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Phase-field-crystal study of solute trapping
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In this study we have incorporated two time scales into the phase-field-crystal model of a binary alloy to explore
different solute trapping properties as a function of crystal-melt interface velocity. With only diffusive dynamics,
we demonstrate that the segregation coefficient, K as a function of velocity for a binary alloy is consistent with
the model of Kaplan and Aziz where K approaches unity in the limit of infinite velocity. However, with the
introduction of wavelike dynamics in both the density and concentration fields, the trapping follows the kinetics
proposed by Sobolev [Phys. Lett. A 199, 383 (1995)], where complete trapping occurs at a finite velocity.
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I. INTRODUCTION

Due to the relationship between complex dentritic mi-
crostructures and the mechanical properties of welded, sol-
dered, and cast components, solidification of alloys is one of
the most researched subjects in materials science. Computa-
tional modeling of the solidification process has been an inte-
gral part of understanding the underlying physics that is asso-
ciated with all aspects of solidification. In the past few decades,
modeling of rapid solidification and solute trapping has gained
attention for its role in many modern solidification processes
such as thermal spraying, spin coating, and laser melting [1,2].
As the solid-liquid interface position advances at very fast rates
(∼1 m/s), there is substantial aberration from the equilibrium
concentrations at the interface in both the solid and liquid
phases. This deviation can be characterized through the
segregation coefficient K , which is defined as the ratio of
the solid concentration Cs to the liquid concentration Cl at
the interface. The increase in the segregation coefficient with
increasing interface velocity V is known as solute trapping
and a complete understanding of the trapping process requires
the dependence K(V ) on the kinetic and thermodynamic
properties of the alloy.

There are three main theories of solute trapping. The most
widely known is the continuous growth model (CGM) of
Aziz and coworkers [3,4]. The CGM introduces the so-called
diffusive speed VD , which is the velocity at which a solute
atom can traverse the solid-liquid boundary. Aziz and Kaplan
define this parameter as VD = D/λ, where D is the diffusion
coefficient in the interface region and λ is the width of
the interface. According to the CGM, significant trapping
occurs when the interface velocity becomes comparable to
VD and the main prediction of the model in the limit of dilute
concentrations is given by

K(V ) = ke + V/VD

1 + V/VD

, (1)

where ke is the equilibrium segregation coefficient. Notice that
the complete trapping limit given by K(V ) = 1 is approached
asymptotically as V → ∞. The work of Jackson et al.
[5] demonstrates similar asymptotic behavior, but K(V ) is

described as a power law given by

K(V ) = k1/(1+AV )
e , (2)

where A is a parameter analogous to the reciprocal
of VD .

In contrast, the work of Sobolev [6,7] predicts that there
is an abrupt change in the segregation coefficient at a finite
velocity. In other words, complete trapping (K(V ) = 1) occurs
at a well-defined velocity. Their theory can be explained in
terms of a “caging” phenomenon in the bulk liquid of the
system. A solute atom spends a short amount of time (∼
picoseconds) in a cage formed by nearest-neighbor atoms
before it undergoes a random hop to another cagelike shell.
If the interface velocity V is sufficiently fast, the liquid
atoms attach themselves to the solid crystal at a rate that is
comparable to this short time scale. At very high velocities
the atoms do not have enough time to escape their cage and
they completely freeze in their location. To capture the short
time scale, Sobolev modified Fick’s first law of diffusion by
introducing the following:

J + τB

∂J

∂t
= −D∇C, (3)

where τB is the relaxation time required for the flux to reach
its steady-state regime. The fast atomic interactions in the
liquid are incorporated into the time scale τB , which can be
defined as τB = D

V B
D

2 where V B
D is the bulk liquid diffusive

speed. V B
D describes how fast a solute atom can travel in the

liquid. Sobolev emphasizes that solute atoms have a finite
velocity in the liquid, which differs from the Aziz’s model
where the diffusion speed in the bulk liquid is assumed infinite.
Combining Eq. (3) with the conservation law ∂C

∂t
= −∇ · J ,

the diffusion equation in a steady-state co-moving reference
frame (x = xo − V t) can be written as

D

(
1 − V 2

V B
D

2

)
∂2C

∂x2
+ V

∂C

∂x
= 0. (4)
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The solution of Eq. (4) for the solute concentration ahead
of the interface (x > 0) is

C(x) = (Ci−Co) exp

(
− V x

D
[
1−(

V/V B
D

)2]
)

+ Co V < V B
D ,

C(x) = Co V � V B
D . (5)

When x = 0 (interface position), the concentration is defined
as Ci . As x → ∞ (far bulk liquid position), the far field
concentration is Co. The solution given by Eq. (5) is similar
to the well-known solution of the concentration field in the
liquid ahead of a moving interface except now the diffusion
coefficient can be replaced by the effective diffusion coefficient
D∗ = D[1 − (V/V B

D )2]. For the detailed solution to Eq. (4),
the reader should consult the following references [6,7].

The above model extends the Aziz model Eq. (1) by
substituting the diffusion coefficient with the effective one,
D∗, that was obtained from Eq. (5). Therefore, the segregation
coefficient in this case reaches unity when V � V B

D . The
Sobolev-Galenko model has the following formulation:

K(V ) = ke

[
1 − (

V/V B
D

)2] + V/VD

1 − (
V/V B

D

)2 + V/VD

V < V B
D ,

(6)
K(V ) = 1 V � V B

D .

As the velocity of the interface increases significantly, the
atoms in the liquid are not able to escape from the solid back
to the liquid and so they freeze in their positions as the system
solidifies. In other words, the solute atoms do not have enough
time to jump back to the liquid once the interface velocity
is equivalent to the bulk diffusive velocity, which results in
complete trapping.

There is mounting evidence that the Sobolev description
of solute trapping is an accurate one. Danilov and Nestler
[8] showed that the Sobolev prediction was a better fit for
the experimental data on Si-As alloys by Kittl et al. [9],
especially in the high velocity limit. More recently, splat
cooling experiments of Al-Mg were performed by Galenko and
Herlach [10] and the results show a change from a eutectic to
supersaturated solid solution at a finite velocity. Furthermore,
theoretical work of [11] shows that the interface velocity as
a function of undercooling changes from a power law to a
linear relationship due to complete trapping and the model
shows a very good agreement with Cu-Ni experiments. In
addition to experimental studies, early molecular dynamics
(MD) work by Cook and Clancy showed partitionless crystal
growth (K(V ) ≈ 1) in a Leonard-Jones system at a finite
velocity [12]. Recently, Yang et al. also showed that complete
trapping does occur at finite velocity. The authors simulated
a Leonard-Jones binary and a Cu-Ni EAM model to show
that the results hold for different systems [13]. It was found
that the Sobolev model was a better fit to their MD data,
while the Aziz model underestimated the high velocity cases
when K(V ) = 1. The Yang et al. results confirmed complete
trapping but MD simulations are atomistic and cannot show
whether there is a need for the second time derivative in the
continuum description that was suggested by Sobolev [6].

The phase-field models of Wheeler et al. [14] and Echebar-
ria et al. [15] do not show complete trapping in the high
velocity limit using the parabolic form of the dynamic

equations. Galenko et al. modified these models to their
hyperbolic form, i.e., adding the second time derivative to
the concentration field [16]. They observed that K(V ) does
indeed tend to 1, however, its behavior varies depending on
the phase-field phenomenology they choose. In addition, the
diffusion coefficient of these models is a function that can be
tailored to produce different trapping behaviors.

In this paper we study solute trapping using a phase-
field-crystal (PFC) alloy model with inertial dynamics. The
PFC model captures the atomic scale structure analogous
to MD yet its diffusive time scale is of the same order
as regular phase-field models. Also, the PFC is motivated
from classical density functional theory and contains only
a minimal number of parameters, which in principle, can
be derived from fundamental liquid state properties through
the direct correlation functions controlling the excess energy.
These features are relevant to solute trapping since most of
the interactions occur on the liquid side of the solid-liquid
interface. Moreover, changing the parameters and examining
their effects on the system is rather fast compared to MD. For
instance, the mobility of the system can be adjusted without the
need for new interatomic potential(s) in order to see the effect
of the change on the trapping behavior. The work of Stefanovic
et al. [17,18] was the first to add a second time derivative
to the pure PFC model [19]. They motivated the second
time derivative from hydrodynamics and used the resulting
kinetic equations to study the deformation and plasticity in
nanocrystals. The addition of the second time derivative to
a two-component alloy PFC model will be discussed in the
model section of this paper. In particular we will examine how
the competition between inertial dynamics and mobility in
both the concentration and density field dictates the trapping
behavior of the solute atoms.

The rest of the paper is organized as follows. Section II
describes the PFC model free energy as well as the equations
of motion for the density and concentration. Section III
presents our findings by examining the relationship between
the wave terms, the mobility of the system, and their effect on
the concentration and density fields. We end the paper with
conclusions in Sec. IV.

II. MODELING APPROACH

A. PFC model

For a binary alloy system that consists of A and B atoms
we start by introducing the PFC free energy functional [20]:

F
kBTρ�Rd

=
∫

dr
{
B� n2

2
+ Bx n

2
(2∇2 + ∇4)n − t

3
n3 + ν

4
n4

+ ω

2
ψ2 + u

4
ψ4 + C

2
| �∇ψ |2

}
. (7)

The fields n and ψ are the dimensionless local number density
and concentration, respectively, and they can be defined as
follows:

n = ρA + ρB

ρ�

− 1 ψ = ρA − ρB

ρ̄
. (8)

ρA is the number density of species A (solvent) and ρB is
the density of species B (solute), ρ̄ is the average density, ρ�
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is a reference liquid density, kB is Boltzmann’s constant, R

is the average atomic radius, which sets the length scale of
the system, and T is the temperature. The last three terms in
Eq. (7) represent a free energy of the Cahn-Hilliard type [21],
which has been used extensively to study phase separation. B�

is the dimensionless bulk modulus of the liquid and Bx is the
dimensionless bulk modulus of the solid, which control the
energy scale of the system. Following [20] they are expanded
as follows: B� = B�

0 + B�
2ψ

2 and Bx = Bx
0 . The difference

between the bulk moduli 
B0 = B�
0 − Bx

0 sets the temperature
scale of the system. ν, t , and u are constant parameters that
can be fitted to phenomenological thermodynamic models to
describe various materials properties, for example, Ref. [22]
modeled the solid-liquid interfacial free energy of pure Fe
using a Ginzburg-Landau free energy description. The exact
derivation of these parameters can be found in the Appendix
of [20]. It is worth noting that minimization of the free energy
yields hexagonal structures in two dimensions, BCC in three
dimensions, and a constant density profile in the liquid. The
model is capable of producing two different phase diagrams,
eutectic and spinodal binary systems. Equation (7) is a reason-
ably simple model that can be used to simulate solidification,
phase segregation, and elasticity and plasticity [23].

Diffusion-controlled solidification in the PFC formalism
are simulated via

∂ρA

∂t
= �∇ ·

(
MA

�∇ δF
δρA

)
,

(9)
∂ρB

∂t
= �∇ ·

(
MB

�∇ δF
δρB

)
,

where MA and MB are the mobilities of each atomic species.
Dynamics of the density and concentration are governed
by dissipative minimization of a free energy. The inertial
dynamics act on short time and length scales, while the first
time derivative introduces diffusive Brownian-type dynamics
on long time and length scales [21,24,25]. One can rewrite
Eq. (9) in terms of the density n and the concentration ψ fields
using Eq. (8) [20]:

∂n

∂t
= �∇ · M1 �∇ δF

δn
+ �∇ · M2 �∇ δF

δψ
,

(10)
∂ψ

∂t
= �∇ · M1 �∇ δF

δψ
+ �∇ · M2 �∇ δF

δn
,

where M1 = (MA + MB)/ρ2
� and M2 = (MA − MB)/ρ2

� . No-
tice we will neglect the effects of thermal fluctuations in all
of the simulations. For substitutional diffusion we assume the
mobilities of species A and B are the same, which implies that
M2 = 0 and the cross terms vanish from Eq. (10). Retaining
the cross coupling terms might affect the result of the trapping
behavior in a manner similar to that described by Brenner and
Boussinot [26]. However, the aim of this paper to investigate
the effect of the second time derivative on solute trapping,
perhaps a more complicated form of the equation can be
investigated in the future.

As mentioned earlier, Sobolev [6] introduces a second time
derivative in concentration to capture the fast interactions in
the bulk liquid. In the case of PFC alloys, Stefanovic et al.
considered inertial dynamics in both the concentration and
density field [27]. They derived these as an extension of this

concept in pure materials [17] to binary alloys. Equations of
motion for the concentration and density in this limit are given
by

β
∂2n

∂t2
+ ∂n

∂t
= M∇2

(
δF
δn

)
,

(11)

γ
∂2ψ

∂t2
+ ∂ψ

∂t
= M∇2

(
δF
δψ

)
,

where M = M1, and the β and γ coefficients are responsible
for introducing two time scales in the dynamics of n and
ψ . The ratio of β

M
and γ

M
will be shown to be important

quantities that will be discussed in depth in the next section.
Each ratio controls the effect of atomic inertial interactions in
its respective field.

B. Numerical methodology

The simulation domain is a two-dimensional (2D) channel
consisting of 4096 grid points in the x direction normal to
the solid-liquid interface and 64 grid points in the parallel
y direction. To initiate the simulation, a solid seed (periodic
density) of (32x × 64y) was positioned at the far left part of
the simulation box while the rest of the simulation box was
filled with liquid (constant density). We used a similar number
of grid points as in Elder and coworkers [20], namely eight
grid points in each direction to represent a single density peak
with dx = dy = π/4. The average concentration was set to be
ψ0 = −0.175 and the temperature 
B0 = B�

0 − Bx
0 = 0.08.

The density field n was expanded around the liquidus density,
which equals zero as demonstrated in [20]. As mentioned in the
introduction, the Aziz model [Eq. (1)] and the Sobolev [Eq. (6)]
model are derived for the dilute limit. The parameters above
are thus chosen to ensure the system has a dilute concentration
of B atoms and the average concentration is such that it lies in
the solid-liquid coexistence region.

Simulations were done for a eutectic phase diagram shown
in Fig. 1. Since the model only supports hexagonal symmetry
in 2D and the simulation box is of a rectangular shape,
some stress is present in the system, which can cause a
change in the equilibrium concentration. To account for this,
and any numerical inaccuracies associated with analytically
calculating the phase diagram, we numerically evaluated the
coexistence lines that were used to conduct our simulations.
Analytical and numerical coexistence lines of the PFC alloy
model are shown in Fig. 1. In particular, the black lines
(black solid circles) represent the analytical solution obtained
from an amplitude expansion technique as described in [20]
while the red lines (red solid diamonds) show the equilibrium
solid and liquid concentrations attained from numerically. The
equilibrium simulation was conducted using the simulation
setup mentioned in the previous paragraph. Increasing the
system size in the y direction relieves most of the stress in the
system but a plateau is reached after roughly 64 grid points.
Moreover, the simulation time increases significantly for larger
systems without a considerable amount of further stress relief.
The remaining discrepancy between the analytic solution
and the full numerical simulation shown in Fig. 1 is most
likely due to the approximations involved in the amplitude
expansion technique. It is noted that the concentration on the
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FIG. 1. (Color online) Eutectic phase diagram plot of 
B0 vs
ψo for the parameters Bx

0 = 1.00, B�
2 = −1.80, t = 0.60, ν = 1.00,

u = 4.00, and ω = 0.008. The insert shows the difference between the
analytical and numerically simulated coexistence lines of the phase
diagram.

left-hand side of the phase diagram has a negative value, which
implies the absolute value of the solidus concentration to be
larger than that of the liquidus. In the PFC definition of the
concentration [Eq. (8)] a value of ψ = 0 corresponds to an
actual concentration of 0.5. Therefore in the results presented
below, we will add 1 to both the solid and liquid interface
compositions when reporting the segregation coefficient, i.e.,
K(V ) = (ψs + 1)/(ψl + 1).

The method of driving the solid-liquid interface employed
in the current study involves the application of a linear
temperature (
B0) gradient in the direction normal to the
boundary. The temperature gradient (G) is chosen such that
the liquid phase remains above the equilibrium liquidus
temperature and the solid is maintained at temperatures below
the liquidus. Over the course of the simulation, the gradient
is translated in the x direction at the specified velocity and
the translation is accomplished by incorporating an advection
term in the PFC equations of motion.

Some care must be taken in applying the temperature
gradient. The temperature gradient choice affects the solid-
ification transient regime, either prolonging or shortening it,
depending on the steepness of temperature gradient. Moreover,
a temperature cap, that is, the horizontal portions of the
temperature profile shown in Fig. 2, in the bulk must be
incorporated. Certain temperature caps can be used to ensure
that the temperature gradient does not “outrun” the solid-liquid
interface. If the cap is too small, the temperature of the solid is
too close to the starting temperature, which gives the interface
limited driving force. Therefore, the temperature gradient will
outrun the interface at large velocities, which causes the system
to solidify isothermally. In order to pull the interface at very
high velocities the interface and the solid portion of the system
must be assigned lower temperature caps. Additionally, the
temperature cap prevents entering the AB part of the phase
diagram, which causes the formation of α and β phases (i.e.,

Bo 0.03

Bo
Bo 0.03

V

FIG. 2. (Color online) A typical 2D density profile with a
temperature gradient and cap overlaid on top to illustrate the driving
force mechanism employed in the simulations.

precipitates). For the purpose of this paper the temperature
cap and the temperature gradient were chosen to be 
Bo =
0.08 ± 0.03 and G = 0.0002, respectively. The application
of the temperature profile depicted in Fig. 2 implies that a
large temperature gradient exists at the two outer boundaries
of the periodic domain. Since the phase diagram used was
constructed to yield approximately an average density of
zero [20], the density profile far from the interface will have
an average of zero for any given temperature. As shown in
Figs. 3(e) and 3(f), the far field average densities for the two
different temperatures are equal at each end of the simulation
box. However, the density oscillations of the solid do not yield
precise periodic boundary conditions when it meets the liquid
on the far right of the simulation box, which causes some
error to arise at the boundaries. This error, however, is only
localized at the boundaries and does not affect the solid-liquid
interface values. The concentration profiles from which all
our measurements were extracted are obtained only for the
steady-state condition, and for which the interface was far
away from the ends of the simulation box.

III. RESULTS AND DISCUSSION

A. Inertial dynamics in the concentration field

We start the discussion of solute trapping by examining
the steady-state concentration profiles. To produce a one-
dimensional (1D) concentration profile, the concentrations are
averaged in the y direction parallel to the interface. As will be
seen in the results presented below, the solute concentration
profiles exhibit periodic oscillations in the solid phase on a
scale of its interplanar spacing. The periodicity in the solid
part of the concentration profile is a result of the density-
concentration coupling term in Eq. (7). The average solid
concentration in the steady-state regime can be calculated by
averaging over the atomic planes of the solidified crystal. Refer
to Appendix A for further explanation on the concentration
profile calculations.

Figures 3(a) and 3(b) show typical concentration profiles for
slow (V = 0.02) and fast (V = 0.5) velocities, respectively,
using diffusive kinetics(β = 0,γ = 0). The solute accumula-
tion ahead of the interface decreases as the velocity increases.
It is clear that even in extremely fast velocities [Fig. 3(b)] the
concentration ahead of the interface is higher than the solid
concentration. When the second time derivative is activated in
the concentration field (γ /M = 100.0) and β = 10, there is
a substantial amount of trapping in the low velocity profile
as illustrated in Fig. 3(c). One can define the occurrence
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FIG. 3. (Color online) Typical concentration profiles: (a) slow velocity V = 0.02 and (b) fast velocity V = 0.5 where both are simulated
with diffusive dynamics, while (c) and (d) are simulated with inertial dynamics. Frames (e) and (f) illustrate the corresponding density profiles
at (e) V = 0.02 and (f) V = 0.5, both simulated with diffusive dynamics. The red dashed line represents the averaged profile for a given frame
using the Fourier method outlined in Appendix A.

of complete solute trapping when the liquid concentration
ahead of the interface equals the averaged solid concentration
through the interface. Figure 3(d) displays a concentration
profile where complete trapping occurs; it is evident the solute
peak ahead of the interface vanishes.

A summary of the PFC model parameters is given by
Table I for all the simulations reported in this study. The values
of β and γ were chosen so the ratios of these quantities give
insight in the solute trapping behavior. One set of simulations
has diffusive dynamics in both fields to provide a baseline for
the effect of the inertial dynamics on the trapping behavior.

As the velocity of the interface increases using diffusive
dynamics in the concentration and density, K(V ) approaches
unity in an asymptotic manner analogous to the Aziz model
[γ = 0, β = 0 (black solid line with open circles)] in Figs. 4
or 5. For the same set of parameters, but the second time

derivative activated in both fields, complete solute trapping
can be achieved for a steady-state front propagating at a finite
velocity, as seen by the γ /M = 100 and β/M = 0.5 data (red
solid line with upward open triangle) in Figs. 4 or 5. We also
found analogous behavior, leading to complete trapping, was
exhibited with β = 0. Figure 4 also shows that, for fixed β

M
,

the amount of trapping rapidly increases with increasing γ

M
.

These observations suggest that complete solute trapping can
not take place in the alloy PFC model without the second time
derivative being present in the concentration field. The term γ

in the PFC context thus plays the same role as the τB parameter
in Galenko’s theory.

Conversely, it was found that for a fixed value of γ

M
,

increasing β

M
leads to a reduction of trapping in the ψ field

over the same range of velocities as that discussed above.
This is illustrated in Fig. 5. The γ /M = 100 (red solid line
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TABLE I. Summary of simulation parameters in Eq. (11). The
case of β = 0.0 and γ = 0.0 represent diffusive dynamics.

β γ M β

M

γ

M

γ

β

0.00 0.00 1.00 0.00 0.00 –
10.00 110.0 11.0 0.91 10.0 11.0
14.0 2000.0 20.0 0.71 100.0 142.9
10.0 2000.0 20.0 0.50 100.0 200.0
14.0 200.0 20.0 0.71 10.0 14.29
10.0 200.0 20.0 0.50 10.0 20.00
10.0 100.0 20.0 0.50 5.0 10.00
10.0 66.6̄6 20.0 0.50 3.3̄3 6.6̄6
10.0 33.3̄3 20.0 0.50 1.6̄6 3.3̄3
10.0 16.6̄6 20.0 0.50 0.83̄ 1.6̄6

with upward open triangle) data of Fig. 5 also suggest that an
increase in β/M requires a higher velocity to achieve complete
trapping in the ψ field. Lowering γ /M to 10 has the effect
of pushing to even larger values the trapping velocity (i.e.,
increasing V B

D ). Thus, for lower values of γ , we expect that the
velocity needed to achieve complete trapping (as β increases)
increases. To better understand the role of the density field on
the solute partitioning, it is instructive to consider the role that
the inertial term of the density field plays in the kinetics of the
interface. This will be examined in the next section.

B. Inertial dynamics in the density field

The behavior of diffusive density dynamics in rapid
solidification was examined by [28] using the pure PFC model
of Ref. [19]. They show that as the velocity of the interface
increases, the difference between the solid and liquid densities
decreases. They demonstrate that the density field follows an
Aziz-type trapping, analogous to that of the concentration.
They attribute this change in the density to vacancy trapping
as the interface advances in rapid solidification. We observe
similar behavior in the density field of the binary alloy, where
in the slow velocity regime, there is a noticeable jump in the
density across the the solid-liquid interface [Fig. 3(e)]. As the
the interface deviates from the local equilibrium condition at
higher interface velocity, the density jump significantly drops,
as shown in Fig. 3(f).

The use of inertial dynamics in the pure material to examine
the transition from a periodic to homogenous solution was first
discussed by Galenko et al. [29]. In their work, they investigate
the stability of the second-order differential equation for both
the Swift-Hohenberg and the PFC models. At low driving
force (small interface speeds), the inertial terms can be
neglected to retain a parabolic form of the dynamics, since
the transition from one phase to another occurs on diffusive
time scales. As the driving force increases, the inertial term
in the dynamics (hyperbolic form) provides an extra degree of
freedom to capture rapid kinetics. They compare the parabolic
and hyperbolic solution for the same (high) driving regime
and find the hyperbolic form of the equation leads to slower
transition speeds. They ascribe the slowing down in the front
speed to the increase in the relaxation time caused by the
inertial kinetics. As the β term increases in Eq. (11), the system
takes a longer time to switch to diffusive dynamics. We also
simulated isothermal quench simulations (i.e., no temperature
gradient) and similarly found that the solid-liquid interface
slows down as the effect of the inertial term increases, and
when β/M is of order 100 or higher, it was found that the
interface virtually stops over the time of the simulation, leading
to subsequent concentration pile-up ahead of the interface, and
lower solute trapping.

The situation is different for the case of directional
solidification used here for binary alloys, since conditions at
the solid-liquid interface are driven by a temperature gradient
that imposes the front velocity at steady state. In this case,
for a given set of parameters in the free energy, as the
pulling velocity increases the interface temperature is found
to decrease, i.e., slides down the temperature gradient towards
its lower cap (see Fig. 2), effectively increasing the driving
force to keep the interface moving with the imposed higher
speed. It was also found that a decrease in local interface
temperature occurred for a fixed interface velocity when β/M

was increased. This is shown in Fig. 6, which plots the interface
temperature vs the pulling speed for two values of β/M ,
showing that increasing either speed or β has the effect of
decreasing the local interface temperature.

To better understand the role of β on interface kinetics,
we considered the lowest order sharp interface limit of the
amplitude equation corresponding to the density equation used
in this study. Details of the derivation are shown in Appendix B.
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FIG. 4. (Color online) K(V) vs velocity with constant β and variable γ . The case of purely diffusive dynamics is also shown for comparison.
The right panel is zoom in of the left panel.
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FIG. 5. (Color online) K(V) vs. Velocity with two values of γ and variable β. The case of purely diffusive dynamics is also shown for
comparison. The right panel is a zoom-in of the left panel.

This approach begins with PFC free energy coarse grained in
terms of the amplitude of the density field, φ, where φ =
0 in the liquid and φ = φs in the solid, where φs is given
in Appendix B. This coarse-grained free energy is given by
Eq. (B1), and was first introduced in [30]. The equation of
motion of the density amplitude, φ, is given by Eq. (B2), for a
co-moving reference frame. The addition of the inertial term
in the dynamics studied here rescales the coefficient of the
highest gradient term, i.e., C in Eq. (B2). In the limit of small
velocities, Appendix B derives a relation between the interface
temperature (
Bi

o) versus the steady-state interface velocity
V, reproduced here for convenience,


Bi
o = tφs − Bl

2ψ
2
l − 90

24
νφ2

s − V

3M
√

C
σφ, (12)

where C ≡ W (n̂)2 − βV 2/M , σφ = ∫ ∞
−∞(∂xφ(x))2dx, φ is the

scaled steady-state solution of the phase-field equation, and
W (n̂) the anisotropy interface width of φ. The precise form of
φ is not known, however, we assume that it exhibits a transition
from 0 to 1 across the solid-liquid interface, analogous to a
hyperbolic tangent solution, which is the lowest order solution
of Eq. (B2) in the V = 0 limit. Numerical solutions of the
amplitude equation are consistent with this assumption. As
shown in Appendix B the assumption of a (1 − tanh(y))/2
profile leads to σφ = 1/3. The variables ψl,ψs are the interface
concentrations on the liquid and solid sides of the interface.
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FIG. 6. (Color online) The interface temperature vs the velocity
of the interface for two values of β.

Figure 7 plots 
Bi
o predicted by Eq. (12) using the parame-

ters from our simulations for two values of β/M . Equation (12)
has qualitatively similar shape and order of magnitude in the
low V range as the data from the numerical simulations. The
discrepancy in 
Bo for large velocities is a consequence of the
crude low-V approximations used to derive Eq. (12). Despite
the approximate form of Eq. (12), it allows us to understand the
basic role of β on interface kinetics. For example, it predicts
that increasing β at large V leads to a decrease in dimensionless
interface temperature. It is noted that while our simulations
show that increasing β also increases ψl [i.e., decreases k(V )
in Fig. 5], the magnitude of ψ2

l is too small to account for the
change in 
Bi

o in Figs. 6 or 7 [Eq. (12)].
Equation (12) is the low-V analog of the sharp-interface

relation derived by Aziz et al. [3] for the continuous growth
model. The intertial kinetics of the density equation are seen
to essentially renormalize the dimensionless wave speed via C

factor in the last term of Eq. (12). It is noted that at vanishing
velocities, C becomes essentially constant independent of V .
As velocity increases, however, the role of β is enhanced.
Specifically, Stefanovic et al. showed that β increases the
effective time the system spends in wavelike dynamics. This
will have the effect of increasing the effective kinetic term in
the sharp interface term in Eq. (12).

ΒM 0.5, ΓM 100.0
ΒM 0.7, ΓM 100.0

FIG. 7. (Color online) Interface temperature vs interface velocity
using Eq. (B9). The ψl and ψs in Eq. (12) were extracted from the
numerical simulations of the corresponding γ and β [σφ = 1/3 in
Eq. (12)].
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It is instructive to derive a more precise form of the
interface kinetics for the alloy PFC model that couples
information from the equation for ψ with Eq. (12). This can
be done more accurately than what was done here by solving
the model equations perturbatively in a small variable like
C, and matching solution in the interface regions to those
outside the interface (i.e., bulk) regions. This will allow us to
simultaneously relate the interface temperature 
Bi

o to both β

and γ . This will be presented elsewhere.

IV. CONCLUSION

The present study of rapid solidification using a binary PFC
model was conducted to understand the role of the inertial
dynamics in solute trapping in the PFC alloy formalism.
According to Sobolev’s prediction [6,7], the hyperbolic form
of the concentration diffusion equation predicts complete
solute trapping to occur at a finite velocity. Our PFC alloy
simulations are consistent with this theory, with the transition
to complete trapping being controlled by the ratio γ

M
(which

controls inertial dynamics in the solute field). In particular,
increasing γ reduces V B

D , leading to complete trapping at lower
velocities. Since our alloy model couples the concentration
field to that of the density, the role of rigidity in the density field
was shown to modulate the amount of solute trapping in the
concentration field. In particular, increasing the time scale over
which the density exhibits inertial dynamics (by increasing the
parameter β in the density equation), leads to a decrease in the
interface temperature, and an increase in concentration on the
liquid side of the interface, the latter of which decreases the
partition coefficient. Our numerical results were consistent
with a new sharp interface equation we derived to relate the
interface temperature to the local interface velocity.
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APPENDIX A

To compute the values of K(V ) in Figs. 5 and 4, we need
to calculate the averaged solid and liquid concentrations at
the interface. However, in the solid phase, the concentration
oscillates at a wave length equivalent to the interplanar spacing.
Therefore, to obtain the values of the averaged concentrations,
we employ a Fourier filter to smooth the concentration profiles
as shown below

f̄n = f̂ne
(−k2ε2)/2, (A1)

where n is the grid spacing, f̂n is the Fourier transform of the
concentration profile, f̄n is the smoothed Fourier transform,
and ε controls the wave modes of the Fourier filter. We
then back transform the smoothed profile to real space fn.
To calculate the minimum error associated with this method,
we utilize a similar method used by [31,32] where the error
was calculated by taking the second-order derivative of the
smoothed profile and sum all the terms over the length of the

-6
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-3

-2
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lo
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(S
)

FIG. 8. Error dependency on the value of ε.

simulation box as shown in the following equation:

S =
N∑

n=0

(δfn)2, (A2)

where δfn = (fn+1 + fn−1 − 2fn)/dx2, which represents the
second-order derivative of the smoothed concentration profile.
As the value of ε increases, the error contributions from (δfn)2

decreases as the profile becomes smoother.
We have modified Eq. (A2) by adding error contributions

from the interface liquid concentration in the following
manner:

S =
(

N∑
n=0

(δfn)2

)
+ (Pa − Ps)

2. (A3)

Pa and Ps are the liquid concentration peaks of the actual
concentration profile and the smoothed profile, respectively.
When ε has a small value, the two peaks overlap on top of
each other, however, as the ε value increases, the smoothed
peak deviates from the actual concentration peak causing an
increase in the S value. The two terms of Eq. (A3) have error
contributions and they vary as we manipulate ε. To minimize
the error, we vary the value of ε as illustrated in Fig. 8. We
found an optimal value of ε = 0.343.

The systematic error associated with the filter method
(≈6 × 10−6) is bigger than the statistical error resulted from
the simulations. Since the noise terms were ignored for these
simulations, there is no significant statistical error produced.
After doing the error propagation analysis the final error
associated with K(V ) is ≈1 × 10−5.

APPENDIX B

The derivation of the interface temperature begins with the
free energy functional of our model, expressed in terms of an
amplitude field φ and concentration ψ . The former is like an
order parameter. The form of this free energy was derived by
Elder et al. [30] and in 1D the equation becomes

F =
∫

d �x
{
W 2(n̂)

(
dφ

dx

)2

+ 3Bx
o

(
d2φ

dx2

)2

+ 3
Boφ
2

− 4tφ3 +
(

27 − 9

2

)
ν,φ4 + (

ω + 6Bl
2φ

2
)ψ2

2
+ u

2
ψ4

+ K

2

(
dψ

dx

)2}
, (B1)
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where W 2(n̂) is the interface width and all the other coefficients
are related to the PFC model and defined in Sec. II.

The equation of motion for φ corresponding to the density
field in Eq. (11), written in a steady-state co-moving reference
frame (η = x − V t), is given by

C
d2φ

dη2
− V

M

dφ

dη
+ ∂f

∂φ
= 0, (B2)

where C = W 2(n̂) − βV 2

M
and ∂f

∂φ
= 6[
Bo + Bl

2ψ
2]φ −

12tφ2 + 90νφ3, the latter of which is the derivative of the
nongradient part of the integrand in Eq. (B1). To simplify
the analysis of Eq. (B2) we will consider the low velocity
regime, where we can assume to reasonable accuracy that the
steady-state solution of Eq. (B2) can be approximated by

φ ≈ φsg

(
η√
C

)
,

(B3)
dφ

dη
≈ φs√

C

dg(y)

dy

∣∣∣∣
y= η√

C

,

where φs = (t/15ν)(1 + (
√

1 − 15(
Bo + Bl
2ψ

2
s )ν/t2)) is the

far field value of φ in the solid [30], evaluated here at the capped
value of 
Bo in the far field solid. The function g(y) satisfies
g(y → ±∞) = 0,1. While crude, this approximation allows
us to elucidate some important features of the role of β in the
interface kinetics of our model.

To extract the relationship between interface temperature
and the interface velocity, we employ a projection method,
whereby we multiply both sides of Eq. (B2) by dφ/dη and
integrate from −∞ to ∞, which yields∫ ∞

−∞
C

dφ

dη

d2φ

dη2
dη + V

M

∫ ∞

−∞

(
dφ

dη

)2

dη −
∫ ∞

−∞

dφ

dη

∂f

∂φ
dη

= 0. (B4)

From the boundary conditions of g(y), it is straightforward
to show that the first term vanishes. Using the second of
Eq. (B3) and using u substitution integration, the second
becomes

V

M

φ2
s

C

∫ ∞

−∞

(
dg(u)

du

∣∣∣∣
u=η/

√
C

)2

du = V

M

φ2
s√
C

σφ, (B5)

where σφ ≡ ∫ ∞
−∞ (dg/dy)2 dy. As an example, if we em-

ploy g(y) = (1 − tanh(y)) /2, σφ = 1/3. Since the last term
of Eq. (B4) involves f (φ,
Bo(φ)), we approximate it
by considering the limit where

√
C ≈ W � 1, which al-

lows the lowest order form of amplitude gradient to be
approximated by

lim
W�1

dφ

dη
≈ −φsδ(η). (B6)

This is very approximate but allows the last integral of Eq. (B5)
to be simplified as

−
∫ ∞

−∞

dφ

dη

∂f

∂φ
dη ≈ φs

∫ ∞

−∞
δ(η)

∂f

∂φ
dη = φs

∂f

∂φ

∣∣∣∣
η=0

, (B7)

using the definition above for ∂f/∂φ and evaluating it at the
interface, where φ(0) = φs

2 and ψ(0) = ψl (interface liquid
concentration), results in

φs

{
6
[

Bo + Bl

2ψ
2
l

]φs

2
− 12t

(
φs

2

)2

+ 90ν

(
φs

2

)3
}

.

(B8)

Equations (B5) and (B8) are substituted into Eq. (B4),
yielding


Bi
o = tφs − Bl

2ψ
2
l − 90

24
νφ2

s − V

3M
√

C
σφ. (B9)
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