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Abstract

RASA REJALI

Ultrafast Atomic Force Microscopy

Developing a technique that combines nanometer spatial resolution with sub-
femtosecond temporal resolution is a crucial step towards exposing the inner mech-
anisms of chemical reactions, single molecule motion, electron dynamics in solids,
and the effects of defects or trap states on electron motion and behavior, amongst a
slew of other questions related to the ultrafast electron dynamics of surfaces.

In this work, we integrate a traditional pump-probe spectroscopy scheme into
an ultra-high vacuum atomic force microscope to develop the first ultrafast atomic
force microscope capable of measuring nanoscale forces with attosecond precision.
We use this technique to measure and spatially resolve local changes in electric po-
larization in a common, and well characterized, nonlinear material: lithium niobate.
In particular, we exploit the strong second-order nonlinear susceptibility of lithium
niobate to produce an electric polarization proportional to the incoming electric field
of two ∼100 fs, 780 nm laser pulses. The induced polarization change in lithium nio-
bate generates an electrostatic force that is detected, and spatially resolved, using
non-contact AFM.

Furthermore, we use our technique to experimentally verify that the fundamental
sensitivity limit of force detection in non-contact AFM, which is determined by the
thermal noise, also dictates the minimal temporal resolution that can be achieved.
We present a generalization of our time-resolved AFM technique for measuring any
light-matter interaction that results in a measurable force.
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Résumé

RASA REJALI

Microscopie Ultrarapide à Force Atomique

La développement d’une technique combinant la résolution spatiale nanométrique
et la résolution temporelle sous-femtoseconde est une étape cruciale pour exposer
les mécanismes internes des réactions chimiques, les mouvements moléculaires, la
dynamique des électrons dans les solides et les effets des défauts ou états des pièges
sur le mouvement et le comportement des électrons, parmi une foule d’autres ques-
tions liées à la dynamique ultrarapide des électrons des surfaces.

Dans ce travail, nous intégrons un schéma de spectroscopie pompe-sonde tradi-
tionnel dans un microscope ultra-vide à force atomique pour développer le premier
microscope à force atomique ultrarapide capable de mesurer les forces nanométriques
avec une précision d’attoseconde. Nous utilisons cette technique pour mesurer et
résoudre spatialement les changements locaux de la polarisation électrique dans un
matériau commun non linéaire et bien caractérisé: le niobate de lithium. En partic-
ulier, nous exploitons la forte susceptibilité non linéaire de deuxième ordre du nio-
bate de lithium pour produire une polarisation électrique proportionnelle au champ
avec période ∼100 fs et longeur d’onde 780 nm électrique entrant de deux impul-
sions laser. Le changement de polarisation qui est induit dans le niobate de lithium
génère une force électrostatique qui est détectée et résolue spatialement, en utilisant
AFM sans contact.

En outre, nous utilisons notre technique pour vérifier expérimentalement que la
limite de sensibilité fondamentale de la détection de force dans l’AFM sans contact,
qui est déterminée par le bruit thermique, dicte également la résolution temporelle
minimale qui peut être obtenue. Nous présentons une généralisation de notre tech-
nique d’AFM résolue en temps pour mesurer n’importe quelle interaction lumière-
matière qui résulte en une force mesurable.
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Chapter 1

INTRODUCTION

Since their invention in the mid 1980s, scanning probe techniques, like atomic force
microscopy (AFM) and scanning tunneling microscopy (STM), have become typ-
ically favored methods of surpassing the diffraction limit of optical techniques to
obtain real-space, atomically resolved images of surfaces. A continued theme in
scanning probe research has been to develop tools and techniques for reliably char-
acterizing structure-function relationships on the nanoscale. Along these lines, one
of the most significant challenges facing the community was to develop a variant of
the scanning probe microscope, which would combine the sub-nanometer resolu-
tion characteristic of AFM or STM with optical spectroscopic capabilities that would
allow for the time resolution necessary to study nanoscale ultrafast dynamics. Thus,
it follows that new methods for probing and controlling nanoscale physics on ultra-
fast time scales are continually under development, with progress in the field being
largely spearheaded by instrumentation development [1–3].

In its most common realization, AFM is an inherently slow technique: for exam-
ple, the resonant frequency of a typical cantilever in vacuum is between 0.1–1 MHz,
and the time constant of the feedback electronics is usually in the range of millisec-
onds [4, 5]. For much of its tenure as a surface science characterization tool, this
has led to the assumption that phenomena occurring faster than the cantilever reso-
nance cannot be resolved using AFM [6, 7]. However, slow detection does not have
to render a detector useless for ultrafast measurements: indeed, most photodetec-
tors used for optical ultrafast measurements are much slower than the physics they
probe. In fact, the most recent advances in ultrafast photodetectors have resulted
in response times on the order of a few picoseconds—still much slower than the
timescales associated with most ultrafast phenomena [8, 9].

The first study to propose a general technique for achieving ultrafast time resolu-
tion in scanning probe microscopies was presented by R. Hamers and D. G. Cahill
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in 1990 [10]. The authors demonstrated that time resolution faster than the band-
width of the detection electronics was possible: by using a pulsed illumination
scheme, they were able to exploit the inherent nonlinearities of photocarrier dy-
namics to achieve nanosecond temporal resolution with scanning capacitance mi-
croscopy [10, 11]. This general technique has been implemented by various research
groups since, to measure minority carrier lifetimes, recombination rates in photo-
voltaics, photodynamics in semiconductors, and time-resolved changes in surface
photovoltage—all in the micro- to millisecond range [12–15]. Only recently has the
time resolution of AFM advanced beyond the resonance frequency of the mechan-
ical oscillator, with picosecond resolution—the fastest to date—reported by Schu-
macher et al. on low-temperature grown GaAs [16].

Conversely, adapting ultrafast measurement techniques to STM has generally fol-
lowed a faster trajectory, and several research groups have succeeded in demon-
strating picosecond time resolution by means of optical pump-probe excitation and
non-linear mixing in the tunnel junction [17–24]. Most recently, sub-50 fs tempo-
ral resolution has been demonstrated by using the light field of a phase-stable THz
pulse to gate the tunnel current of a STM measurement [21, 25–27]. These landmark
achievements have significantly impacted the scanning probe community, making
heretofore impossible experiments a reality. However, the shortcomings of an ul-
trafast STM must also be noted: first, samples are restricted to conductive species;
and second, thermal expansion caused by incident laser light can produce small
perturbation of the tunnel gap, and therefore lead to measurement artifacts [16].

These are limitations that would be rectified by the development of an ultra-
fast AFM. Thus, the cumulative efforts expended by researchers over the past few
decades to achieve time resolution in AFM are well-justified, as are the continued
attempts to improve this time-resolution. AFM is uniquely able to spatially resolve
molecular structure, surface potential [28], as well as local density of states [29–31].
In this work, we present a general technique for achieving attosecond temporal pre-
cision with an ultra-high vacuum (UHV) AFM.
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Chapter 2

NANOSCALE FORCE DETECTION

The invention of the scanning tunneling microscope (STM) by Binnig and Rohrer
in 1982 gave new meaning to research in nanotechnology: since the first atomi-
cally resolved images of the Si(111)7×7 surface were acquired, the capabilities of
scanning probe techniques for nanoscale characterization and real space imaging of
atomic structure quickly became evident—and indispensible—to the surface science
community [32]. Only four years later, the major limitation of STM—the need for
conducting surfaces—was shortly rectified by the development of the atomic force
microscope (AFM), which expanded the range of measurable samples to include
non-conductive species, such as insulators and dielectric [33].

The basic working principle of AFM was initially based on scanning a tip, sup-
ported by a cantilever beam, across a surface in contact, while continuously record-
ing the deflection of the beam to extract surface topography. Further progress led
to the development of another mode of AFM: non-contact (or dynamical) AFM (nc-
AFM) [34]. In this mode, the cantilever is vibrated near its resonance frequency, and
changes in the vibration arising from tip-sample interactions are measured.

Several factors have contributed to making nc-AFM the powerful, versatile, and
frequently-used technique it has become today: first, it regularly allows for nanome-
ter spatial resolution; second, the probe can be used for topographical imaging and
general characterization of the surface; and lastly, it records several parameters that
are sensitive to tip-sample interactions (phase shift, amplitude, frequency shift, so
forth) [35]. The combination of AFM with other experimental methods has led to
the development of a wide range of research fields, which have aimed at accessing
additional sample properties on the nanoscale.

The two major operating modes of nc-AFM are amplitude-modulated (AM) [34,
36] and frequency modulated [5]. In AM-AFM (tapping mode), the cantilever is
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driven near or at its free resonance frequency. In this case, the feedback parame-
ter used to extract topography is the cantilever oscillation amplitude. Additionally,
the phase shift between the excitation and the tip oscillation traces changes in the
sample properties. In FM-AFM (non-contact mode), the cantilever is driven at its
resonance frequency with a fixed oscillation amplitude. However, this resonance
frequency is a function of the forces acting between tip and sample: the source of
contrast thus arises by tracking the difference in the free resonance and the mea-
sured resonance as the tip is scanned over the surface. An important practical dis-
tinction between these operation modes is that AM-AFM is well suited to measure-
ments performed in air or liquid, while FM-AFM is optimal for use in UHV. This
distinction arises because the quality factor of the cantilever is higher in vacuum(

Q ∼ 104), and this results in very slow feedback responses for AM-AFM; in con-
trast, the additional feedback loop needed for FM mode would make it too slow
and unnecessarily complicated for operation in air or liquid [35]. This chapter will
describe the working principles of FM-AFM, the dominant mode used for measure-
ments presented in this thesis.

2.1 Principles of Frequency Modulated AFM

FM mode was developed by Albrecht et al. as a way to achieve heightened measure-
ment sensitivity by means of an increased Q-factor, while ensuring no restrictions
on the bandwidth [5]. In both operational modes of nc-AFM, the equation of motion
(EOM) of the cantilever-tip ensemble under the influence of tip-sample interaction
forces must be solved.

Though a rigorous approach must consider the 3D equation of motion [37–39],
most consider the cantilever-tip system as a point-mass spring, which reduces the
equation of motion for the direction perpendicular to the surface z(t) (Figure 2.1) to
a nonlinear second-order ODE:

mz̈(t) +
mQ
ω0

ż(t) + kz(t)− Fts[zc + z(t)] = Fexc(t) (2.1)

where Fexc denotes amplitude of the driving force, m the mass, and zc the average
tip-sample separation; Q, ω0 = 2π f0, and k denote the quality factor, the angular
resonance frequency, and the force constant of the free cantilever, respectively; and
Fts the tip-sample interaction force. In the absence of tip-sample forces, equation 2.1
reduces to describe a driven damped harmonic oscillator.
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FIGURE 2.1: Schematic of the cantilever-tip
ensemble, demonstrating the spatial distances in
dynamic modes of AFM. The average separation
between the tip and sample surface is given by zc;
the instantaneous position of the tip, given by z, is
defined relative to this rest position. The tip-sample
separation d is the difference between zc and z.
Figure adapted from [35].

In general, trying to relate the measured experimental frequency shift to the tip-
sample force is a complex problem, partly because Fts is inherently anharmonic.
Furthermore, Fexc(t) is not perfectly harmonic either: the amplitude and frequency
of the excitation are not constants, but rather dependent on the control electronics
where the signal originates. Specifically, an amplifier receives the beam-deflection
detection signal and adjusts the amplitude the excitation signal to keep the oscilla-
tion amplitude of the cantilever constant. Additionally, it shifts the phase of the ex-
citation to resonantly excite the cantilever. Thus, this feedback loop (schematically
depicted in figure 2.2) ensures the cantilever maintains constant amplitude and is
being driven at its current resonance frequency. To account for this, Gotsmann et al.
proposed a model for describing the excitation force for a PI controller [40]:

Fexc(t) = R(t)z(t − tphase). (2.2)

A time delay, tphase, is used to verify the driving force is resonant with the cantilever
oscillations. R(t) denotes the loop-gain function, and is contingent on the current
and previous values of the cantilever oscillation amplitude A(t), the targeted am-
plitude A0, and the PI controller settings, such as the proportional gain p and the
integral gain i:

R(t) = p[A(t)− A0] + i
∫ t

t′=0
[A(t′)− A0] dt (2.3)

By property of maintaining a constant vibration amplitude, the feedback loop
ensures that energy loses, whether they arise from the cantilever or from tip-sample
forces, are completely nullified by the excitation signal. Therefore, the driving (Fexc)
and damping terms (∝ ż(t)) in equation 2.1 can be discarded, yielding [41]:

mz̈(t) + kz(t)− Fts[zc + z(t)] = 0 (2.4)
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FIGURE 2.2: Experimental configuration of FM-AFM. A laser diode and four-quadrant pho-
todiode are used to track the motion of the cantilever. The beam-deflection signal is fed
to both the amplitude regulation system and the FM demodulator. The amplitude con-
trol maintains the oscillation amplitude of the cantilever at a constant set value, A0. By
comparing the current amplitude to the set-point, this regulation system applies the correct
excitation signal to the cantilever drive piezo. Similarly, the FM demodulator extracts the
frequency shift of the cantilever by comparing the current resonance, f , to the set point f0.
The frequency shift is then sent to the topography controller, which controls the z-position

of the sample piezo to maintain a constant Δ f and extract a topographical image.

Additionally, the assumption that the interaction force Fts can be linearized around
zc is valid in the small oscillation amplitude limit. In that case,

mz̈ + (k + kts)z(t) = 0 with kts(zc) = −∂Fts

∂s

∣∣∣∣∣
s=zc

(2.5)

In the limit that kts � k, it is possible to Taylor expand around kts/k = 0 to arrive
at an analytical expression for the frequency shift in terms of the force gradient:

Δ f (zc) =
f0

2k
kts(zc) = − f0

2k
∂Fts

∂s

∣∣∣∣∣
s=zc

(2.6)

However, if the oscillation amplitude is large with respect to the tip-sample inter-
action range, then the above-stated approximation is not valid. For common oscil-
lation amplitudes (∼100Å) and stiff cantilevers (k ∼ 20 − 30N/m), the potential en-
ergy of the cantilever (kA2

0/2) is large compared to the energy of typical tip-sample
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interactions (1-10 eV) [35]. In this case, the tip-sample system can be described as a
weakly perturbed harmonic oscillator. Thereby, the frequency shift can be derived
using first order perturbation theory, as initially shown by Giessibl [41]. Several dif-
ferent perturbation schemes for large-amplitude oscillation have followed since [42–
48], but the common central result establishes a relationship between the frequency
shift and the average tip-sample force during a full oscillation cycle:

Δ f (d, k, A0, f0) = − f0

kA2
0
〈Ftsz〉 (2.7)

= − 1
2π

f0

kA0

∫ 2π

0
Fts[d + A0 + A0 cos(2π f0t)]A0 cos(2π f0t) dt (2.8)

Unlike the small-amplitude result (equation 2.6), the large-amplitude expression
above depends on the distance of closes approach, d, as well as the operational os-
cillation amplitude.

Having understood the relationship between measured frequency shift Δ f and
tip-sample forces Fts it is useful to investigate the origin of these interactions and
the different types of tip-sample forces that are relevant to, and dominate, AFM
measurements.

2.2 Interaction Forces

Tip-sample interactions are comprised of various short- and long-range forces—but
those relevant to AFM are in almost all cases electromagnetic in origin. The inter-
molecular, surface, and macroscopic sample features resulting in tip-sample interac-
tions are encompassed by the following: van der Waals forces, short-range repulsive
and chemical binding forces, electromagnetic forces, and long-range electrostatic
forces.

The empirical Lennard-Jones potential, shown in figure 2.3, is used to describe
short-range interactions [50]. At small tip-sample separation distances, the Lennard-
Jones short-range force is repulsive. As the tip-sample distance is increased, the
interaction force becomes attractive, reaches a global minimum, and then asymptot-
ically approaches zero. For dipole-dipole interactions, this is quantitatively delin-
eated by the Lennard-Jones potential at a distance r [50]:

ULJ = −4ε
[(σ0

r

)6 −
(σ0

r

)12
]

, (2.9)
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FIGURE 2.3: The Lennard-
Jones potential. This po-
tential is usually used to
described short-range tip-
sample interactions. Nc-
AFM operating conditions
typically lie in the attrac-
tive region of this interac-

tion. Figure from [49].

where σ0 is the characteristic length and ε an empirical constant that denotes the
characteristic tip-sample interaction energy.

For very small tip-samples distance, the electron clouds of the tip and sample
atoms overlap, resulting in repulsive forces due to the Pauli exclusion principle. At
distances below ∼ 5Å, a bonding state of the quantum mechanical overlap between
the tip and sample wavefunctions exists—this gives rise to chemical forces with an
exponential distance dependence [51].

The van der Waals force FvdW arises from interactions of induced dipoles between
atoms and molecules and constitutes a constant contribution to the attractive region
of the short-range force. To analytically describe the van der Waals force in AFM,
the sample surface is modeled as an infinite plane and the tip as a sphere of radius
R [35, 50]:

FvdW = −HR
6d2 , (2.10)

where H denotes the Hamaker constant and d the closest tip-sample separation dis-
tance. If the tip-sample distance is smaller than intermolecular distances, the adhe-
sion force substitutes the van der Waals force.

The final dominant contribution to tip-sample interactions is the electrostatic force.
In the AFM perspective, the tip-sample system can be modeled using a parallel-
plate capacitor with energy Uel = 1/2CV2, where C denotes capacitance and V the
voltage applied between tip and sample. Thus, in the absence of free charges the
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electrostatic force is:

Fel = −� Uel =
1
2
∂C
∂z

V2 + CV
∂V
∂r

, (2.11)

However, the AFM is sensitive to forces acting perpendicular to the sample surface,
and thus the spatial gradient reduced to a 1-dimensional derivative:

Fel = −1
2
∂C
∂z

V2, (2.12)

It is worth noting that the electrostatic force is always attractive, because ∂C/∂z < 0.

The above-mentioned short- and long-range forces all contribute to the tip-sample
interactions measured in AFM. Depending on experimental conditions, such as the
tip-sample distance and the sample properties, it is often possible to determine the
dominant force acting on the tip and use this information to relate the measured
frequency shift to a real force. However, as equation 2.8 indicates, the measured
frequency shift is proportional to the time average of the force over a full oscillation
cycle of the tip—and this may lead to the assumption that forces happening faster
than the period of this oscillation cannot be resolved. By exploiting the inherent
nonlinearities of the sample response, it is possible to overcome this apparent limi-
tation. In the following, the true lower limit of time resolution in FM mode AFM, as
originally demonstrated by Schumacher et al. will be explained [16].

2.3 Lower Limit of Time Resolution in FM-AFM

To determine the minimum achievable time resolution in FM-AFM for a general
external stimulus and a nonlinear sample response, it is useful to view the problem
from the perspective of energy changes rather than forces, as originally proposed by
Hamers and Cahill [10].

Consider the potential energy of the AFM cantilever, U(t), subject to some time-
dependent tip-sample interaction, Uts(t), resulting from the external stimulus, S(t);
assume this interaction results in some detectable change in the measured frequency
shift [16, 35, 41, 42, 52]. The applied stimulus can take any form— optical, ther-
mal, magnetic, electric—as long as the modulation it induces causes a measurable
change.

For the sake of simplicity, we will consider that S(t) is a pulse train, as depicted in
figure 2.4. For the duration of the pulse, Tp, the tip-sample interaction energy change
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FIGURE 2.4: The external modulating signal, S(t) (solid black line) plotted against time for
(a) long and (b) short delay times, Td. The corresponding change in the tip-sample interac-
tion energy (blue) is also shown. As indicated, the average signal changes as a function of

the delay time. Figure adapted from [53]

can be approximated to be a constant U0. The rise time of the sample response must
be much shorter than the pulse duration for this approximation to hold. Once the
external stimulation turns off, the sample response decays according to a character-
istic response time τ:

ΔU(S(t)) =

{
U0 for 0 < t < Tp

U0e−(t−Tp)/τ for Tp < T < Trep
(2.13)

The aim of using an AFM to measure this modulation in the tip-sample interaction
is to extract the decay time τ. If τ is much shorter than the oscillation period of the
cantilever (1-10 μs) and the detection electronics, then the AFM does not have the
ability to resolve a single cycle of this light-on, light-off modulation. Instead, the
cantilever measures over many cycles of the modulation, and therefore detects the
average response of the system.

In fact, the measured average signal will depend on the delay time between two
consecutive pulses, as well as the decay time of the system response. Thus, by vary-
ing Td many times over and recording the average signal each time, it is possible to
reconstruct the original event and extract decay times much faster than the oscilla-
tion period of the cantilever.

The only requirement is that the energy difference between two different delay
times is measurable. Thus, the cantilever oscillation and slow feedback electronics
are no longer relevant; instead, the minimal detectable energy by FM-AFM is the
limiting factor. To determine this lower limit, it is necessary to define the average
potential energy over one cycle of the pulsed stimulation, Trep:

〈ΔU(S(t))〉 = τU0

Trep

(
1 − e−Td/τ − e−(Trep−Td−2Tp)/τ

)
(2.14)
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FIGURE 2.5: Two pulse trains modulating the tip-sample interaction are shown: the pump
(yellow shading) and probe (red shading). The time delay (Td) between the pump and the
probe is defined. The average potential energy change caused by the external stimulus is
also shown. For simplicity, we assume the pump and probe pulses incite the same response
amplitude. Physically this corresponds to the case in which the both pump and probe pulses
excite all the carriers in the probe volume, thereby saturating the response signal. Figure

adapted from [53].

If Trep 	 Tp, Td, and τ, then e−(Trep−Td−2Tp)/τ → 0, thus yielding an easy relation-
ship between average energy changes and decay time. For FM-AFM, the minimum
energy change detectable for on-resonant operating conditions is determined by the
thermal noise [5]. As shown by Schumacher et al., by equating the average energy
change (equation 2.14) to the thermal noise limit it is possible to extract the lower
limit of time resolution in AFM:

τ =
Trep

U0(1 − e−β)
2kBT
π f0Qτs

, (2.15)

where β is Td/τ, and τs is the experimental integration time [16]. Though it is not
possible to analytically isolate τ in equation 2.15, the dependence of τ on kBT is
still demonstrated. This results holds if instead of a single pulse train, there are
two pulse trains (pump and probe) that can be delayed in time with respect to each
other, as shown in figure 2.5. This has been implemented experimentally using FM-
AFM and a pump-probe scheme to measure picosecond photocarrier decay in low-
temperature grown GaAs with a cantilever frequency of 280 kHz [16].

The fundamental result that the lower limit of time resolution in FM-AFM is gov-
erned by thermal noise serves as the basis for ultrafast AFM measurements. This
principle is implemented in this thesis for the development of an AFM capable of
femtosecond temporal resolution, the instrumentation details of which follow in the
next chapter.
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Chapter 3

EXPERIMENTAL TECHNIQUES &
METHODS

The development of an ultrafast FM-AFM is contingent on two fundamental tech-
niques: UHV-AFM, and ultrafast optical methods. The technical realization of an
ultrafast AFM is quite challenging and intricate, partly because it is a multi-fold
problem: the optical and AFM instrumentation must first be independently func-
tional, and then successfully integrated. This process hinges on coupling the excita-
tion into the UHV, and directing it precisely at the tip-sample junction.

Thus, it is necessary to understand the experimental configuration of the UHV-
AFM used to perform measurements, as well as the ultrafast laser system used to
modulate the tip-sample interaction. To this end, technical details, such as the op-
tical set-up, the laser integration, as well as potential challenges and pitfalls, are
detailed below.

3.1 Ultra-High Vacuum AFM

A commercial JEOL JSPM 4500A UHV AFM (Figure 3.1) is used to perform all the
measurements presented in this thesis. This UHV system is comprised of three
chambers: a treatment chamber, equipped with tools for sample synthesis and prepa-
ration; a main chamber, in which an AFM and SEM are located—and can be used
simultaneously—for sample characterization; and finally, an exchange chamber used
for transferring samples or cantilevers between air and UHV.

The main and preparation chambers are each equipped with a diode type sputter-
ion pump (300 L/s for N2, and 90 L/s for Ar, Satsuki SIP-300XH-T16) and titanium
sublimation pump (1,600 L/s for N2, ULVAC PGT-3F), which work together to form
a very efficient pumping system. Accordingly, the base pressure in the preparation
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FIGURE 3.1: Schematic of the JEOL JSPM 4500A UHV AFM, depicting the three chambers
(exchange, preparation, and main), the pumping system, and the surface science prepara-

tion and measurement tools available.

chamber is routinely in the 10−11 mbar range, and slightly higher at 10−10 mbar
in the main chamber. A small leak from the SEM is responsible for the pressure
discrepancy between the two chambers.

The load-lock is pumped by a turbo-molecular pump (TMP) (210 L/s for N2, Pfeif-
fer TMU 261) and backed by a sliding vane rotary vacuum pump (9.7 m3/hr, Adixen
2010SD). Two magnetically coupled transfer arms allow for transfers inside vacuum:
the first between the exchange and preparation chamber, and the second between
the preparation and main chamber.

To accommodate tips and samples, a carousel is located inside the preparation
chamber that allows for the storage of a maximum of four tip- or sample-holders.
Positions 1–3 (figure 3.1) are additionally equipped with electrical contact to allow
for sample annealing. Additionally, the carousel can be manipulated to allow sam-
ples access to the various preparation tools available within vacuum. Sputtering,
molecular evaporation, LEED, electron beam metal evaporation, and crystal cleav-
ing can be performed in situ, though those capabilities are not taken advantage of
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in this work.

The measurement chamber houses the most important part of the entire system:
the AFM. Once samples or tips are transfered to the main chamber, a so-called ele-
vator arm is used to transfer them to the AFM stage. The elevator arm extracts and
deposits samples/tips by using an electromagnetically actuated pin that couples to
a hole on the top of the holders.

The sample is placed on a piezo tube that can extend 5μm in the x- and y-directions
and 1.4μm in the z-direction. This functionality is used for scanning and fine posi-
tioning within the piezo range. The coarse positioning is controlled by gears and
levers arms inside the UHV that are magnetically synced by rotary feedthroughs to
external motors.

The resonance frequency of the cantilever is tracked using a conventional optical
beam deflection system: a laser beam is focused on the cantilever and the reflected
beam is detected using a photodiode. In particular, a 670 nm laser diode (Hitachi
HL6714G) is operated at a constant current using a low noise controller (Thorlabs
LDC 201C). A radio frequency modulator is used to modulate the DC laser bias,
which reduces the coherence length of the beam and thereby increases stability by
reducing interference. The beam reflected off the cantilever hits a mirror, and is con-
sequently directed to the 4-quadrant photodiode. The lateral position of the mirror
and longitudinal position of the photodiode can be controlled to get the beam cen-
tered on the 4-quadrants. Notably, a bandpass filter centered at 670nm with a 30nm
bandwidth (Chroma Technology Corp, NC611498, ET670/30nm) is placed in front
of the photodiode to filter stray light from the ultrafast laser used for sample exci-
tation. Of course, the bandpass filter acts to filter out any other stray light during
normal operation as well.

3.2 Technical Realization of an Ultrafast AFM

To perform time-resolved measurements with AFM, it is necessary to integrate an
ultrafast laser system into the existing vacuum system, and to reliably couple the
light to the tip-sample junction with precision. The experimental obstacles to achieve
this are numbered: first, the mechanical vibrations of the laser and UHV must be iso-
lated; the excitation laser cannot interfere with the cantilever detection system; the
position of the cantilever is subject to change, and so the laser position inside the
UHV must be easily controllable externally; and finally, the geometric restrictions
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imposed by the physical location of the UHV viewports and the AFM stage must be
respected.

Additionally, the choice of excitation is critical. Parameters such as the wave-
length, fluence, pulse duration, and repetition rate determine the type of experi-
ments that can be performed, and on what samples. For example, the pulse dura-
tion of the laser determines the time resolution achievable. Also, the energy of the
laser pulse must correspond to the energy scales associated with the sample and
the phenomenon under study. For example, to study exciton generation and decay
under resonant excitation conditions, the laser wavelength must correspond to the
excitonic level of the sample in question. The fluence of the laser must also be ac-
counted for: one must evaluate if the fluence of the excitation is sufficiently high to
observe the phenomenon under question, or rather if it is too high and might cause
bleaching or damage to the sample. Ultimately, it is important to understand the
capabilities and limitations of the excitation source, and to account for them in one’s
choice of experiment.

Such considerations, along with the experimental challenges and possible solu-
tions accompanying the integration of a laser source in UHV-AFM will be discussed
in the following. The ultrafast laser system used in this work will be explained as
well.

3.2.1 Ultrafast Laser System

Mode-locked femtosecond lasers are a common tool for performing ultrafast spec-
troscopy. Traditionally, Ti:Sapphire sources have been favored for scientific pur-
poses due to their pulse characteristics, tunability, and power output, despite the
technical day-to-day challenges they often present to the user. However, the space
constraints imposed by the lab space and the sizable UHV AFM itself, a more com-
pact and user-friendly option proved necessary for our specific application. Thus,
our sources consist of two plug-and-play fiber-based ultrafast pulsed lasers: the
Toptica FemtoFiber Pro near infrared (NIR) and tuneable visible (TVIS) lasers. The
NIR laser is used exclusively in this thesis.

The NIR laser is a mode-locked Er:fiber system based on direct pumping from
fiber-pigtailed laser diodes and fiber integrated telecommunication components [54].
Specifically, the active laser medium is comprised of a Er-doped core-pumped fiber.
A schematic of the laser is shown in figure 3.2. A saturable absorber mirror (SAM)
inside the ring cavity allows for easy, self-starting mode-locking. In other words,
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FIGURE 3.2: Schematic of the mode-locked Er-fiber laser system. The two fold process—
first, the mode-locked ring oscillator to produce the beam, and second, the pulse
compression—produces beams with > 360 mW power, sub-100 fs pulse width, and 80 MHz

repetition rate, centered at 1560 nm. Figure adapted from [54].

the SAM selects and amplifies pulses with a specific amplitude, and in doing so fa-
vors mode-locked operation over continuous-wave mode. The pulses generated by
the mode-locked ring oscillator have a repetition rate of 80 MHz and center wave-
length of 1560 nm. The duration of the pulses is controlled via a motorized Si prism
compressor, that can be externally electronically optimized by the user.

The NIR laser can also produce a second beam at 780 nm through second-harmonic
generation, though both wavelengths are not available concurrently. To switch be-
tween the fundamental (1560 nm) and the second harmonic (780 nm), a mechanical
switch is used to either insert or remove a mirror from the beam path, as shown in
figure 3.3. In the case of the former, the fundamental is reflected to the secondary
aperture and emitted for use. In the case of the latter, the beam is allowed to prop-
agate towards a second mirror which redirects the beam into a second-harmonic
generation (SHG) unit.

The SHG unit is comprised of three parts: a focusing lens, nonlinear crystal, and
collimating lens. The first lens focuses the beam into periodically poled lithium nio-
bate (PPLN) for second-harmonic generation. The PPLN is housed inside a tempera-
ture controller that maintains the temperature of the crystal at ∼ 70◦ for SHG phase-
matching at 1560nm to be satisfied [55]. The emitted beam is then re-collimated and
filtered so only the 780 nm beam continues to propagate. Before the beam exits the
laser, a fraction of it is split to measure the power of the light, and this measurement
is used to adjust the gain of the pulse generation. Due to inherent inefficiencies of
the SHG process, the power of the second harmonic is substantially lower than the
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FIGURE 3.3: Following the generation of the 1560 nm pulses, the fiber is coupled to a col-
limator for beam propagation in free space. It first passes through the Si prism pulse com-
pressor to produce < 100 fs pulses. If the desired output wavelength is 1560 nm, the beam
is directly passed for emission. To output 780 nm, the beam is instead passed to a second-

harmonic generation unit and then emitted.

fundamental at typical values > 140 mW. The 780 nm output is used for all mea-
surements presented in this thesis.

3.2.2 Integration into an UHV Environment

To physically integrate the laser into the UHV system, it is necessary to ensure the
integrity of the AFM is preserved and that the beam inside the UHV can be 1) con-
trolled and 2) easily monitored.

To address these requirements, Z. Schumacher developed a stick-slip piezo-based
movable mirror (figure 3.4) that sits inside the UHV and can be externally controlled
to steer the beam with high precision [53]. The optics outside the UHV are used to
direct the beam through a UHV viewport and onto the center of the movable mirror;
the mirror is then finely positioned so that the beam is directed exactly at the tip
sample junction. Two separate cameras are used to track the position of the beam
inside the UHV: one focused on the movable mirror, and another on the sample
surface.
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FIGURE 3.4: Schematic of
the movable mirror assem-
bly. The beam enters
into UHV through the laser
feed-through. It is then
incident on a static mir-
ror that redirects the beam
onto the stick-slip piezo
mounted mirror. The po-
sition of the mirror can be
controlled externally by ap-
plying a high voltage saw-
tooth signal to the piezo
stacks, giving the mirror
free range of motion in
both the lateral and longi-
tudinal directions. Figure

from [53].

The versatility alloted by this design means the optical set-up can accommodate
any variations in tip or sample position, and that the beam inside the chamber can
be easily visually tracked. This design also allows us to work around the geomet-
ric restrictions imposed by the AFM stage and UHV components, since we have
complete control over the beam propagation inside the vacuum.

As mentioned previously, to ensure the excitation laser does not interfere with the
beam-deflection system detailed in section 3.1, a narrow band-pass filter is used to
filter any stray excitation light from the photodetector. This allows for routine op-
eration of the AFM, despite the incorporation of the NIR laser source. Additionally,
by using free-space propagation instead of fiber-optics to couple light into the UHV,
it is possible to host the laser and all the necessary optical components on an opti-
cal table that is physically isolated from the UHV system. This allows for effective
decoupling of the mechanical vibrations between the optical and AFM systems.

Following the successful integration of the ultrafast laser into the UHV AFM sys-
tem, it becomes possible to carry-out any optical spectroscopy technique suited to
the experiment at hand. The simplest configuration to start with is that of an optical
autocorrelator, which allows for a simultaneous measure of the pulse characteristics
through optical and AFM detection.
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3.3 Autocorrelation of Femtosecond Pulses

The development of laser sources operating in the pico- to femtosecond time do-
main, and more recently in the sub-femtosecond region, triggered a need for new
techniques capable of characterizing ultrafast optical pulses [56]. Optical autocor-
relators soon became a favored method for reliably extracting pulse characteristics
in cases where pulse widths were too short (< 20 ps) to be directly measured elec-
tronically with photodetectors and sampling scopes [57, 58]. This technique, orig-
inally proposed and demonstrated by Weber and Armstrong, provides an indirect
measure of pulse width by correlating the temporal trace of an ultrafast pulse with
itself.

Pulse correlation measurements by second harmonic generation are most often
performed in one of two configurations of the optical path: collinear or non-collinear
(figure 3.5) [59]. In either case, to perform an autocorrelation the input optical pulse
must be divided into two beams, where one beam travels a fixed path, and another
a path of variable length. By adjusting the path length of the latter, it is possible to
mechanically vary the delay between the pulses. The pulses are subsequently re-
combined in a nonlinear optical crystal for second harmonic generation. This crys-
tal is specifically selected to have a high second order nonlinear susceptibility χ(2)

and aligned to satisfy phase-matching, so as to ensure efficient SHG over the entire
bandwidth of the pulse. The generated second harmonic is subsequently detected
as a function of delay time using conventional means (e.g. photodiode). For a more
in-depth explanation of the nonlinear processes at hand, please refer to section 4.1.

The experimental configuration and details of the autocorrelation technique are
detailed below.

3.3.1 Intensity Autocorrelation

In an intensity autocorrelator (figure 3.5), the two beams are focused in the non-
linear crystal in a non-collinear arrangement, and thus a second-harmonic is not
detected if either beam is blocked or the pulses are not temporally overlapped in
the crystal [60]. One benefit of this configuration is that the detected 2ω signal is
background-free: due to momentum convervation, the fundamental beams are spa-
tially separated from the generated second harmonic.

Following Kaertner’s approach and neglecting normalization factors, quasi-phase
matching effects, and any z-dependence in the electric field, it is possible to express
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FIGURE 3.5: (a) Intensity and (b) interferometric configurations for pulse correlation mea-
surements by second-harmonic generation. In both arrangements, the input is split in two,
and one leg of the beam is delayed with respect to the other. The beams are recombined
in a non-linear crystal for second harmonic generation, and this 2ω signal is recorded as a
function of time delay. To avoid pulse distortions or dispersion, a thin nonlinear crystal and

reflective optics are typically used.

the nonlinear polarization induced in the crystal by the two optical fields E1(t) and
E2(t) as [61]:

P(2)(t) ∝
∫ ∞

−∞

∫ ∞

−∞
χ(2)(t − t1, t − t2)E1(t1)E2(t2) dt1 dt2 (3.1)

Approximating the material response as instantaneous, χ(2) assumes the form of a
Dirac delta-function localized at t1 and t2: χ(2)(t− t1, t− t2) → χ(2)δ(t− t1)δ(t− t2).
Thus, the polarization becomes:

P(2)(t) ∝ E1(t)E2(t) (3.2)

In the non-collinear configuration (figure 3.5) it is possible to geometrically isolate
and eliminate the background, such that the autocorrelation signal completely van-
ishes when the beams are not overlapped in space and time. Thus, the polarization
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simplifies to:
P(2)(t) ∝ E(t)E(t − τ). (3.3)

The electric field of the generated second harmonic E(t) is directly proportional to
the polarization.

Letting A(t) denote the complex envelope of the electric field E(t), then the de-
tected intensity I(τ) is of the form:

I(τ) ∝
∫ ∞

−∞

∣∣A(t)A(t − τ)
∣∣2 dt (3.4)

∝
∫ ∞

−∞
I(t)I(t − τ) dt (3.5)

Unfortunately, the intensity autocorrelation cannot be used to retrieve any infor-
mation about the shape or phase of the pulse. With a known pulse shape, it is possi-
ble to extract the pulse width using a deconvolution factor. For a Gaussian pulse, for
example, the full-width-half-max (FWHM) of the pulse τp is related to the FWHM
of the intensity autocorrelation τAC by τp = τAC/

√
2

3.3.2 Interferometric Autocorrelation

For an interferometric autocorrelator (figure 3.5), the two pulses are collinearly prop-
agating in the crystal, and thus the fundamental and generated second harmonic
are also re-radiated collinearly from the crystal (figure 3.5). A filter can be used to
eliminate contributions from the fundamental beam so only the second harmonic is
detected.

Once the two pulses have been delayed with respect to each and recombined, the
total electric field E(t, τ) can be represented by:

E(t, τ) = E(t + τ) + E(t) (3.6)

= A(t + τ)eiωc(t+τ)eiφ
+ A(t)eiωcteiφ, (3.7)

where A(t) is the complex amplitude, ωc is the carrier frequency, and φ the carrier-
envelope phase. Following from equation 3.2, and assuming the ideal case in which
both beams are truly identical, the polarization can be expressed as:

P(2)(t, τ) ∝
(

A(t + τ)eiωc(t+τ)eiφ
+ A(t)eiωcteiφ

)2
. (3.8)
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And following from equation 3.3, we can expressed the radiated electric field of the
second harmonic with respect to the polarization:

E(t, τ) ∝
(

A(t + τ)eiωc(t+τ)eiφ
+ A(t)eiωcteiφ

)2
. (3.9)

The intensity recorded by the detection electronics is integrated over the envelope
of each pulse, and thus:

I(τ) ∝
∫ ∞

−∞

∣∣∣∣(A(t + τ)eiωc(t+τ)eiφ
+ A(t)eiωcteiφ

)2
∣∣∣∣
2

Evaluating the integral and simplifying, the interferometric autocorrelation function
assumes the form:

I(τ) = Ib + Iint(τ) + Iωc(τ) + I2ωc(τ), (3.10)

where the background signal Ib, the intensity autocorrelation Iint, and the coherence
terms oscillating with ωc and 2ωc, Iωc and I2ωc , respectively, are given by:

Ib =
∫ ∞

−∞

(
|A(t + τ)|4 + |A(t)|4

)
dt = 2

∫ ∞

−∞
I2(t) dt (3.11)

Iint(τ) = 4
∫ ∞

−∞
|A(t + τ)|2|A(t)|2 dt = 4

∫ ∞

−∞
I(t + τ)I(t) dt (3.12)

Iωc(τ) = 4
∫ ∞

−∞
Re

[
(I(t + τ) + I(t)) A∗(t)A(t + τ)eiωcτ

]
dt (3.13)

I2ωc(τ) = 2
∫ ∞

−∞
Re

[
A2(t)(A∗(t + τ))2ei2ωcτ

]
dt (3.14)

Note that any dependence on the carrier-envelope phase prove irrelevant given φ is
the same for both pulses. To reliably extract a pulse width from an interferometric
autocorrelation, it is necessary to isolate Iint(τ) and use the fitted width from that
term alone. Experimentally this can be achieved by averaging the interferometric
trace, or analytically by using Fourier filtering to eliminate the ω and 2ω frequency
components. Additionally, it is common to normalize the autocorrelation trace to
the background, where Inorm(τ) = I(τ)/Ib. In general, a perfect interferometric au-
tocorrelation exhibits a 1:8 ratio between the background and the peak signal, which
occurs at zero delay when both pulses undergo complete constructive interference.

Both intensity and interferometric optical autocorrelators are very useful methods
for characterizing femtosecond laser pulses and extracting pulse parameters. As
explained in the following chapter, we integrate this technique into our UHV-AFM
system to simultaneously retrieve autocorrelation traces both in and out of vacuum.



23

Chapter 4

DETECTING THE SECOND-ORDER

OPTICAL SUSCEPTIBILITY WITH AFM

Nonlinear optics is the study of how optical properties of a material system can be
modified in the presence of intense light. In the traditional case of linear optics,
the polarization of the material is proportional to the strength of the incident op-
tical field, where the constants of proportionality are the linear susceptibility χ(1)

and the permittivity of free space ε0. However, for sufficiently intense optical fields
or materials with high nonlinear susceptibilities, the polarization response of the
material includes higher-order, nonlinear terms as well. In general terms, one can
understand this effect by considering the potential energy function U(x) of the non-
linear medium: the electric field of an incident coherent light source will cause the
electrons in a medium to oscillate about their potential minimum [62, 63].

In a nonlinear noncentrosymmetric material, such as lithium niobate, the poten-
tial energy will deviate from purely parabolic due to the higher-order anharmonic
corrections. The motion of the electrons within this material can be described by
a classical anharmonic oscillator, for which the driving force is the applied electric
field and the restoring force is a nonlinear function of the electron position—-and
from this, the nonlinear optical susceptibility emerges. Forces arising from this non-
linear light-matter interaction can be measured using AFM.

Notably, changes in the nonlinear polarization occur according to the response
time of the nonlinear susceptibility Δt ∼ h̄/ΔW, where ΔW is the nearest resonant
transition; typically, Δt is on the order of attoseconds [64]. Thus, changes in the
nonlinear polarization occur almost instantaneously, meaning the achievable time
resolution in this case is governed by the resolution of the measurement technique.
As such, nonlinear optical systems are the perfect test bed for probing the lower-
limit of time resolution in AFM. In the following, we explain the relevant nonlinear
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processes, further detailing how changes in the nonlinear polarization can be de-
tected by AFM.

4.1 Second-order Nonlinear Mixing

In second order processes, the nonlinear medium acts to produce the sum, differ-
ence, or second harmonic of the input field. They are the nonlinear interactions
used in our experimental set-up. Following Boyd’s approach, we can quantitatively
understand the electric field of the impinging optical wave Ẽ(r, t) as the discrete
sum of a number of frequency components [63]:

Ẽ(r, t) = ∑
n

E(r,ωn)e−iωnt, (4.1)

where
E(r,ωn) = A(ωn)eikn·r, (4.2)

such that E(r,−ωn) = E(r,ωn)∗ and A(−ωn) = A(ωn)∗. The nonlinear polariza-
tion can be similarly expressed as a sum over the number of frequency components:

P̃(r, t) = ∑
n

P(r,ωn)e−iωnt, (4.3)

From this we can extract the tensor components of the second-order susceptibil-
ity, χ(2)ijk (ωn + ωm;ωn,ωm), to relate the nonlinear second-order polarization to the
product of the field amplitudes:

Pi(ωn +ωm) = ε0 ∑
jk

∑
(nm)

χ
(2)
ijk (ωn +ωm;ωn,ωm)Ei(ωn)Ek(ωm), (4.4)

where (nm) is used to signify that the sum performed over n and m allows ωn and
ωm to vary independently, while holding their sum ωn +ωm fixed. Additionally, the
indices ijk are used to indicate the Cartesian components of the fields. All second-
order processes, such as sum-frequency generation, difference frequency genera-
tion, second harmonic generation, and optical rectification follow from equation 4.4.

We begin with the case of sum-frequency generation, in which two input fields of
frequency ω1 and ω2, respectively, interact with a nonlinear medium to generate an
output field of frequency ω3 = ω1 +ω2.
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In this case, performing the summation in equation 4.4—-and noting that χ(2)ijk is
symmetric under the interchange of the last two indices—-yields a nonlinear polar-
ization of the form:

Pi(ω3) = 2ε0 ∑
jk
χ
(2)
ijk (ω3;ω1,ω2)Ej(ω1)Ek(ω2) (4.5)

Notably, sum- and difference-frequency generation are related by the transforma-
tion ω2 → −ω2. For the case in which the two impinging fields oscillate at the
same frequency ω1 both these processes occur to yield a second-order polarization
comprised of a zero frequency component (ω3 = ω1 − ω1) and a second harmonic
component (ω3 = ω1 +ω1). The zero-frequency term follows from equation 4.5 by
taking ω2 → −ω1 and noting E(−ωn) = E(ωn)∗:

Pi(0) = 2ε0 ∑
jk
χ
(2)
ijk (ω3 = 0;ω1,ω1)Ej(ω1)Ek(ω1)

∗ (4.6)

The difference frequency generation between two input fields of the same frequency
is referred to as optical rectification and results in a static output field.

Second harmonic generation occurs when a nonlinear medium generates an out-
put field of frequency 2ω1 for an input field of frequency ω1:

Pi(ω3) = ε0 ∑
jk
χ
(2)
ijk (ω3;ω1,ω1)Ej(ω1)Ek(ω1) (4.7)

4.1.1 Phase Matching

For nonlinear mixing processes, phase-matching determines which nonlinear in-
teraction will be predominantly observed and occur with the highest efficiency.
Phase-matching is a statement of momentum conservation, and requires that the
wave-vector mismatch Δk is zero [65]. However, in certain cases perfect phase-
matching cannot be implemented—-a notable example being ultrashort pulses, for
which achieving Δk = 0 for all the frequency components is not possible—-and
instead quasi-phase-matching must be achieved.

The range of Δk over which the desired process happens with sufficient efficiency
is defined as the phase-matching bandwidth, where |Δk| < 2.78/L must be satisfied
for second-harmonic generation [66]. In typical experiments, the parameter L is
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FIGURE 4.1: Potential energy function for a noncentrosymmetric material (orange), for
which U(x) �= U(−x) by definition. The motion of the electrons about the potential mini-
mum, which is driven by the applied electric field, results in a net static polarization referred

to as optical rectification. Figure adapted from [63]

defined as the length of nonlinear material through which the light travels. If L is
made infinitely small, then phase-matching is always satisfied.

It is worth noting that the AFM tip is only sensitive to the surface of a material;
though the penetration depth is not well characterized as yet, it is typically on the
order of tens to hundreds of nanometers [67]. This small probe volume means that
L is sufficiently small to ensure phase-matching is effectively always satisfied.

4.2 Sensing Polarization Changes with FM-AFM

As detailed in section 2.1, the AFM cantilever can be treated as a damped, driven
simple harmonic oscillator. In FM mode, the recorded frequency shift is propor-
tional to the spatial gradient of the tip-sample interaction force. Generally, the tip-
sample interactions are comprised of short- and long-range interactions, including
contributions from the van der Waals force, chemical forces, and electrostatic forces,
amongst others. For our operating conditions and tip-sample distance, the electro-
static force is the dominant force sensed by the tip. Thus, physical processes that
result in a detectable electrostatic force can be probed by FM-AFM.
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As demonstrated above (equation 4.4), the second-order nonlinear polarization
contains frequency components arising from second-harmonic generation, sum- and
difference-frequency generation, as well as optical rectification. However, it is not
obvious which, if any, of these processes can be sensed by the AFM tip. By modify-
ing the Lorentz model of the atom to include nonlinearities in the restoring force act-
ing on the electron, it is possible to describe the relationship between the AFM and
these second-order interactions. The equation of the motion for the electron position
x̃ in a noncentrosymmetric medium can be described by the following ODE [62, 63]:

¨̃x + 2γ ˙̃x + Ω2
0x̃ + ax̃2 = −eẼ(t)/m, (4.8)

where Ẽ is the applied electric field, the damping force is −2mγ ˙̃x, and the parame-
ter a denotes the strength of the nonlinearity. Physically, we can understand equa-
tion 4.8 as describing the motion of the electrons oscillating about the potential min-
imum of a non-parabolic, non-symmetric potential energy function (figure 4.1) of
the form:

U(x̃) =
∫

mω2
0 x̃ + max̃2 dx̃ =

1
2

mω2
0 x̃2 +

1
3

max̃3. (4.9)

In turn, the electron motion in this potential, induced by the incident laser field,
gives rise to a re-radiated electric field that propagates in the direction perpendicular
to the electron’s direction of motion. This emitted field exerts an electric force on the
cantilever and thereby alters its resonance frequency. We can track this change of
frequency and relate it directly to a force. It is important to note that the tip cannot
sense forces that are acting perpendicular to its direction of motion.

Additionally, the force the cantilever feels from the re-radiated field is time-averaged
over the cycle time of the cantilever (a few hundred kilohertz). For a purely parabolic
potential, for example, the time average of the re-radiated field would be zero, and
thus, a force would not be detected by the cantilever. In the case of an anharmonic
potential, as depicted in figure 4.1, the time-average of the re-radiated field is non-
zero: the force exerted on the tip arises from the net static polarization, which is
referred to as optical rectification (equation 4.6). Thus, the electrostatic force exerted
on the tip arises purely from the zero-frequency process of optical rectification; other
frequency components arising from a second-order nonlinear interaction cannot be
detected via AFM in this configuration.
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4.3 Experimental Implementation: Autocorrelation by

Optical Rectification with FM-AFM

To probe the zero-frequency term in the second-order nonlinear polarization, we
implement a simple autocorrelation scheme to retrieve concurrent measurements of
the pulse overlap in air and in vacuum. The autocorrelation in air occurs via second-
harmonic generation and is detected using traditional optical methods, while the
AFM tip is used to record the pulse overlap in vacuum by using the optically rec-
tified signal from a nonlinear crystal. This experimental scheme is used as proof-
of-concept to verify that the force sensing performed by the AFM yields results in
agreement with a well-accepted optical technique.

4.3.1 Optical Autocorrelation Scheme

To achieve this, we implement the experimental scheme depicted in figure 4.2. First,
we split the output of a mode-locked, P-polarized laser (Toptica FemtoFiber pro
NIR) operating at 780 nm (10 nm bandwidth) and 80 MHz using a 50:50 beam split-
ter (Thorlabs UFBS5050). The generated pulse trains are delayed with respect to
each using using two mechanical stages.

A free-space delay stage (Thorlabs ODL220) is used to achieve minimum delays
of 0.66 fs, with a full travel range of 1466 ps. To introduce finer delays (sub-1 fs),
two fused-silica wedges (Newlight Photonics QAR15121-A4-AR800/400) are used
in conjunction: one wedge is mounted on a translation stage and slowly moved into
the beam path, while the other is held fixed. The coarser mechanical steps used to
move the wedge are thus converted into optical delays of a few tens of attoseconds
through the relationship [68]:

Δτ = Δ�(1 − n)
tan(α)

c
, (4.10)

where Δτ is the temporal delay, Δ� the step size of the mechanical stage, and c the
speed of light in air.

The two pulse trains are subsequently recombined using a 50:50 beam splitter:
half the recombined beam is directed towards an optical autocorrelator, the other
half towards the tip-sample junction in the UHV-AFM. The interferometric opti-
cal autocorrelator is comprised of several components: first, a zero-order half-wave
plate (WPH05M-780) that rotates the linear polarization of the beam by 90◦; second,
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FIGURE 4.2: Schematic of the optical system. The output of a mode-locked 780 nm femtosec-
ond fiber laser is split to produce two identical pulse trains. Coarse and fine delay stages
introduce a well defined temporal separation between the pulses. The beams are recom-
bined spatially and simultaneously directed towards the optical autocorrelator, as well as

the tip-sample junction in the AFM.

a lens for collinearly focusing the beams in the nonlinear crystal; and third, an ul-
trathin (< 100 μm) BBO (beta borium borate) nonlinear crystal for second-harmonic
generation. A short pass filter (Thorlabs FES0450) is used to isolate the 2ω light from
the ω beam, and a second lens focuses the 2ω for detection. As the relative time de-
lay is increased, the intensity of the generated 2ω beam goes to zero; conversely, the
intensity is at a maximum when the relative delay is zero.

4.3.2 Incorporation into AFM

As previously mentioned, the other leg of the recombined beam is directed towards
the AFM stage, which houses our nonlinear sample of choice: PPLN. A half-wave
plate is used to orient the polarization of the incident light such that the force exerted
by the induced polarization in the sample—in this case, lithium niobate—is along
the tip’s direction of motion. When the polarization is oriented in this way, the force
felt by the AFM tip is maximal. This alignment is therefore quite critical for ensuring
good signal-to-noise for AFM measurements.
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A calcite polarizer is placed after the wave plate, and together the wave plate
and polarizer can be used as a variable power attenuator. The orientation of the
polarizer is held fixed as the angle of the wave plate is varied—this ensures the
polarization entering the AFM is constant, while allowing for controlled attenuation
of the power. Specifically, a rotation by φ degrees of the half-wave plate results in
a rotation of 2φ of the polarization; accordingly, the intensity of the beam after the
polarizer is given by I = I0 cos2(2φ). The output power varies from a maximum to
minimum over a 45◦ rotation of the wave plate.

It is worth nothing that the polarizer causes significant dispersion, and thereby
broadens the pulse width—this means that the pulse width in the AFM will be
larger than that of the optical autocorrelation. Specifically, dispersion causes the
frequency components of an ultrashort pulse to propagate with different velocities,
and thereby results in an overall broadened pulse width. The GVD is defined as:

GVD =
λ3

2πc2

(
d2n
dλ2

)
= D2/L, (4.11)

where λ is the wavelength of the propagating light, n the index of refraction of
the material, and D2 the group delay dispersion (GDD); the GVD is the GDD per
unit length. After propagating through a dispersive medium, the pulse duration is
increase to:

τ = τ0

√√√√1 +

(
4 ln(2)D2

τ2
0

)2

, (4.12)

where τ0 is the pulse duration before dispersive effects.

Two periscopes are used to direct the beam into the UHV at the correct height
and angle. The orientation of the second periscope is particularly crucial, as it is
last piece of optics we can control before the beam enters the UHV system. This
periscope must be carefully aligned such that the beam deflects off the static mirror
to impinge perfectly on the center of the movable mirror, which was described in
detail in section 3.2.2. An infrared camera is directed towards the movable mirror to
serve as a visual guide. Once this alignment has been achieved, the movable mirror
can be controlled externally to align the beam to the tip-sample junction. From there,
the same feedback scheme used for normal FM-AFM operation (section 2.1) can be
implemented for force sensing (figure 4.3). The AFM tip can thereby detect any
light-matter interactions resulting in a measurable force.
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FIGURE 4.3: Two pulses, separated by a temporal delay τ, incident on the sample surface.
The angle of incidence of the beams is roughly 80◦. The laser light is oriented to hit the tip-
sample junction, while ensuring thermal heating of the cantilever does not occur. The AFM
tip is used to detect any forces generated by the light-matter interaction using the usual

feedback scheme.

Beam Alignment on the Sample Surface

The alignment of the beam on the sample surface is rather sensitive: first, we must
ensure both pulse trains are perfectly spatially overlapped on the sample surface;
second, the beam must be oriented to guarantee no thermal heating of the can-
tilever while still exciting the tip-sample junction. Thermally driving the cantilever
will introduce measurement artifacts and undermine the stability of the AFM. The
coarse alignment of the beam on the sample surface is achieved by visually track-
ing the laser spot and roughly orienting it around the the tip. The frequency shift
is another good measure for rough alignment: a maximal change in the frequency
shift is achieved when the light is directly hitting the tip-cantilever ensemble—-
unfortunately, this also means the cantilever is being thermally driven by the optical
field. To remedy this, fine alignment of the beam position is required.
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FIGURE 4.4: Thermal heating of the cantilever as a function of the laser spot position on
the sample surface. (a) A mechanical chopper at 180 Hz is used to modulate the incident
optical field. The power spectral density for four different beam positions is shown. There
is a distinct peak at 180 Hz for positions 2-4; the amplitude of the peak corresponds to the
amount of induced thermal heating. The power spectral density for position 1 indicates
good alignment (i.e. no thermal heating). (b) Infrared camera view of beam position 1 on
the sample surface; the laser spot and cantilever are indicated. (c) Beam position 4. As the

beam is moved to the right of the tip, thermal driving of the cantilever decreases.

To eradicate any thermal heating of the cantilever, it is first necessary to develop a
reliable technique to determine if, and how much, the laser is driving the cantilever.
An easy way to accomplish this is to place a mechanical chopper in the path of the
incident beam to modulate the excitation at a relatively slow frequency (∼ hundreds
of hertz). If the cantilever is being thermally heated, the power spectral density of
the tip response will show a peak at the modulation frequency. As the beam is re-
positioned, the amplitude of this peak will increase or decrease based on the amount
of thermal heating induced in the cantilever, as shown in figure 4.4. The ultimate
aim of the fine alignment is to ensure there is no peak at the modulation frequency
when the cantilever is not in tip-sample contact, while ensuring the optical field
remains incident on the tip-sample junction. There are more careful measures for
optimizing the alignment even further; these will be discussed in further detail in
the following chapter.
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Interferometric versus Intensity Autocorrelation

The choice between integrating an interferometric or intensity autocorrelator into
the AFM is non-obvious. For optical detection, the difference between these two
techniques is negligible: both trace the overlap of the pulses to yield a measure of
the pulse width. However, the collinear or non-collinear configuration associated
with each technique has significant impact on measurements performed via AFM.

We implement both autocorrelation schemes to determine which is better suited
for our application. As mentioned above, both beams must be focused to the same
spot on the sample surface. Requiring perfect spatial overlap is easily achieved
when a collinear (interferometric) set-up is implemented. On the other hand, in a
non-collinear (intensity) configuration, maintaining alignment for the optical auto-
correlation while achieving spatial overlap at the sample surface is very challenging.
This is an important disadvantage because it is imperative to be able to successfully
measure the optical and AFM autocorrelation simultaneously.

The other main consideration is the stability of the AFM. In a collinear arrange-
ment, the beams interfere to produce oscillations in the overall intensity as function
of delay (figure 3.5). These oscillations significantly perturb the AFM cantilever,
making it very difficult to get sufficient signal-to-noise while ensuring the cantilever
is not being thermally driven. Ultimately, this makes the AFM detection less stable,
even if the alignment is very carefully carried out. To get maximal signal-to-noise in
the frequency shift signal, to maintain a constant tip-sample distance, and to ensure
there is no cross-talk from the z-controller in Δ f , it is necessary to lift the tip from
the surface by a set amount (∼1 nm), turn off the z-feedback, and then carry out the
measurement. In a collinear optical set-up, this is not possible. Intrinsic instabili-
ties in the interferometric autocorrelator produce low frequency background noise,
which makes it unfeasible to perform measurements with the z-feedback turned off.
Conversely, a non-collinear set-up does not produce these intensity oscillation as a
function of delay time, and thereby helps preserve the stability of the AFM. Mea-
surements taken with the z-feedback off are possible in this case.

Depending on the sample and experiment in question, the above-stated advan-
tages and disadvantages may become relevant. In the experiment presented in the
following chapter, most measurements are performed with a collinear optical ar-
rangement.
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Chapter 5

ULTRAFAST NANOSCALE

MEASUREMENTS OF OPTICAL

RECTIFICATION IN PPLN

Resolving ultrafast physical phenomena on the nanoscale has been a driving force
in the development of time-resolved scanning probe techniques. The aim of com-
bining conventional, well-developed optical spectroscopy techniques with equally
mature nanophysics methods is simple: to understand the light-matter interactions
governing the atomic world. The physics that occurs when ultrafast pulses are used
to excite nanosystems is largely ill-understood. To date, most ultrafast optical meth-
ods have been devoid of the spatial resolution needed to study physics occurring at
the nanometer length scale. Here, we incorporate a pulsed laser system into a UHV-
AFM to study ultrafast changes in the electric polarization of a nonlinear crystal
occurring at nanometer length-scales.

Our measurement scheme is based on autocorrelation by optical rectification:
two coherent pulse trains are temporally separated by a well-defined delay and
collinearly focused on a nonlinear crystal with a strong second-order susceptibil-
ity, in this case periodically poled lithium niobate (PPLN). In turn, the incident light
gives rise to a second-order polarization change in the sample that follows the elec-
tric field of the impinging ∼100 fs laser pulses. The electrostatic force originating
from this induced polarization change in lithium niobate is detected and spatially
resolved using non-contact AFM. Below we discuss our results and provide further
characterization of our ultrafast AFM technique.



Chapter 5. ULTRAFAST NANOSCALE MEASUREMENTS OF OPTICAL

RECTIFICATION IN PPLN
35

FIGURE 5.1: Topographical image of the sample surface. (a) Tapping mode image of sur-
face domains, which have a poling periodicity of 8.5 μm. (b) Non-contact mode image
( f0=304.2 kHz, Q = 19285, A0=6 nm) of a step edge over one domain boundary. The fre-
quency shift set point is at -3 Hz and a bias of 4.51 mV is applied to compensate the potential
difference between tip and sample is applied. Surface adsorbents and impurities are clearly

visible in both topographical maps.

5.1 Results & Discussion

We implement the experimental set-up detailed in section 4.3 to couple the optical
field of two pulse trains to the tip-sample junction. Our measurement scheme allows
us to vary the delay τ between the two pulses while concurrently retrieving data
using both the optical autocorrelator and the AFM. Using the same principle on
which optical autocorrelators were founded, we use a nonlinear crystal (z-cut, HF-
etched PPLN) to transform the input fields into an optically rectified, zero-frequency
polarization that results in a force which we measure using FM-AFM.

Upon coupling the light to the tip-sample junction, we approach a metal coated
silicon tip (Nanosensors, PPP-NCHPt, f0=304.2 kHz, Q = 19285) to the sample sur-
face. We characterize the PPLN surface using AFM (figure 5.1) to determine: the
poling periodicity is 8.5μm; step edges over domain boundaries host large aggre-
gates of unknown surface adsorbents and impurities; and the HF-etching has intro-
duced a ∼ 160 nm height difference between the poling regions. The reverse poling
of the lithium niobate thus corresponds to the topography.

We move the tip slightly closer to the surface (frequency shift set point of -15 Hz)
for better signal-to-noise, and subsequently vary the delay between the two pulses
while simultaneously recording the read-out from the photodiode (for optical detec-
tion) and the measured frequency shift (for FM-AFM detection). The proportional
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FIGURE 5.2: Autocorrelation traces retrieved concurrently using optical and AFM detection
methods, respectively. (a) Optical interferometric autocorrelation signal. An FFT filter is
applied to extract the intensity autocorrelation component (red), the Gaussian fit for which
yields a pulse width of 111±10 fs. (b) Measured frequency shift, arising from an induced
polarization change in PPLN, as a function of delay time between the two incident pulses.
A pulse width of 116±6 fs is extracted. The power of both input fields is 6.56 mW. Four data
points are taken at each delay step, with 20 ms integration time per point. A Gaussian pulse

profile is assumed in both cases.

gain of the z-feedback loop is significantly decreased from normal operational val-
ues to ensure the feedback is slow enough to allow changes in the frequency shift to
be detected; all the measurements obtained with the z-feedback activated are taken
with a p-gain of 10 pm/Hz.

The interferometric optical autocorrelation occurs via second-harmonic genera-
tion and exhibits the ideal 8:1 ratio characteristic of good optical alignment (fig-
ure 5.2). The extracted pulse width is 111±10 fs, in agreement with our laser specifi-
cations. The corresponding AFM autocorrelation (figure 5.2) yields a pulse width of
116±6 fs. The discrepancy in pulse widths is due to additional dispersion accrued
from the calcite polarizer, focusing lens, and UHV window. The dispersion can be
calculated using equation 4.12, resulting in an expected broadening of 4 fs for an
input pulse of width 111 fs.

The AFM autocorrelation traces the force gradient arising from the second order
polarization

P(2)(t) = ε0χ
(2)E(t)E∗(t + τ)e−iω0τ, (5.1)

which oscillates with respect to the delay time τ with a period of 2π/ω0, whereω0 is
the carrier frequency. The oscillations predicted by equation 5.1 can be well resolved
experimentally. Figure 5.3 shows measurements of the single-cycle oscillations of
the electrostatic force arising from the nonlinear mixing. The sensitivity of the AFM
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FIGURE 5.3: Single-cycle oscillations of the optically rectified field. The delay is finely
stepped and the frequency shift response (blue) is recorded; the data is fitted (orange) to
a sinusoid with a period of 2.6 fs (780 nm). The same measurement is performed with (a)
the coarse delay stage, using a minimum step size of 0.6fs and (b) the wedge-pair delay
scheme, with a step size of 25 as. Unlike all other measurements presented in this thesis, the
high degree of stability needed to perform this particular measurement necessitated using a
non-collinear optical configuration; both (a) and (b) are performed with the z-feedback off.

is high enough to distinctly resolve two data points 25 as apart.

Since lithium niobate is an insulator with a bandgap of 3.78 eV, we expect that
the input optical field at 1.59 eV does not generate any charge carriers [69]. The
observed signal must thereby arise from induced changes in the polarization of the
sample. To verify this, we must first exclude the possibility that the observed effect
is due to tip artifacts; and furthermore, we must prove it is the polarization change
in the sample—and not some other physical phenomenon—that we are detecting.

To this end, we repeat the measurement presented in figure 5.2 several times, and
with each iteration vary the polarization of the input field by a controlled amount
(figure 5.4). We repeat the measurement on either side of the domain edge, which
we refer to as the top and bottom terrace, respectively. In both cases, the intensity
of the frequency shift response varies with the polarization, even though the power
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FIGURE 5.4: The peak-to-peak amplitude of the AFM autocorrelation signal is plotted as a
function of the half-wave plate angle (points) for constant input power (8.13 mW). In this
case, the angle is defined with respect to the fast axis. The peak-to-peak amplitude of the
signal is analogous to the intensity of the observed response. As expected, the intensity
varies sinusoidally as a function of the wave plate angle, further verified by the fit (dotted

lines) and residuals.

entering the AFM stays constant. This indicates the signal originates from the sam-
ple, and is not a by-product of thermal driving of the cantilever. Notably, the AFM
autocorrelation amplitude never goes to zero as the polarization of the input optical
field is varied. One possible explanation for this is geometric: our set-up does not
allow the polarization of the input field to be perfectly parallel or perpendicular to
the sample plane. Thus, there is always a component of the force along the direction
of motion of the tip, indicating there will always be a non-zero signal intensity.

Additionally, from equation 5.1 we expect that the magnitude of the second-order
polarization scales with the power of the input field. To probe this dependence
in our system, we slowly rotate the polarizer to attenuate the input power (sec-
tion 4.3.2) without changing the position of the laser spot on the sample. Since the
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FIGURE 5.5: Power dependence of the polarization response in PPLN. (a) The peak-to-peak
amplitude of the AFM autocorrelation (points) as a function of input power. The linear fit
(dotted line) and error in the fit (gray area) are indicated. (b) The contact potential difference
between the tip and sample (points) as a function of input power, fitted to a linear function

(solid line). There is no structure in the residuals for both (a) and (b).

polarizer was rotated relative to the wave plate, there is a slight variation in polar-
ization as well. At each power we measure the contact potential difference (CPD)—
-which arises from a work-function difference between the tip and sample—-and
nullify this electrostatic force by applying a voltage with the same magnitude, but
opposite direction. Afterwards, we concurrently record an AFM and optical auto-
correlation. We extract the peak-to-peak amplitude of the AFM autocorrelation and
plot it against the input power (figure 5.5). As expected, we observe a linear rela-
tionship between power and detected force. Given the limited power range over
which measurements are taken, we compare the goodness-of-fit of a linear depen-
dence to that of a quadratic and exponential dependence. The linear fit emerges as
the best fit.

Experimental factors limit our available power range to roughly 1 mW: at powers
higher than ∼8 mW, the cantilever is subject to thermal heating; at powers less than
∼6.5 mW, the polarization signal is no longer detectable. This limitation only arises
in this measurement scheme, for which we keep the position of the beam constant as
the power is varied for experimental consistency. In general, operation at higher or
lower powers is possible, as long as the beam position relative to the tip is allowed
to vary to prevent thermal heating of the cantilever, while also ensuring a detectable
signal. The position of the laser spot is critical: the intensity profile of the beam fol-
lows a Gaussian distribution, thus, moving the beam relative to the tip changes the
effective power experienced by tip-sample junction, even though the input power is



Chapter 5. ULTRAFAST NANOSCALE MEASUREMENTS OF OPTICAL

RECTIFICATION IN PPLN
40

FIGURE 5.6: Nanoscale spatial resolution. (a), (e) Surface topography over the region of
interest with the line scan position (red dotted line) overlaid. The imaged domain boundary
shows the top terrace (right) and bottom terrace (left), with the edge decorated with surface
adsorbents and impurities. (b), (f) Peak-to-peak amplitude of AFM autocorrelation as a
function of the tip position, for a total input power of 6.56 mW and step interval of (b)
12 nm and (f) 20 nm. As the tip moves over the surface impurity, the intensity of the AFM
autocorrelation approaches zero. (c), (g) Surface topography over the measurement range.

(d), (h) Corresponding amplitude of the concurrently retrieved optical autocorrelation.

nominally the same. Taking advantage of this, while continuing to ensure thermal
heating is not occurring, allows for operation using a wide range of powers.

Figure 5.5 also shows the CPD variation as a function of power. A linear depen-
dence similarly proves to be the best fit in this case. To understand the underly-
ing physics, we consider the electrostatic force between the tip and sample (equa-
tion 2.12), which depends quadratically on the total tip-sample potential. Typically,
the extremum of this parabola is the CPD. However, a polarizable medium causes
the addition of a charge induced dipole barrier term to the total potential, in effect
shifting the extremum of the potential; in this case, the CPD varies linearly with
polarization changes [70]. Thus, the power dependence of the AFM autocorrelation
intensity and the CPD are in agreement with each other, and further verify the the
AFM autocorrelation signal originates from polarization changes in the sample.

Finally, the most convincing piece of evidence to prove the signal arises from the
sample lies in corroborating the topography of the surface to the measured force. To
this end, we perform a line scan measurement (figure 5.6): first, we nullify the CPD
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to reliably map the surface topography over the region of interest, doing so in nor-
mal FM-AFM mode ( f0=-2 Hz, bias=3.521 V); at a well-defined point on the sample,
we approach the tip slightly closer to the surface ( f0=-15 Hz) to perform an AFM
and optical autocorrelation concurrently; we move the tip relative to the sample by
a set amount while maintaining f0=-15 Hz, and repeat the AFM and optical autocor-
relation measurement. We are thus able to corroborate the surface topography with
the intensity of the nonlinear polarization response. The simultaneously retrieved
optical autocorrelation serves as a reference for comparing two AFM measurements
taken at different times 1) to ensure the laser alignment has not changed and 2) to
account for power fluctuations.

As shown in figure 5.6, we are able to resolve changes in the nonlinear polariza-
tion occurring on the nanometer scale. In both line scans, the polarization response
approaches zero intensity when measurements are performed over the surface ad-
sorbent on the edge of the domain boundary. Though the identity of this impurity
is unknown, this effect is likely due to the impurity effectively attenuating the re-
emitted electric field of the underlying lithium niobate. It is important to emphasize
that we are able to reliably observe the same trends for different line scan measure-
ments performed over the same region of interest on the surface, demonstrating the
method is robust. The concurrently recorded optical autocorrelation measurement
shows little variation for both line scans, indicating the stability of the interferome-
ter is good enough for easy comparison of long-time measurements.
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Chapter 6

CONCLUSIONS & OUTLOOK

In this work, we demonstrate the capabilities of an ultrafast AFM with nanoscale
spatial resolution and attosecond temporal precision. We incorporate an ultrafast
mode-locked laser into a commercial UHV-AFM system, and implement an opti-
cal autocorrelation set-up to perform simultaneous measurement of the pulse over-
lap in and out of vacuum via optical rectification and second harmonic genera-
tion, respectively. We exploit the spatial resolution intrinsic to AFM to resolve
the magnitude of the local electrostatic force that arises from an induced change
in the nonlinear polarization—-and is quantified through the intensity of the AFM
autocorrelation—-as a proof-of-concept of our ultrafast AFM. We demonstrate the
reproducibility and robustness of this technique by successfully corroborating the
topography with the measured electrostatic force over different line scans.

The presented technique can be extended to measure a host of light-matter inter-
actions happening on the ultrafast nanoscale, such as the χ2 response of any nonlin-
ear material; and more generally, any optically instigated change which amounts to
a detectable force—including, for example, a change in dielectric constant, photocar-
rier generation and decay, or electron motion. Gaining access to ultrafast physics on
atomic length scales opens the door to heretofore unexplored physics. Notably, the
optical excitation can take any form—-traditional optical spectroscopy techniques
can be implemented, with the AFM tip acting as force sensor in place of a photode-
tector. The wide applicability of this technique is what makes it powerful.

Semiconductor systems, thin-film organic photovoltaics, or transition metal dichalco-
genides are perfect material systems for taking advantage of the capabilities of an ul-
trafast AFM. Transition metal dichalcogenides, for example, are 2D semiconductors
with atomic-scale thickness. Their band structure varies depending on the number
of monolayers comprising the material system, shifting from a direct band-gap at
one monolayer, to indirect at two. The physics governing these sample properties
would be well elucidated by spatially and temporally characterizing the excitonic
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and free-carrier dynamics as a function of sample thickness—-a task well suited to
the ultrafast AFM. This is only one example of the usefulness of a technique that can
probe nanoscale physics on ultrafast time scales.

Ultimately, the development of an ultrafast AFM is an exciting step towards un-
covering new physics, and expanding the capabilities of scanning probe techniques
in the time domain.
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