwidth of the voltage feedback loop in D KPFM
than that in FMKPFM that is limited by PLL demodulation
bandwidth (typically < 1 kHz) which sets the bias modu-
lation frequency.
The noise of VCPD is ultimately determined by the noise

in the tip oscillation amplitude δA. The change in the
oscillation amplitude of the self-excited cantilever ΔA,
caused by the dissipative force Fquad, is given by

ΔA ¼ −
Q
k
Fquad ¼ −

Q
k
α0VdcVac ¼

Q
k
∂C
∂z

����
z0

VdcVac: ð18Þ

Equation (18) resembles the amplitude response of a
simple harmonic oscillator driven on resonance on which
AM KPFM is based.
The noise in VCPD, δVCPD can thus be expressed as

follows:

δVCPD ¼ k
Q

δA
∂C
∂z jz0Vac

; ð19Þ

which agrees with the result by Fukuma et al. [9]. This
indicates that δVCPD is proportional to k=Q. The source of
δA can be either detector noise or thermal noise depending
on the particular AFM system and its operating condition.
More detailed discussion on the noise in AM KPFM is
found in the literature [28]. In typical AM-KPFM mea-
surements [20] where the second flexural-mode oscillation
is used for detecting electrostatic force, the improvement of
δVCPD by the enhancedQ factor is partially canceled by the
substantially higher dynamic spring constant and lower
quality factor of the second mode as we have demonstrated
in Fig. 4. D KPFM enables us to fully take advantage of the
resonance enhancement while retaining the advantages of
the single-pass FM-AFM.
So far, we assumed that no other process other than the

dissipative electrostatic force causes the dissipation signal
in FM-AFM systems. Although it is often the case that the
contributions from other processes are negligible, even
when other intrinsic [29,30] or extrinsic [25] dissipation
processes are present, it is possible to separate the electro-
static dissipation induced by Fquad just as is done in FM
KPFM with Δf. In this case Vbias needs to be modulated at
a low frequency and the resulting modulated dissipation
signal is used for the dc bias feedback. Clearly, this scheme
is slower than the fast response achieved by the D-KPFM
technique.

V. CONCLUSION

In conclusion, we report an experimental technique for
Kelvin probe force microscopy using the dissipation signal
of FM-AFM for dc voltage feedback. It features the simpler
implementation and faster scanning as it requires no low-
frequency modulation. The dissipation is caused by the
oscillating electrostatic force that is coherent with the tip
oscillation, which is induced by a sinusoidally oscillating
ac voltage applied between the tip and sample. We analyzed
the effect of the phase of the oscillating force on the
frequency shift and dissipation and found that the relative
phase of 90° is the most appropriate for KPFM measure-
ments. The D-KPFM technique requires a significantly
smaller ac-voltage amplitude (a few tens of mV) by virtue
of the resonance enhanced force detection and the use of
fundamental flexural-mode oscillation. This feature will be
useful in the electrical characterizations of materials whose
electrical properties are sensitive to the externally applied
electric field.
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