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We present a phase-field crystal model for structural transformations in multicomponent alloys. The presented
formalism builds upon the two-point correlation kernel developed in Greenwood et al. for describing structural
transformations in pure materials [Greenwood, Provatas, and Rottler, Phys. Rev. Lett. 105, 045702 (2010)].
We introduce an effective two-point correlation function for multicomponent alloys that uses the local species
concentrations to interpolate between different crystal structures. A simplified version of the model is derived
for the particular case of three-component (ternary) alloys, and its equilibrium properties are demonstrated.
Dynamical equations of motion for the density and multiple species concentration fields are derived, and the
robustness of the model is illustrated with examples of complex microstructure evolution in dendritic and eutectic
solidification and solid-state precipitation.
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I. INTRODUCTION

Engineering alloys require the addition of multiple compo-
nents to achieve desired properties. This, however, makes the
investigation of their microstructure evolution and defect in-
teractions difficult. The properties, and therefore the resultant
behavior, of alloys can be directly correlated to the chemical
makeup, microstructure, and the phase selection processes
these alloys undergo upon solidification and subsequent
downstream processing, such as thermal treatments. In the case
of binary alloys, models of solidification processes such as nu-
cleation, free growth and coarsening kinetics, segregation, and
second phase formation have been relatively well developed.
However, for multicomponent alloys, the complex interactions
involved between the different chemical species, dislocations
and other defects make such phenomena far more difficult
to study, even with advances in characterization techniques
such as conventional and high-resolution transmission electron
microscopy.

Advances in modeling have significantly improved our
understanding of the fundamental nature of microstructure
and phase selection processes. Notable contributions have
been made using the phase-field methodology (PFM), which
has been successful at examining mesoscale microstructure
evolution over diffusive time scales. The greatest success
of the PFM has come in the area of solidification.1–7 The
phase-field concept has gone far beyond its origins. It is now
capable of describing, through the introduction of various
auxiliary fields, a wealth of phenomena such as multiple
crystal orientations,8–10 multiple components and phases,11–13

defect-solute interactions,14 elasticity,15,16 and plasticity.17

There has recently emerged an atomic-scale phase-field
modeling formalism, called the phase-field crystal model
(PFC).18,19 This method operates on atomistic length scales
and diffusive time scales and self-consistently incorporates
elasticity, multiple crystal orientations, grain boundaries,
dislocations, and the evolution of microstructure on diffusive
time scales. For both pure materials and binary alloys, Elder
and co-workers19 and Jin and Khachaturyan20 have shown
that PFC models can be formally derived from classical

density functional theory (CDFT), where the order parameter
can be related to the atomic probability density.21 As such,
many basic microstructure phenomena can be seen as arising
self-consistently from a simple fundamental theory described
by a small set of physically motivated parameters. With the
ability of the PFC density field to also assume disordered
states, it is also possible to examine amorphous or glassy
states.22,23 Phase-field crystal models are also exceedingly
simple to work with numerically. The use of coarse graining
approaches has further shown that PFC-type models can be
used as generators of traditional phase-field models, as well
as so-called amplitude models, essentially phase-field models
with complex order parameters. These models make it possible
to simulate different crystal orientations and defect structures
on mesoscopic length and time scales,24–27 and also exploit the
scaling afforded by adaptive mesh refinement.28

A weakness of the early PFC models was their inability to
systematically describe and control complex crystal structures
and coexistence between them. Recently, various promising
approaches have emerged to address these shortcomings.
These fall into two classes, those that control crystal structure
via resonances induced by nonlinear terms,29 and those that
control the properties of the correlation function, some of
which work in real space30 and some are designed to work
in Fourier space.31,32 Greenwood et al.31,32 introduced a class
of multipeaked, two-point direct correlation functions that
contained some of the salient features of CDFT, but retained
the simplifications that gave the original PFC formalism its
numerical efficiency. This so-called “XPFC” formalism was
later extended to binary alloys, and applied to phenomena such
as eutectic solidification and elastic anisotropy,33 solute drag,34

quasicrystal formation,35 solute clustering, and precipitation
mechanisms in simplified Al-Cu alloys36 and 3D stacking fault
structures in fcc crystals.37

In this paper, we generalize the XPFC formalism of
Greenwood et al. to the case of N -component alloys. The
approach begins with the truncated CDFT energy functional of
an N -component system. At the core of our excess free energy
are the particle interactions of Refs. 31 and 32, adapted for
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different structural phases in alloys by making the interaction
kernel a function of the local species concentrations. We
compute the equilibrium properties of our model for the case of
a ternary alloy and compare the resulting model phase diagram
to an experimental ternary system. The dynamics of the model
are then demonstrated in the context of dendritic and eutectic
solidification, and solid-state precipitation.

The remainder of this paper is organized as follows. We
begin by deriving the full N -component XPFC energy func-
tional in Sec. II from a simplified, truncated classical density
function theory of freezing similar to that of Ramakrishnan
and Yussouff.38 We then derive a second, simplified version
of the model that is the N -component analog of the previous
binary XPFC model in literature. Section III calculates the
equilibrium properties of the model for a particular case
of a ternary system via isothermal sections of the phase
diagram. Section IV presents some numerical examples of
microstructure evolution by simulating dendritic and eutectic
solidification and solid-state precipitation. We end with a
summary and conclusions.

II. XPFC ENERGY FUNCTIONALS
FOR N-COMPONENT ALLOYS

A general free energy functional for an N -component alloy
is derived starting from the classical density functional theory
of freezing energy formalism of Ramakrishnan and Yussouff,38

where each alloy component is written in terms of a density
field ρi . The model is rewritten in terms of total density and
concentration variables to make contact with standard models
used in the description of alloys. The model is then collapsed
to a simplified form of the free energy, similar to the simplified
form for the binary XPFC model of Ref. 33 Finally, equations
of motion for the total density and each concentration field are
presented for both versions of the model free energy.

A. Deriving an XPFC energy functional
for N-component systems

The free energy functional of an N -component mixture can
be described by two contributions; a local free energy for each
of the N density fields and an excess free energy due to species
interactions. The local free energy is treated as an ideal energy
which drives the density fields to become uniform. The excess
contribution drives the density fields to become periodic by
creating minima in the free energy for these states. We can
write the free energy functional of the mixture as

�F
kB T

=
∫

dr
(

�Fid

kB T
+ �Fex

kB T

)
, (1)

where �Fid denotes the ideal energy and �Fex is the excess
energy which accounts for interactions between atoms through
correlative interactions. This latter term, gives rise to structural
symmetry, elasticity, and interactions between topological
defects. The constant kB is the Boltzmann constant and T

is the temperature. The differential is dr ≡ dxdydz.
The ideal energy, �Fid, gives the entropic contribution for

an N -component system. For small density changes from a

reference density of each component, it is defined as

�Fid

kBT
=

N∑
i

ρi ln

(
ρi

ρo
i

)
− δρi, (2)

where N denotes the number of components, which are
denoted as A,B,C, . . ., etc., ρi is the density of component i,
ρo

i is the reference density of component i in the liquid phase at
co-existence and δρi = ρi − ρo

i the density difference. Follow-
ing previous PFC models,19 we define a total mass density ρ =∑N

i ρi and the total reference mass density as ρo = ∑N
i ρo

i .
Following Refs. 19, 27, and 33, we define concentrations
as ci = ρi/ρ and the corresponding reference compositions
by co

i = ρo
i /ρ

o. Furthermore, for convenience we define a
dimensionless mass density of the form n = ρ/ρo − 1. With
these definitions and the conservation condition

∑
i ci ≡ 1,

Eq. (2) simplifies to the dimensionless form

�Fid

kBTρo
= (n + 1) ln(n + 1) − n + (n + 1)

N∑
i

ci ln
ci

co
i

. (3)

The excess energy takes into account interparticle in-
teractions truncated at two-particle interactions, i.e., A-A,
B-B, . . . ,N -N , A-B, . . . ,A-N, . . . . This can be defined
as

�Fex

kB T
= −1

2

∫
dr′

N∑
i

N∑
j

δρi(r) C
ij

2 (r,r′) δρj (r′), (4)

where C
ij

2 represent all combinations of two-particle cor-
relations, in this work assumed isotropic [i.e., C

ij

2 (r,r′) =
C

ij

2 (|r − r′|)], between the field describing species i and j ,
respectively, where i,j = A,B,C, . . . ,N . We write Eq. (4) in
terms of the reduced density n and compositions ci . As in Refs.
19 and 33, we consider only the lowest-order contributions of
the compositions ci , which vary on length scales much larger
than the density n, which are periodic on the scale of the
lattice constant. This allows us to simplify integrals arising
from Eq. (4), which couple ci(r′) together with n(r′).39 For
example,∫

dr′ Cij

2 (|r − r′|)n(r′)ci(r′) ≈ ci(r)
∫

dr′Cij

2 (|r − r′|)n(r′).

To simplify notation, the notation n(r′) ≡ n′ and ci(r′) ≡ c′
i

is used hereafter. With these simplifications and notations,
the excess energy of Eq. (4) can be written in terms of the
dimensionless variables n and {ci} as

�Fex

kBTρo
= −1

2

N∑
i,j

∫
dr

(
n ci cj + ci cj − co

i cj

) ∫
dr′ Cij

2 n′

−1

2

N∑
i,j

∫
dr

(
n ci + ci − co

i

) ∫
dr′ Cij

2 c′
j

−1

2

N∑
i,j

∫
dr

(
co
i co

j − n co
j ci − co

j ci

)
Ĉ

ij

2 (|k| = 0),

(5)

134105-2



MULTICOMPONENT PHASE-FIELD CRYSTAL MODEL FOR . . . PHYSICAL REVIEW B 87, 134105 (2013)

where Ĉ
ij

2 is the Fourier transform of C
ij

2 (|r − r′|), and satisfies

Ĉ
ij

2 (|k| = 0) =
∫

dr′ Cij

2 (|r − r′|), (6)

and where we have introduced the notation C
ij

2 ≡ ρoC
ij

2
(|r − r′|), which is the direct two-point correlation function.

Collecting terms from Eqs. (3) and (5) gives the complete
N -component free energy functional, written in dimensionless
form as

�F
kB Tρo

=
∫

dr(n + 1) ln(n + 1) − n + �Fmix({ci})(n + 1)

−1

2

N∑
i,j

∫
dr

(
n ci cj + ci cj − co

i cj

) ∫
dr′ Cij

2 n′

−1

2

N∑
i,j

∫
dr

(
n ci + ci − co

i

) ∫
dr′ Cij

2 c′
j

−1

2

N∑
i,j

∫
dr

(
co
i co

j − n ci co
j − co

j ci

)
Ĉ

ij

2 (|k| = 0),

(7)

where �Fmix({ci}) denotes the ideal entropy of mixing,

�Fmix({ci}) =
N∑
i

ci ln
ci

co
i

. (8)

Equation (7) is the full N -component PFC model in CDFT
form. When a form for C

ij

2 is specified, it can be used
directly. However, this form is not convenient to make contact
with other theories and models in the literature. It will be
transformed into a simpler form in the next section.

B. Simplified N-component XPFC free fnergy

It is instructive to reduce the model of Eq. (7) to a minimal
form that retains the salient features of the original model
but can also make contact with previous PFC and phase-field
models. To do so, certain simplifications must be made.

First, an expansion of the ideal free energy term is taken to
fourth order in the limit of small n, i.e., around the reference
ρo. The logarithms in the entropy of mixing [see Eq. (8)]
are left unexpanded for convenience. Secondly, the terms
with correlation kernels can be simplified by retaining the
long-wavelength behavior of all compositions ci , since they
vary much more slowly than n. Following the procedures
outlined in Refs. 26, 27, 40, and 41, it can be shown that
upon coarse graining, all terms containing linear powers
of n or n′ in Eq. (7) vanish. Also, terms containing only
concentration fields and a correlation function give rise to
local products of ci cj [which arise from the k = 0 part of
C

ij

2 , and look analogous to the last term in Eq. (7)] and
products between their corresponding gradients. The reader
is referred to Appendix A for details of the coarse graining
procedure applied to terms of Eq. (7). After some tedious
but straightforward algebra, the above approximations lead
to the following simplified N -component XPFC free energy

functional:

F =
∫

dr

[
n2

2
− η

n3

6
+ χ

n4

12
+ ω �Fmix({ci})(n + 1)

− 1

2
n

∫
dr′Ceff(|r − r′|) n′ − 1

2

N∑
i,j

κij∇ci · ∇cj

]
, (9)

where

Ceff(|r − r′|) =
N∑

i,j=1

ci cj C
ij

2 (|r − r′|). (10)

The parameters η, χ , and ω are constants, the significance of
which is discussed further below. The κij are gradient energy
coefficients associated with compositional interfaces involving
ci and cj . For notational convenience, F is used to denote
�F/kBTρo.

The parameters η and χ corresponding to Eq. (7) are
formally equal to one, but hereafter will be treated as free
parameters that can be used to correct the density dependence
of the ideal free energy away from the reference density ρo,
i.e., to match the bulk free energy to materials properties. Also,
it was shown in Ref. 41 that the k = 0 mode of higher-order
correlation terms in a CDFT expansion will contribute local
polynomial terms in ci and n, analogous to the Ĉ

ij

2 (|k| = 0)
terms of Eq. (7). These terms can be combined with an
expansion of the �Fmix term in Eq. (7) to produce a messy
polynomial expansion of the local free energy in powers of
the elements of {ci} and n. To keep the form of the free
energy compact, we have found that it is simpler to introduce
a parameter ω, which modifies the mixing free energy from its
ideal form, away from the reference compositions co

i . Finally,
in the present work, cross gradient terms in composition will
be neglected.

The correlation function in Eq. (10) is too basic to capture
the properties of very complex alloys, although it can capture
some properties of simple alloys. Guided by the form of
the first term on the second line of Eq. (7), it can be seen
that higher-order correlation functions will contribute terms
of the form ci cj ck C

ijk

3 , ci cj ck clC
ijkl

4 , etc. To emulate such
higher-order nonlocal contributions effectively, we introduce
an effective correlation function of the form

Ceff(|r − r′|) =
N∑

i=1

Xi({cj }) Cii
2 (|r − r′|). (11)

The Xi are as yet undetermined polynomial functions of the
elements of {cj }. The role of the Xi is to determine the resultant
local crystalline structure by interpolating between the kernels
Ĉii

2 (defined below), which define the base equilibrium crystal
structures of each pure component i. The interpolation is done
through appropriately constructed polynomial expansions of
the elements of {cj }. The order of Xi depends on the number of
components in the system and can be made as high as required
to smoothly interpolate from one correlation kernel to another.
We have found that Eq. (11), through appropriate choices of
Xi , combined with other model parameters, is robust enough
to model a wide variety of alloy systems.

The model in Eq. (9) captures the usual features of other
PFC models while allowing for a very easy control of a wide
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range of crystal structures in different phases. It is motivated
from considerations of classical density functional theory but
simplified enough to make numerically tractable simulations
possible, as will be shown below. Finally, we note that the form
of the expansion in Eq. (11) is dimensionally motivated from
higher-order terms in CDFT but is flexible enough to model
experimentally relevant multicomponent alloys quantitatively
using, for example, thermodynamic databases.

C. Dynamics

Equations of motion for the density n and each of the
concentration fields ci follow conserved dissipative dynamics.
Namely, the dimensionless density n obeys

∂n

∂t
= ∇ ·

(
Mn∇ δF

δ n

)
+ ζn

= ∇ ·
{
Mn∇

[
n − η

n2

2
+ χ

n3

3

+ω�Fmix({ci}) − Ceff n

]}
+ ζn. (12)

For the composition fields, it follows from solution thermody-
namics that the dissipative dynamics takes the general form,
for each ci , given by42,43

∂ci

∂t
= ∇ ·

⎛
⎝ N∑

j

Mij∇ δF
δcj

⎞
⎠ + ζci

= ∇ ·
{

N∑
j

Mij∇
[
ω(n + 1)

δFmix

δcj

−1

2
n
δCeff

δcj

n +
N∑
p

κpj∇2cp

]}
+ ζci

, (13)

where the following shorthand notations have been used:

Ceff n ≡
∫

dr′Ceff(|r − r′|)n(r′),
(14)

n
δCeff

δcj

n ≡ n(r)
∫

dr′ δCeff

δcj

(|r − r′|)n(r′).

Mij is the composition mobility tensor and reads

Mij = Mci

(
δij − Mcj∑N

l=1 Mcl

)
, (15)

where Mcν
is the mobility coefficient for composition ν and

δij is the Kronecker δ function, which satisfies

δij =
{

1 if i = j,

0 otherwise.
(16)

Equation (13) describes the general dynamics of a multi-
component solution, when considering contributions from
all other solute species. We confine ourselves to a multi-
component system where we have symmetry in the mo-
bility tensor and restrict the tensor only to its diagonal
elements. In doing so, the dynamics for each composition field

becomes

∂ci

∂t
= ∇ ·

{
Mci

∇
[
ω(n + 1)

δ�Fmix

δci

−1

2
n
δCeff

δci

n + κii∇2ci

]}
+ ζci

, (17)

where similar shorthand notations have been used. The
coefficients Mn and Mci

denote the mobility of the density
and each concentration, respectively, and strictly speaking
can be functions of the fields. The noise terms, ζn and
ζci

, model coarse grained thermal fluctuations on density
and concentrations ci , respectively. They formally satisfy
〈ζq(′,t)ζq(r′,t ′)〉 = −A∇2χa(r − r′)δ(t − t ′), where q denotes
the density or one of the concentration fields, A ∝ MqkBT

and χa(r − r′) is the inverse Fourier transform of a Gaussian
function, which, following Tegze and co-workers,44 can be
generalized to have a high frequency cutoff for frequencies
above 2π/a, where a is the lattice constant. The precise form
of A, which sets the scale of the thermal fluctuations, is not
properly understood in the context of PFC modeling but is the
object of several investigations. In the applications illustrated
in this paper, the noise is left out of simulations.

III. TERNARY SYSTEMS

In this section, we reduce the simplified free energy func-
tional of Sec. II B to the case of three-components, or ternary
alloys. We first describe the ternary free energy functional,
followed by a discussion of the effective correlation function
chosen for ternary systems. With the free energy and effective
correlation in hand, we demonstrate the equilibrium properties
of our model by calculating the ternary phase diagrams for a
generic A-B-C system and a simplified Al-Cu-Mg system.

A. Free energy functional

Specializing Eq. (9) for three components, denoted here as
A, B, and C, reduces it to

F ter =
∫

dr
[
n2

2
− η

n3

6
+ χ

n4

12
+ ω�F ter

mix(n + 1)

− 1

2
n

∫
dr′C ter

eff (|r − r′|) n′+ κA

2
|∇cA|2+ κB

2
|∇cB |2

]
,

(18)

where

�F ter
mix = cA ln

cA

co
A

+ cB ln
cB

co
B

+ (1 − cA − cB) ln
1 − cA − cB

1 − co
A − co

B

(19)

and

C ter
eff (|r − r′|)
= XA(cA,cB )CAA

2 (|r − r′|) + XB(cA,cB ) CBB
2 (|r − r′|)

+XC(cA,cB ) CCC
2 (|r − r′|). (20)

In arriving at Eq. (18), the conditions cC = 1 − cA − cB and
co
C = 1 − co

A − co
B have been used, cross gradient concentra-

tion terms in A and B have been neglected, and the gradient
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coefficients are defined by κA = −κAA + κAC + κCA and κB =
−κBB + κBC + κCB (see Appendix A for the definition of κij

and further details).
The effective ternary correlation kernel C ter

eff is defined by Xi

such that XA + XB + XC ≡ 1 at all compositions, analogous
to the case for the XPFC binary model.33 Their particular
form is chosen here to model the generic properties of eutectic
systems. However, by careful alteration of other parameters,
other alloy systems can be modeled, e.g., isomorphous and
peritectic systems.33 Here, the Xi used are

XA(cA,cB) = 3c2
A + 2cAcB − 2c3

A − 2c2
AcB − 2cAc2

B,

XB(cA,cB) = 2cAcB + 3c2
B − 2c2

AcB − 2cAc2
B − 2c3

B,

XC(cA,cB) = 1 − 3c2
A + 2c3

A − 3c2
B + 2c3

B − 4cAcB

+ 4c2
AcB + 4cAc2

B. (21)

B. Correlation functions Ci i
2

The XPFC formalism is best suited for numerical sim-
ulation in Fourier space. The pure component correlation
functions Cii

2 (|r − r′|) are thus constructed directly in Fourier
space, where they are denoted Ĉii

2 (k). Each component, i,
contributes a correlation function that supports the desired
equilibrium crystal structure for a pure component. A Fourier
space peak of Ĉii

2 (k),32 for a given mode j , is denoted by

Ĉii
2j = e

− σ2

σ2
Mj e

− (k−kj )2

2α2
j . (22)

The total correlation function for component i, Ĉii
2 , is defined

by the envelope of all peaks Ĉii
2j . The first exponential

in Eq. (22) sets the temperature scale via a Debye-Waller
prefactor that employs an effective temperature parameter,
σ . We also define an effective transition temperature, σMj ,
which subsumes the effect of planar and atomic densities
associated with the family of planes corresponding to mode
j .33 The second exponential sets the position of the reciprocal
space peak at kj , which defines the inverse of the interplanar
spacing for the j th family of planes in the equilibrium unit
cell structure of component i. Each peak is represented by a
Gaussian function, with αj being the width of the peak, j . The
{αj } have been shown in Ref. 32 to set the elastic and surface
energies, as well as their anisotropic properties.

It is noted that the k = 0 mode of all correlation functions
are essentially zero. In principle, as discussed above, the
k = 0 mode of these correlation functions can have their
effects implicitly reflected through local coefficients in the free
energy. In the case of a pure material, a nonzero peak height
at k = 0 in the correlation function merely shifts the local free
energy at densities away from the reference density, however,
the stability of equilibrium structures is typically unchanged.32

The situation is similar for alloys, where the k = 0 mode will
have a negligible contribution for phases that remain relatively
close to the reference density. Deviations of phases away from
the reference density will be manifested in the average density
dimension of the phase diagram. Here, it is assumed that the
average density no = 0 to simplify the demonstration of the
model. Of course, the more complex situations where both
the concentration and average density need to be modeled
can be treated by adding suitable k = 0 contributions, or by
choosing the appropriate coefficients in the bulk free energy.

Thus, without loss of generality, we will assume no additional
constant to the correlation function Ĉ

ij

2j here.

C. Ternary dynamics

For the case of three-component alloys, the dynamical
equations of motions in Eqs. (12) and (13) reduce to

∂n

∂t
= Mn∇2

(
n − η

n2

2
+ χ

n3

3
+ ω�F ter

mix − C ter
eff n

)
,

∂cA

∂t
= McA

∇2

[
ω(n + 1)

δ�F ter
mix

δcA

− 1

2
n
δC ter

eff

δcA

n − κA∇2cA

]
,

∂cB

∂t
= McB

∇2

[
ω(n + 1)

δ�F ter
mix

δcB

− 1

2
n
δC ter

eff

δcB

n − κB∇2cB

]
,

(23)

where Mn, McA
, and McB

are dimensionless mobility coeffi-
cients for density and compositions fields. They are set to 1
here, since it is the intent of this paper to introduce the model
and its physical features.

D. Equilibrium properties

Ternary equilibrium is defined by co-existence of bulk
phases, e.g., solidα-solidβ , liquid-solidα-solidβ , etc. The
governing properties, e.g., partitioning, of such an equilibrium
state can be determined from standard thermodynamic
minimization methods. In general, for three-component
alloys, free energy minimization is defined by a common plane
tangent to the free energy wells of any two or three coexisting
phases. This construction is a geometrical representation of the
statement that the chemical potentials and grand potentials of
any two phases are equal with respect to each component. Here,
we construct isothermal ternary phase diagrams by examining
all combinations of phase coexistence (e.g., solidα-liquid,
solidα-solidβ , etc.). The procedures for calculating phase
diagrams for PFC models are welldocumented18,19,31,33 and
only the approach used here will be summarized.

For solid phases, the density field, which varies on
atomic length scales, is approximated using a multimode
approximation given by

ni(r) =
Ni∑

j=1

Aj

Nj∑
l=1

exp

(
2π

ai

ikj l · r
)

, (24)

where ai is the lattice spacing of the solid phase i and Ni

denotes the number of mode families (families of planes) in
the unit cell of phase i, Aj is the amplitude associated with the
j th family of planes. Each mode contains Nj reciprocal lattice
peaks, enumerated by the index l. Strictly speaking, there is
a distinct amplitude, Ajl , for each reciprocal lattice peak.
However, for the purposes of simplifying the construction
of phase diagrams (i.e., working with the fewest number of
variables to minimize), they are assumed constant leading to
Aj . Each index l in the family j has a corresponding reciprocal
lattice vector kj l , normalized by the lattice spacing.

Substituting Eq. (24) into Eq. (18), and integrating over one
unit cell, the free energy can be calculated for each phase as
a function of cA, cB and the amplitudes Aj . Since amplitudes
are nonconserved fields, the resulting free energy is then
minimized with respect to each Aj .33 The result is substituted
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back into the free energy. After this procedure, we are left with
a free energy landscape F ter

sol(cA,cB ), where F ter
sol represents

an amplitude-minimized solid free energy. In keeping with
the discussion of the previous sections, we assume that the
average density of all phases is close to the reference density,
i.e., no = 0. For the liquid phase, the free energy F ter

liq (cA,cB)
is trivially computed by setting all Aj = 0.45

With the free energy landscapes of liquid and solids, the
phase boundary lines between a combination of phases at a
given temperature parameter, σ , are computed by solving the
following set of equations simultaneously:

μI
cA

= μJ
cA

, μI
cB

= μJ
cB

, �I = �J , (25)

where the last of these implies that

f I − μI
cA

cI
A − μI

cB
cI
B = f J − μJ

cA
cJ
A − μJ

cB
cJ
B. (26)

The superscripts I and J denote any two phases in equilibrium
(e.g., liquid-solidα), respectively. The expressions μI

cA
=

∂f I /∂cA and μI
cB

= ∂f I /∂cB are the chemical potentials
of phase I with respect to the concentrations cA and cB ,
respectively, with analogous definitions for μJ

cA
and μJ

cB
. The

expressions �I and �J are the grand potentials of phases I

and J , respectively. See Appendix B for further details on
calculating phase diagrams. The set of conditions in Eq. (25),
along with Eq. (B3) defining the average concentration, can
be solved to find the four equilibrium concentrations (two per
phase) defining coexistence on a given tie line.

1. Generic ternary eutectic alloy

A first example of the equilibrium properties of the
ternary XPFC model are demonstrated for a system where
all three components (A,B, and C) are structurally similar,
differing only in their equilibrium lattice spacings. Here,
two-dimensional (2D) square symmetry is assumed as the
equilibrium structure for each pure component, which in
this context implies that all Ĉii

2 have the same number of
peaks, with the corresponding ratios of their positions in
reciprocal space being the same. However, each structure is
differentiated by the absolute positions (kj ) of each peak.
Though it has not been done in this initial work, by adjusting
the widths (αj ) of each peak, each element can also be
differentiated by different elastic and surface energies. The
full list of parameters used to construct the phase diagrams in
this section are listed in the caption of Fig. 1.

FIG. 1. (Color online) Ternary eutectic system. (a) Solid and liquid energy landscapes of a square-square-square (A-B-C) system at
temperature parameter σ = 0.17. Corresponding phase diagrams at temperatures (b) σ = 0.182, (c) σ = 0.17, and (d) σ = 0.164. The
parameters for ideal free energy and entropy of mixing were η = 1.4, χ = 1, ω = 0.005, while reference concentrations were co

A = 0.333 and
co
B = 0.333. Widths of the correlations peaks are taken α11 = 0.8 and α10 = √

2α11 for all phases (required for isotropic elastic constants in a solid
phase with square symmetry33). The peak positions for the given structures are k11A = (81/38)π and k10A = √

2k11A for α, k11B = (54/29)π
and k10B = √

2k11B for β and k11C = 2π and k10C = √
2k11C for γ . The effective transition temperatures are set to σMj = 0.55 for all family

of planes in all phases. The concentrations on the isothermal phase diagrams are read in a Cartesian coordinate system.
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Allowing all three components to have square structural
symmetry, at sufficiently low temperature, we can construct
a bulk solid free energy landscape describing multiple solid
phases, described by an effective lattice parameter (ater) that
is a weighted average of the individual lattice parameters
of all three components, using the interpolation functions of
Eq. (21), namely, ater = aAXA + aBXB + aCXC . This leads to
the solid-liquid free energy landscape in Fig. 1(a) for σ = 0.17.
The corresponding isothermal phase diagram is illustrated
in Fig. 1(c), which is constructed form the coexistence
lines calculated between the liquid phase and the different
solid-solution phases, using the set of conditions in Eq. (25).
Figure 1(b) shows an isothermal cut at a higher temperature,
i.e., σ = 0.182, depicting an increased region where the bulk
liquid is stable compared to the solid phases. At sufficiently
low temperature, the free energy admits eutectic coexistence
of three phases. We construct an isothermal cut right above the

eutectic temperature, i.e., at σ = 0.164, shown in Fig. 1(d).
The corresponding concentrations cA and cB in Fig. 1, are given
as fractions, where unity represents pure A or B, respectively,
along each axis of the phase diagram.

2. Simplified Al-Cu-Mg type alloy

The parameters of the ternary XPFC model can be chosen to
produce sections of experimental phase diagrams qualitatively,
as in the work of Fallah et al.,46 where the present ternary
model is used to model precipitation in a 2D representation
of the Al-Cu-Mg system. Here, we demonstrate how the
equilibrium properties of a portion of the Al-rich (simplified)
part of the Al-Cu-Mg phase diagram can be described
quantitatively by the ternary XPFC model. An experimental
phase diagram at 400 ◦C is shown for reference in Fig. 2(b),
taken from Ref. 47.

FIG. 2. (Color online) Al-Cu-Mg phase diagram. (a) Solid and liquid energy landscapes of a square-square-square [(Al)-β-θ ] system at
temperature σ = 0.04, (b) The Al-rich side of an isothermal cut (at 400 ◦C) from the experimental phase diagram of the Al-Cu-Mg system
taken from Ref. 47. Dashed circles mark the regions of the Al-rich (Al), Cu-rich (θ ), and Mg-rich (β) regions considered for reconstruction by
the model phase diagram. Reconstructed phase diagrams at temperatures (c) σ = 0.04 and (d) σ = 0.155. The parameters for ideal free energy
and entropy of mixing were η = 1.4, χ = 1, ω = 0.005, co

Cu = 0.333, and co
Mg = 0.333. Widths of the correlations peaks are α11 = 0.8 and

α10 = √
2α11 for all phases. The peak positions are k11(Al) = 2π , k10(Al) = √

2k11(Al), k11θ = (2.0822)π , k10θ = √
2k11θ , k11β = (1.8765)π , and

k10β = √
2k11β . For all family of planes, σMj = 0.55, in all phases. The maxima in concentrations cCu and cMg are rescaled from unity, 1, to

correspond to the Cu and Mg content in the θ and β phases given by the experimental phase diagram, i.e., ≈32.5 and ≈38.5 at.%, respectively.
The concentrations on the isothermal phase diagrams are read in a Cartesian coordinate system.
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Consider the part of the phase diagram for (Al)−β-θ
outlined by the red dashed line and circled solid phases in the
experimental phase diagram shown in Fig. 2(b), and ignoring
the (Al) + S and (Al) +β + T phase regions. In the dilute-
Mg region, a eutectic transition occurs between the Al-rich,
(Al)-fcc phase, and an intermediate phase θ which has a
tetragonal crystal structure. The eutectic system of (Al)-θ has a
small solubility for Mg, however, past the maximum solubility
limit, there exists other intermediate phases terminating at the
cubic β phase. The equilibrium lattice constants (and thus the
positions of the reciprocal space peaks) of θ and β phases
are determined by interpolating between those of Al with
32.5 at.% Cu and Al with 38.5 at.% Mg, respectively. For
simplicity, we assume a square structural symmetry for all
three equilibrium phases, and like the preceding section, the
effective lattice constant is interpolated by weighting by local
solute compositions, cCu and cMg. The parameters (η,χ,ω),
along with the peak widths αj are chosen to give a satisfactory
mapping of the solubility limits of the (Al) phase for Cu and Mg
to those in the experimental phase diagram of Fig. 2(b), for a
range of temperature parameters (σ ). The full list of parameters
used to construct the phase diagrams in this subsection are
listed in the caption of Fig. 2.

Figure 2(a) shows the free energy landscape for the solid
at σ = 0.04. Figure 2(c) shows the corresponding isothermal
phase diagram at σ = 0.04, where the inset shows a zoomed
in image of the Al-rich corner. Comparing the inset with the
experimental phase diagram, reasonable agreement is evident
between the calculated and the experimental phase diagram
sections. Figure 2(d) shows the isothermal phase diagram
for σ = 0.155. At this higher temperature (still below the
eutectic), there is an increase in the solubility limits of the
phase boundaries. Section IV C will use this phase diagram to
demonstrate solid-state precipitation.

IV. APPLICATIONS

The binary XPFC approach was previously demonstrated
as a tool with which to model the role of defects and
elasticity in structural phase transformations that operate over
diffusive time scales. Further to these capabilities, the ability to
have multicomponent interactions between solute atoms and
defects now makes it possible to examine much more complex
interactions of the above atomic-scale effects with different
solutes, and their diffusion. This capability opens a myriad of
possibilities for applications for microstructure engineering
in materials. This section showcases some applications of
the XPFC multicomponent model presented in this work.
In particular, using the phase diagrams from the previous
section, we demonstrate dendritic and eutectic solidification
and precipitation in the presence of ternary components.
These phenomena are paradigms of microstructure evolution
of relevance to materials engineering applications and are
strongly influenced by diffusion of impurities, elastic strain,
crystal anisotropy, and defect structures.

A. Dendritic solidification

Dendritic solidification arises when a supercooled liquid
is quenched into the solid-liquid coexistence part of the phase

FIG. 3. (Color online) Early-time dendritic solidification in a
ternary alloy, simulated using the phase diagram of Fig. 1(b). The
quench temperature is σ = 0.182 and the initial solute compositions
are uniform and set to the alloy averages, c̄A = 0.1 and c̄B = 0.1. Each
column of images represents a different time during the simulation.
The times shown are (a) 1000, (b) 3000, and (c) 7000 iterations. From
bottom to top, each row displays the progression of n, cB , and cA,
respectively, with cA plotted in the color range from white (lowest
concentration) to red (highest concentration) and cB is plotted in
the color range from white (lowest concentration) to blue (highest
concentration).

diagram. Figure 3 shows snapshots in time of a dendritic crystal
in a ternary alloy. The simulation was done using the phase
diagram in Fig. 1(b). Simulations were conducted in a 2D
domain of size 768a × 768a, where a is the lattice spacing. A
uniform grid spacing and discrete time of �x = 0.125a and
�t = 3 were used and equations of motion, Eqs. (23), were
solved semi-implicitly in Fourier space. The initial conditions
consisted of a small circular seed of diameter, d = 8a of
γ phase, seeded in liquid at a temperature of σ = 0.182.
The initial concentration of solute components A and B

was uniform in both phases and set to the values c̄A = 0.1
and c̄B = 0.1. Several time slices of the simulation domain,
showing the fields (n, cA, and cB) at early tines, are shown
in Fig. 3.

As time progresses during the simulation, Figs. 3(a)–3(c),
dendritic growth is evident. The crystal develops a charac-
teristic fourfold symmetry of the underlying square crystal
structure, produced with the correlation function for the given
pure component of the γ phase. The top two rows show the
time evolution of the concentration fields (from left to right), cA

and cB , respectively, indicating the interface boundary layer for
each component. Both solutes, A and B, reach their maximum
solute content at the interface of the growing dendrite, in
agreement with the solute rejection mechanism of crystal
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FIG. 4. (Color online) Dendritic solidification at time, t =
10 000, displaying the values of all three fields. The top left and
bottom right quadrants show the density field, n. The inset on the
bottom right is a zoomed-in image of the rectangular area marked in
black, revealing the structure of the underlying square lattice and
density wave structure through the interface. Top right quadrant
shows cA, with color range white (low concentration) to red (high
concentration), while bottom left shows cB , with color range white
(low concentration) to red (high concentration). Both show the high
solute content at the interface.

growth. The bottom row shows the evolution of the density.
There is also evidence of the associated density jump at the
interface between solid and liquid phases as depicted by the
light halolike region around the interface. Figure 4 shows a
composite view of the dendrite at later time, highlighting in
each quadrant one of the three fields. This simulation depicts
multiple diffusing species, density changes and surface tension
anisotropy. In a larger numerical domain (where multiple
dendrites can be grown), grain boundaries would also naturally
emerge. It is noteworthy that these physical ingredients arise
self-consistently and are very straightforward to simulate
numerically. We also note that side branching of the growing
dendrite is not observed in Fig. 3 due to the size of the
simulation domain and the exclusion of thermal noise in the
dynamical equations.

B. Eutectic solidification

Highly concentrated alloys feature solidification of coex-
isting solid phases. An example of this is eutectic growth,
where co-existing solid phases grow by co-operative dif-
fusion, a mechanism that allows eutectic colonies to grow
simultaneously. Figure 5 shows a time sequence of a simulation
of a ternary eutectic colony for the Al-Cu-Mg system studied
in the previous section. The simulation was done using the
phase diagram in Fig. 2(d). The temperature parameter was
set at σ = 0.164, with alloy concentrations c̄A = 0.6 and

FIG. 5. (Color online) Binary eutectic solidification in a presence
of a ternary species; simulated using the phase diagram of Fig. 1(d).
The quench temperature is σ = 0.164 and the initial solute composi-
tions were set cA = 0.82 and cB = 0.005 for the initial seed, and the
lever rule for the remaining liquid. Time evolves from top left image to
bottom right. Here, bright purple represents high concentration values
of cA and with little cB , dark blue represents low concentrations cA

and cB , while bright blue regions present relatively moderate amounts
of cA and cB . Inset in the bottom right image is a zoomed-in image
of the rectangular area marked in black, revealing the structure of the
underlying square lattice and concentration profile. One quarter of
simulation domain is shown.

c̄B = 0.025, respectively. The system was initialized with an
initial circular seed of the α-phase at compositions cA = 0.82
and cB = 0.005, while the remaining liquid was set as to
satisfy the lever rule for each solute species. As the system
evolves, the seed initially becomes dendritic, as is evident
by the emerging fourfold symmetry of the crystal. During
further growth, because of solute depletion, an instability
occurs that causes the finger like growth of the α phase,
admitting subsequent nucleation of the secondary γ phase in
regions where there is a depletion of species A. After the
emergence and growth of γ , there exists an accumulation
zone of A, which then allows further growth or nucleation
of α. This process is repeated through out the evolution of
the system giving rise to the unique pattern seen in the last
frame on the bottom right of Fig. 5. This method of growth;
solute depletion, nucleation; solute accumulation, nucleation,
and further growth may be a primary mechanism of eutectic
formation in alloy systems. In this demonstration, not only
is the effect of the effective correlation function apparent,
controlling the emergence of phases as a function of the
local composition, but there is evidence of topological defects,
elasticity, and secondary phase nucleation, all of which are
captured naturally and self-consistently.
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C. Solute clustering and precipitation

Many properties of engineering alloys are typically at-
tained through downstream processing following solidifica-
tion. These downstream processes typically involve either
thermomechanical manipulations or heat treatment of the
as-cast microstructure. One of the most important aims is to
induce certain phase transformations in the as-cast primary
solid matrix to help strengthen alloys, a process known as
precipitation hardening. In this section, we demonstrate this
process using the ternary XPFC model developed in this work.
In particular, we illustrate the initial stages of a heat treatment
process leading to solute clustering, the precursor stage of
precipitation in Al-Cu-Mg alloys. The details of this process
have been reported elsewhere.46

Solute clustering/early-stage precipitation simulations were
preformed using the equilibrium properties calculated for the
(Al)-β-θ system in Figs. 2(c) and 2(d). Simulations were
performed on a 2D rectangular mesh with grid spacing
�x = 0.125 and time step �t = 10. Dynamical equations
were solved semi-implicitly in Fourier space. Initial conditions
consisted of distorted single-phase structures, through the
introduction of a uniform distribution of dislocations, and a
uniform composition everywhere of cCu = 1.1 and cMg = 0.2

at.%. All simulations were initially solutionized for some time
at σ = 0.155, following which they were quenched/aged at a
temperature σ = 0.04. During ageing, small clusters initially
appear with higher Mg and/or Cu content than that of the
matrix. As time progresses, some of these clusters decrease in
size and Cu-Mg-content, or vanish entirely. A few, however,
stabilize, as shown by the typical stabilized clusters “a” and
“b” in Figs. 6(a)–6(f) for Al-1.1Cu and Al-1.1Cu-0.2Mg
alloys, respectively. In contrast, for either alloy, when we
increase the ageing temperature within the single-phase (Al)
region, e.g., σ = 0.145, no clustering is observed and the initial
distortions are removed from the matrix.

Experiments in quenched/aged Al-Cu and Al-Cu-Mg
alloys48–50 have found increasing evidence that the interac-
tion of ternary impurities and quenched-in defects such as
dislocations51 dynamically reduce the local nucleation barrier
for precipitation at locations in the matrix. We have also
found that the addition of Mg into an Al-1.1Cu alloy promotes
clustering and refinement of the final microstructure, as seen
in the simulation data of Fig. 6. The clustering phenomenon
observed in these simulations can be attributed to the propen-
sity for solute segregation to defects and surrounding areas to
relieve stresses induced by the presence of said defects, in this

FIG. 6. (Color online) Time evolution of clusters in solutionized/quenched (a)–(c) Al-1.1Cu and (d)–(f) Al-1.1Cu-0.2Mg alloys at σ = 0.04.
The insets in (a) and (d) show the initial distorted/damaged single-phase structures, with dislocations clearly marked, for each set of simulations.
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case dislocations. As more solute aggregates to dislocations,
the size of the cluster increases but the structural nature of
the cluster also begins to approach that of the next nearest
stable solid phase. As this process continues and the ever
growing cluster attracts more solute, it creates additional
stresses in the surrounding matrix. This in turn draws nearby
dislocations to the cluster in attempts to relieve these addi-
tional stresses caused by solute accumulation. An extensive
investigation of solute clustering mechanisms, in presence of
quenched-in bulk crystal defects, has been done through a
quantitative analysis of the system energetics in binary alloys
in Ref. 36 and recently in ternary alloys, using the present
model.46

V. SUMMARY

This paper reported a phase-field crystal model for struc-
tural phase transformations (XPFC) in multicomponent alloys.
The details of the model derivation were discussed. A simpli-
fied version of the model was specialized for ternary alloys and
its equilibrium properties were shown. The dynamics of the
model were demonstrated on three phenomena of relevance to
microstructure evolution in materials science.

This is the first multicomponent PFC model, and as such is
able to capture the complex kinetics of solidification, eutectic
growth and elastic and plastic effects on solid state processes,
such as clustering and precipitate growth. This model has been
used in a separate work46 to support recent experiments on
the elusive mechanisms of the early stages of clustering and
precipitation.

The phase-field crystal methodology was introduced to
create a bridge between the atomic and traditional phase-field
regimes. As a relatively novel method, many works in this
area of materials science are working to validate the physics
of PFC models. As the first phase-field crystal model for N -
component alloys, this work has demonstrated some important
thermodynamic and kinetic properties of the model. Moreover,
aside from the model’s quantitative and self-consistent nature,
it is particularly simple to operate numerically. It is expected
that this model can thus be used to elucidate the role of multiple
solutes in phenomena governed by atomic-scale elasticity and
defects operating on diffusional time scales.
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APPENDIX A: LONG-WAVELENGTH LIMIT

In Sec. II B, we reduced the free energy in Eq. (7) into
a simplified multicomponent XPFC energy functional. In the
process of doing this, we simplified terms by considering the
long-wavelength limit where the concentration varies much
more slowly than the density field. This appendix details the

steps of how some terms of Eq. (7) can be simplified to derive
the simplified free energy functional in Eq. (9).

1. Terms coupling product of ci and c j with Ci j
2

We begin first with terms involving a coupling of two
concentration fields with a correlation function. As a concrete
example, consider the term

G = −1

2

N∑
i,j

∫
dr ci(r)

∫
dr′ Cij

2 (|r − r′|)cj (r′) (A1)

in Eq. (7), where we have used the more explicit notation for
clarity. (The other terms follow analogously.) To proceed, we
rewrite the correlation function in a Fourier series of the form

C
ij

2 (|r − r′|) =
∫

dk Ĉ
ij

2 (|k|)eik·re−ik·r′
. (A2)

Substituting Eq. (A2) into Eq. (A1) yields

G̃ = −1

2

N∑
i,j

∫
dr ci(r)

∫
dk Ĉ

ij

2 (|k|)ĉj (k)eik·r, (A3)

where we define

ĉj (k) ≡
∫

dr′ cj (r′)e−ik·r′
. (A4)

Considering the long-wavelength limit, we take a Taylor series
expansion of the correlation function in powers of k2 around
k = 0. This results in

G̃ = −1

2

N∑
i,j

∫
dr ci(r)

∫
dk

∞∑
l=0

1

l!
(k2)l

∂ lĈ
ij

2

∂(k2)l

∣∣∣∣
k=0

ĉj (k)eik·r.

(A5)

We note that to invoke the long wavelength limit, we could
have also Taylor expanded the concentration, cj (r′), at r′ = r
as is done in Refs. 25–27 or employed the multiscale expansion
used in Refs. 40 and 41. All these methods, though different
and require different mathematical treatments, are found to be
equivalent. Retaining, to lowest order, terms up to order l = 1,
we have

G̃ = −1

2

N∑
i,j

∫
dr ci(r)

∫
dk Ĉ

ij

2 (|k|)
∣∣∣∣
k=0

ĉj (k)eik·r

−1

2

N∑
i,j

∫
dr ci(r)

∫
dk k2 ∂Ĉ

ij

2

∂(k2)

∣∣∣∣
k=0

ĉj (k)eik·r. (A6)
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Using the definition of the inverse Fourier transform, we
recast Eq. (A6) as

G̃ = −1

2

N∑
ij

γij

∫
dr ci(r) cj (r)

−1

2

N∑
i,j

κij

∫
dr ci(r)(−∇2)cj (r), (A7)

where we have used the following definitions:

γij ≡ Ĉ
ij

2 (|k|)∣∣k=0 (A8)

and

κij ≡ ∂Ĉ
ij

2

∂(k2)

∣∣∣∣
k=0

. (A9)

It is thus clear that the first term in Eq. (A7) will contribute
terms that renormalize the coefficient of the c2

i terms in the
entropy of mixing, if Eq. (9) were expanded about ci = co

i .
In this work, the γij terms are neglected, and their role is
subsumed in an effective manner, for convenience, into the
prefactor ω in Eq. (9). The second term in Eq. (A7) can be
recast into gradient energy terms, which when the model is
reduced to systems described by solute compositions become
analogous to those used in Cahn-Hilliard or Ginzburg-Landau
theories. To do so, we perform integration by parts, yielding

G̃ = −1

2

N∑
i,j

γij

∫
dr ci(r) cj (r)

−1

2

N∑
i,j

κij

∫
dr ∇ci(r) · ∇cj (r). (A10)

In this work, for simplicity, we neglect cross gradient terms
in composition. We note that such cross terms can become
important when studying certain phenomena and/or when
higher-order alloying interactions are considered. Note the
correct signs of the gradient terms are produced as expected,
since κij > 0, when considering a system described generally
using a concentration for each solute species. In particular,
when the system is described in terms of solute concentra-
tions, Cahn-Hilliard like gradient terms are recovered. As an
exmaple, consider the simplified ternary model described in
th text by compositions cA, cB and cC . Eliminating one of the
concentrations, i.e., cC = 1 − cA − cB , we have in terms of
gradients (ignoring cross gradients),

G̃CH = −1

2

∫
dr (κAA|∇cA|2 − κAC |∇cA|2 − κCA|∇cA|2)

−1

2

∫
dr (κBB |∇cB |2 − κBC |∇cB |2 − κCB |∇cB |2)

= 1

2

∫
dr (κA|∇cA|2 + κB |∇cB |2), (A11)

where

κA = −κAA + κAC + κCA,
(A12)

κB = −κBB + κBC + κCB.

Equation (A11) yields Cahn-Hilliard like gradients with
κA > 0 and κB > 0.

2. Correlation kernels containing linear terms in n

To demonstrate the long wavelength limit of terms linear in
density in Eq. (7), we consider, as an example, the term

H = −1

2

N∑
i,j

∫
dr co

i cj (r)
∫

dr′ Cij

2 (|r − r′|)n(r′). (A13)

Substituting the Fourier series expansion of the correlation
function, Taylor expanding the correlation as in Eq. (A5)
(retaining the lowest order term), and taking the inverse Fourier
transform yields

H̃ = −1

2

N∑
i,j

γij

∫
dr co

i cj (r)n(r)

−1

2

N∑
i,j

κij

∫
dr co

i cj (r)
(−∇2) n(r), (A14)

where γij and κij are defined by Eqs. (A8) and (A9),
respectively.

The density, n(r), in Eq. (A14) is rapidly varying. Its
leading order representation is defined by a single-mode
approximation of the form

n(r) =
∑
m

Am(r) eiqm·r, (A15)

where qm are the reciprocal lattice vectors and Am(r) are slowly
varying amplitudes corresponding to each reciprocal lattice
vector, m. Substituting Eq. (A15) into Eq. (A14) gives

H̃ = −1

2

N∑
i,j

γij

∑
m

∫
dr co

i cj (r)Am(r) eiqm·r

+ 1

2

N∑
i,j

κij

∑
m

∫
dr co

i cj (r)∇2(Am(r) eiqm·r). (A16)

Expanding the Laplacian in Eq. (A16) gives

H̃ = −1

2

N∑
i,j

γij

∑
m

∫
dr co

i cj (r)Am(r) eiqm·r

+ 1

2

N∑
i,j

κij

∑
m

∫
dr co

i cj (r) eiqm·rLmAm(r), (A17)

where Lm ≡ ∇2 + 2iqm · ∇ − q2
m is a covariant operator that

assures rotational invariance of the free energy in the long
wavelength limit. It is noted that each term in Eq. (A17) only
contains one rapidly oscillating variable, i.e., eiqm·r. If we apply
the so-called “quick and dirty”52 analog of the volume aver-
aging method employed in Refs. 26 and 27 (which amounts to
decoupling slowly varying fields inside integrals from rapidly
varying phase factors, thus making the integrals effectively
vanish when integrated over one unit), we obtain H̃ ≈ 0.

134105-12



MULTICOMPONENT PHASE-FIELD CRYSTAL MODEL FOR . . . PHYSICAL REVIEW B 87, 134105 (2013)

It is straightforward to show that all other terms in Eq. (7)
that are linear in n, such as

H = −1

2

N∑
i,j

∫
dr n(r)ci(r)

∫
dr′ Cij

2 (|r − r′|)cj (r′),

(A18)

similarly vanish upon coarse graining. It should also be
evident from the above considerations that if Eq. (A13)
contained an n(r) · · · n(r′) combination, then Eq. (A17) would
contain terms with phase factors of different combinations
of sums of two reciprocal lattice vectors. Some of these
two-vector combinations would add up to zero causing their
corresponding terms to survive upon integration.

3. Volume averaging

Equation (A17) can more formally be analyzed using a
volume averaging convolution operator,26 defined by

〈f (r)〉V ≡
∫ ∞

−∞
dr′f (r′)χV (r − r′), (A19)

where f (r′) is the function being course grained and V is the
coarse graining volume. The function χV in the integrand of
Eq. (A19) is a smoothing function that is normalized to unity,
i.e., ∫ ∞

−∞
dr χV (r − r′) ≡ 1. (A20)

A convenient form of χV is given by

χV (r − r′) = 1√
πV

e
(r−r′ )2

V 2 . (A21)

In the long-wavelength limit, Lc � L � a where L ∼ V 1/d ,
in d dimensions, while Lc is the length scale of variation
of the concentration field. This condition implies that the
function χV (r) varies on dimensions much larger than the
lattice constant a = 2π/|qm| but much less then the length
scale of variation of the concentration ci(r). Equation (A19)
defines a noninvertible limiting procedure that can be used to
average a function over some volume.

It is instructive to apply the volume averaging procedure
to the first term in Eq. (A17). For convenience, we define
φ(r) ≡ co

i cj (r)Am(r). It is noted that φ(r) varies on scales
much larger than the lattice constant since it is comprised of
slowly varying functions. Using the definition of φ(r), the first
integral of Eq. (A17) can be written as

H̃V = −1

2

N∑
i,j

γij

∑
m

∫
dr′

[∫
dr χV (r − r′)

]
φ(r′)eiqm·r′

= −1

2

N∑
i,j

γij

∑
m

∫
dr

[∫
dr′ χV (r − r′)φ(r′) eiqm·r′

]
,

(A22)

Since φ(r′) varies more slowly than the scale of variation
of χV , it is reasonable to expand it in a Taylor series about
r′ = r. Substituting φ(r′) = φ(r) + ∇φ(r) · (r − r′) into the

above expression leads to

H̃V = −1

2

N∑
i,j

γij

∑
m

∫
dr

[
φ(r)

∫
dr′ χV (r − r′) eiqm·r′

+∇φ(r) ·
∫

dr′ χV (r − r′) (r − r′) eiqm·r′ + · · ·
]
.

(A23)

The noninvertible procedure was introduced in the second line
of Eq. (A22). In the long-wavelength limit, when |qm|L → ∞,
both integrals in Eq. (A23) vanish as ∼(|qmL|)−1, making H̃V

similarly vanish.

APPENDIX B: PHASE DIAGRAM CALCULATION

Equation (25) provides a system of equations that are
exact when one needs to determine the equilibrium properties
of a given system. For a binary system, where the number
of equations in Eq. (25) is reduced by one, at a specified
temperature and pressure they are sufficient to specify exactly
the unique phase concentrations corresponding to the tie line
between two phases. However, for multicomponent systems,
for the present case of a ternary alloy (represented by solute
compositions A and B), the set of conditions in Eq. (25)
are underdetermined and cannot uniquely define all phase
concentrations. This is because, for a ternary system at a
specified temperature and pressure, there is not generally
a single tie line which specifies phase boundaries between
coexisting phases, but rather multiple tie lines defining the
boundary between any two phases.

The underdetermined set of conditions in Eq. (25) contain
variables cI

A,cJ
A,cI

B , and cJ
B in phases I and J , respectively.

To close this system, an additional condition is necessary
to provide a fourth equation relating the concentrations. A
convenient fourth condition is the lever rule, which relates
weight fractions of phases to the average concentration. For
clarity, we specify it here for ternary solid (α) and liquid (L)
phases,

c̄A = cL
AxL + cα

Axα (B1)

and
c̄B = cL

BxL + cα
Bxα, (B2)

where c̄A and c̄B are the average alloy compositions for
components A and B, respectively, and xL and xα represent
the equilibrium volume fractions of liquid and α, respectively,
and satisfy xL + xα ≡ 1. Combining this last relation between
the volume fractions and Eqs. (B1) and (B2) gives, the last
equilibrium condition,

c̄A − cα
A

cL
A − cα

A

= c̄B − cα
B

cL
B − cα

B

. (B3)

Equation (25) together with Eq. (B3) comprises a complete set
of equations, which can admit unique tie line solutions, i.e.,
solutions for cL

A,cα
A,cL

B , and cα
B in the solid-liquid example just

considered.
With the free energy functions generally being highly

nonlinear, it is not possible to find analytical solutions to
Eqs. (25) and (B3), and they must be solved numerically.
One approach is to specify the temperature and then raster
through the phase space of average concentrations c̄A and c̄B ,
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where the rastering is done by taking discrete steps in steps
of �cA and �cB , respectively (for practical purposes, it is
convenient to set �cA = �cB = �c). For each pair of c̄A

and c̄B , Eqs. (25) and (B3) can be solved numerically. The
solutions yield cL

A,cα
A,cL

B , and cα
B . A unique solution for each

pair of c̄A and c̄B defines one tie line. The collection of all such
tie lines maps out the coexistence phase boundaries between
any two phases, in the case considered here, L and α. Where
no solutions are admitted correspond to single phase regions
where no tie lines exist. It is expected that the smoothness of
the phase boundaries, when plotted for graphical purposes, will
depend on the step size �c chosen to discretize the average
concentration values.

The above mentioned recipe can still require intensive
computation, requiring a solution of four equations in four

unknowns for M2 combinations of average concentration pairs
(where M is the discretized number of average concentration
values for a given component). Since this paper is intended
to demonstrate the main features of our multicomponent
(demonstrated for a ternary) PFC model, we adopted a simpler
approach to compute the phase diagrams in Sec. III D. In
particular, we fixed one of the equilibrium concentrations in
Eq. (25), assuming it is a valid solution at that temperature. We
then solved for the remaining three unknown concentrations
using Eq. (25), repeating this M times, once for each
discrete value of the selected equilibrium concentration. Fixed
concentrations were rastered in steps of �c. Once again, a
unique solution defines a tie line between coexisting phases,
say L and α. If no solutions exist, we are in the single phase
regions where no tie lines exist.
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