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Abstract

A multi-phase field model for quantitative simulations of polycrystalline solidification of binary alloys is introduced. During the free-
growth stage of solidification, the model exploits the thin-interface analysis developed by Karma [3] in order to realistically capture bulk
phase diffusion and the sharp interface corrections predicted by traditional models of solidification. During grain boundary coalescence,
the model is constructed to reproduce the properties of repulsive grain boundaries described by Rappaz et al. [29]. The model provides a
very simple mechanism for decoupling of solute and concentration fields at steady state, an important feature for calculating grain
boundary energies.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Phase field modeling is a robust methodology for exam-
ining complex microstructures in solidification and solid-
state transformations. The approach is to minimize a gen-
eralized free energy functional written in terms of solute
fields and order parameters—which are often reinterpreted
as volume fractions. In the limit when the phase field inter-
face goes to zero (the sharp-interface limit) these models
can be shown to reduce to an appropriate Stefan-like prob-
lem, using sharp interface asymptotics techniques pio-
neered by Caginalp and co-workers [1–3]. Although
mathematically rigorous, sharp-interface limits are imprac-
tical for numerical simulations in the limits of low solidifi-
cation rates.

More recently, newer phase field models of solidification
have been developed for binary alloys which offer several
advantages, enabling more practical and quantitative sim-

ulations to be carried out in the so-called diffuse thin-inter-
face limit—a limit where the physical dimensions of the
interface can be many times larger than the capillary
length, a feature crucial for practical numerical simulations
of phase field models. An attractive feature of these models
is that they are constructed in terms of free energy func-
tionals that allow complete decoupling of diffusion and
phase fields at steady state. This makes it possible to eval-
uate a simple relationship for the surface tension of an
interface entirely in terms of the parameters of the
steady-state phase field(s) [3–11].

A more important breakthrough in thin-interface mod-
eling is the ability to cancel the effect of spurious kinetics
and solute trapping caused by the use of interface widths
that are large compared to the capillary length [3,7,12].
The main idea behind this important innovation is the
use of the anti-trapping current that adjusts for solute
imbalances—among other things—that would otherwise
lead to solute trapping. This has made possible quantitative
modeling in ideal [3,7] and non-ideal binary alloys [8,13],
multi-component systems [11] and eutectic alloys [8]. It
should be emphasized that while interface-induced kinetic
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effects are relevant at high solidification rates, they are not
relevant at low solidification rates when they are induced
merely because the phase field interface is artificially
expanded for numerical expediency.

It can be shown [14] that the advantages of simulating
phase field models with diffuse interfaces is to reduce the
time of simulation by a factor of ðdo=W Þ5 in two dimen-
sions. This efficiency is further enhanced significantly by
simulating the phase field equations by adaptive mesh
refinement [15–17]. This increases by many orders of mag-
nitude the size of the physical domain that can be modeled,
and slaves the simulation time to the interface arclength
and not the physical domain. The combination of such
multi-scale numerical methods and advanced asymptotic
approaches has now made it possible to compare phase
field simulations to metallurgically relevant systems and
conditions [8,18,19].

The advances discussed above have been mostly applied
to single-phase dendrite growth or directional solidifica-
tion. There are also a significant number of so-called
multi-phase field models of polycrystalline, multi-phase
and multi-component solidification and solid-state trans-
formations [20,21]. In many cases, solid-state phenomena
are often diffusion controlled and thus do not suffer very
much from spurious interface kinetics [5,6,22–25] of the
type discussed above, even for moderately diffuse phase
field interfaces. In the case of solidification, however, the
spurious kinetic effects discussed above will plague all
multi-phase models, for which a thin-interface limit is pres-
ently not available [26]. A similar comment can be made
about polycrystalline solidification models utilizing an ori-
entational order parameter. Exceptions to this general
trend include the work of Folch et al. who have developed
a specific phase field model to simulate triple junctions
using diffuse interfaces [8], and the the work of Steinbach
[27] who has recently proposed using Kim’s anti-trapping
formalism [11] in his multi-phase field approach—although
the convergence properties of this proposed approach have
not been demonstrated.

There is a class of solidification phenomena of industrial
importance that requires quantitative modeling of the
entire solidification path, from free dendritic growth to
grain boundary impingement and back-diffusion in the
solid state. There are presently few quantitative multi-
phase field solidification models suitable for an arbitrary
number of crystal orientations and which contain a demon-
strated thin-interface limit. This paper reports the details of
a new multi-phase field model developed in Ref. [28]. The
model extends the anti-trapping formalism of Refs. [3,7]
to a multi-phase field model in order to be able to quanti-
tatively simulate solidification, grain impingement and
solid-state diffusion in multiply oriented crystals in a binary
alloy. The steady-state and kinetic properties of free solid–
liquid interfaces are first demonstrated. The model’s grain
boundary coalescence properties are then benchmarked
against the work of Rappaz et al. [29]. Finally, the grain
boundary energy of the model is characterized.

2. Dilute binary alloy model with multiple order parameters

The starting point is the free energy of an ideal, dilute
binary alloy of species A and B, containing N grains, each
being of the same phase but of varying crystal orientation.
Each grain i ð1 6 i 6 NÞ is defined in terms of an order
parameter /i, each of which varies from 0 < /i < 1, where
0 represents the liquid and /i ¼ 1 represents solid. The free
energy will be constructed so that different order parame-
ters cannot completely overlap, so that in the bulk of each
grain, /i ¼ 1, and all other /j ¼ 0 (for j – i). At any point
in space, the system can be represented in a multi-dimen-
sional phase space by a state vector ~/ � ð/1;/2;/3; � � � ;
/N Þ. In this formalism, the liquid is defined by ~/ ¼ 0, while
the bulk of grain i is defined by the phase space vector
~/ ¼ êi � ð0; 0; 0; � � �/i ¼ 1; � � � ; 0; 0; 0Þ. The vector êi repre-
sents one of the unit vectors of this multi-dimensional
phase space defined by the order parameters. Regions in
space where two or more grains i; j; k, etc., overlap are
defined by the vector ~/ � ð0 � � �/i; � � �/j; � � � ;/k; � � �Þ,
where 0 < /i;/j;/k < 1. For consistency, the parameters
of the model must in principle be chosen such that order
parameters always satisfy 0 6 /i þ /j þ /k þ � � � 6 1. This
will not prove to be a stringent condition.

2.1. Free energy

The free energy of this system is given by:

F ðc; ~/; T Þ ¼
Z

dr
XN

i¼1

1

2
j�ð~/Þr/ij

2 þ f ð~/; c; T Þ þ fintð~/Þ
( )

ð1Þ
where �ð~/Þ is an anisotropic gradient energy coefficient be-
tween any solid phase and liquid or between solid i and so-
lid jð–iÞ. The bulk free energy density f ð~/; c; T Þ is
expanded to lowest order in c and T and to fourth order
in /i, yielding:

f ð~/; c; T Þ ¼ HfDð~/Þ þ
RT m

vo
½c ln c� c� þ f AðT mÞ

� DT sL �
L

T m
~gð~/Þ

� �
þ ½�L þ D��gð~/Þ�c ð2Þ

where fDð~/Þ ¼
P

i/
2
i ð1� /iÞ

2 is a double-well potential
barrier between pure solid and pure liquid, for all i, and
H is the energy barrier between solid and liquid. The func-
tion fintð~/Þ defines the interaction energy between grain i

and all other grains jð–iÞ. In this work the interaction en-
ergy of the form:

fintð~/Þ ¼
X

i

X
j>i

a/2
i /

2
j ð3Þ

[30,31] is used, where a is a constant.
Other functions and constants in Eq. (2) are as follows.

The constant f AðT mÞ is the free energy of pure A evaluated
at its melting temperature T m;DT ¼ T � T m;R is the natu-
ral gas constant and vo is the molar volume of the solid.
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The parameter sL is the entropy of the liquid, �Lð�sÞ is the
internal energy of the liquid(solid), D� ¼ �s � �L and L is
the latent heat of fusion. The scalar function ~gð~/Þ interpo-
lates entropy between solid ð~/ ¼ êiÞ and liquid ð~/ ¼ 0Þ,
while �gð~/Þ similarly interpolates the internal energy.

The chemical part of the bulk free energy in Eq. (2)
(denoted hereafter as fc) can be obtained by a two-step pro-
cess. Following Kim [4], fc ¼ fs~gð~/Þ þ ð1� ~gð~/ÞÞfL, where
fL and fs are the free energy densities of the liquid and solid
alloy phases. This leads to a bulk free energy of a binary
alloy in which the entropy and internal energy are both
interpolated by ~gð~/Þ. In order to be able to decouple the
phase field and concentration at steady state, the method
of Ref. [7] is then used, in which different interpolation func-
tions are introduced for the entropy density ð~gð~/ÞÞ and for
the internal energy density ð�gð~/ÞÞ, leading to Eq. (2).

The form of the interpolation function ~gð/Þ is con-
structed to satisfy ~gð~/ ¼ 0Þ ¼ 0; ~gð~/ ¼ êiÞ ¼ 1 and
0 < ~gð~/Þ < 1 for a general ~/. The function �gð~/Þ has the
same limits as ~gð~/Þ and is “slaved” to the form:

�gð~/Þ ¼ 1

ln k
ln½1� ð1� kÞ~gð~/Þ� ð4Þ

where k is the partition coefficient of the dilute binary al-
loy, which defines the ratio of equilibrium solid to liquid
concentrations. Following Ref. [32], in this work
~gð~/Þ ¼

P
iGð/iÞ, where Gð0Þ ¼ 0;Gð1Þ ¼ 1, while the

derivatives with respect to /i satisfy G0ð0Þ ¼ G0ð1Þ ¼ 0.
The specific algebraic form of Gð/iÞ used here is
Gð/iÞ ¼ /3

i ð6/2
i � 15/i þ 10Þ.

2.2. Phase coexistence

It is instructive to analyze the mean field properties of
the bulk terms of the free energy of Eq. (2), starting first
with the calculation of the equilibrium phase diagram of
this alloy. The generalized chemical potential is given by:

l � @f ð~/; cÞ
@c

¼ RT m

vo
ln cþ �L þ D��gð~/Þ ð5Þ

Assuming equilibrium and evaluating l ¼ leq in a bulk so-
lid i ð~/o ¼ êiÞ and in the bulk liquid ð~/o ¼ 0Þ, respectively,
gives

leq
s ¼

RT m

vo
ln cs þ D�þ �L

leq
L ¼

RT m

vo
ln cL þ �L ð6Þ

where cs and cL represent equilibrium solid and liquid con-
centrations at temperature T, and ~/o tracks the equilibrium
phase field profile between some grain i and the liquid. Set-
ting leq

s ¼ leq
L � leq gives the partition coefficient, i.e.

k � cs

cL
¼ exp � voD�

RT m

� �
ð7Þ

It will be useful in what follows to invert Eq. (7), obtaining
D�vo=RT m ¼ � ln k.

Solving leq ¼ leq
s and leq ¼ leq

L , along with the equation
f ðcs;~/o ¼ êiÞ � f ðcL;~/o ¼ 0Þ ¼ leqðcL � csÞ, gives leq and
the liquidus line of a dilute ideal binary alloy:

T ¼ T m �
RT 2

mð1� kÞ
Lvo

� �
cl ð8Þ

where the liquidus slope is defined by:

mL ¼ �
RT 2

mð1� kÞ2

Lvo
ð9Þ

2.3. Steady-state interface profiles

2.3.1. Concentration

The steady-state concentration profile across a planar
interface is found by considering the chemical potential
leq at a given temperature. This is a constant given by:

leq ¼
RT m

vo
ln coðrÞ þ �L þ D��gð~/oðrÞÞ ð10Þ

where coðrÞ is the steady-state concentration field across the
interface between one or more grains and ~/oðrÞ is the vec-
tor of steady-state phase fields. For example, a single solid–
liquid interface across some grain i is described by
~/o ¼ ð0; 0; 0; � � � ;/o

i ðrÞ; � � � ; 0; 0; 0Þ. More generally, the
steady-state phase field vector for two overlapping grains
is represented by ~/o ¼ ð0; 0; 0; � � � ;/o

i ðrÞ; � � � ; 0; 0; 0; � � � ;
/o

j ðrÞ; � � � ; 0; 0; 0Þ, where i and j represent the phase field
profiles of adjacent grains. Solving for coðrÞ and using the
second of Eq. (6) to eliminate �L � leq gives:

coðrÞ
cl

o

� coð~/oðrÞÞ
cl

o

¼ exp½ln k�gð~/oÞ� ð11Þ

where cl
o is used as a reference liquid concentration at a gi-

ven quench temperature. Eq. (11) is the same form used in
Ref. [7] for the steady-state concentration profile across a
solid–liquid interface in a dilute binary alloy. Using Eq.
(4), the steady-state concentration can also be written as:

coð~/oðrÞÞ
cl

o

¼ ½1� ð1� kÞ~gð~/oÞ� ð12Þ

It will be shown below that the form of Eq. (12) also de-
scribes the steady-state concentration across a solid–solid
interface.

2.3.2. Phase fields

The equilibrium phase field profile across a planar solid–
liquid interface, ~/o ¼ ð0; 0; 0; � � � ;/o

i ðrÞ; � � � ; 0; 0; 0Þ, is given
by solving the Euler–Lagrange equation dF =d/i ¼ 0 in one
dimension:

W 2
o

d2/o
i

dx2
� @fDð/o

i Þ
@/o

i

� @fintð~/oÞ
@/o

i

þ �DTL
T m

@~gð~/oÞ
@/o

i

� D�
@�gð~/oÞ
@/o

i

coð~/oðrÞÞ
" #

¼ 0 ð13Þ
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with W o ¼ �o=
ffiffiffiffi
H
p

, where �o is the coefficient �ð~/Þ evaluated
for the case of an isotropic solid–liquid interface. The large
bracketed term in Eq. (13) is made to vanish by the choice
of interpolation functions. This implies that each order
parameter equation decouples entirely from the concentra-
tion in the steady state. This will make it possible to com-
pute the solid–liquid or solid–solid surface energies only in
terms of phase field parameters.

For example, in the case of an isolated solid–liquid inter-
face corresponding to grain i, the interaction term fint ¼ 0
and decoupling of order parameter and concentration, fixes
the lowest-order phase field solution across the solid–liquid
interface to the simple hyperbolic tangent profile,
/o

i ðxÞ ¼ 1� tanhðx=
ffiffiffi
2
p

W oÞ
� �

=2, where x denotes the direc-
tion normal to the interface. This fixes the model’s liquid–
solid surface energy to be:

csl ¼
2
ffiffiffi
2
p

3
W oH ð14Þ

3. Dynamics

3.1. Variational formulation

The equations of motion for the fields are given by the
standard variational minimization of the free energy:

sð~/Þ @/i

@t
¼ r � ðW 2ð~/Þr/iÞ � @x W ð~/Þ @W

@~/

@~/
@y

 !

þ @y W ð~/Þ @W

@~/

@~/
@x

 !
� dfD

d/i
� 1

H
@fc

@/i
� 1

H
@fint

@/i

ð15Þ
@c
@t
¼ r � ðMðc;~/ÞrlÞ ð16Þ

where l ¼ dF =dc is given by Eq. (5), and the constant
sð~/Þ ¼ 1=ðK/ð~/ÞHÞ, where K/ is an anisotropic phase field
mobility (assumed here the same for all /i) and
W ð~/Þ � �ð~/Þ=

ffiffiffiffi
H
p
¼ W oasð~/Þ is an effective anisotropic

gradient coefficient, which depends on the type of inter-
faces being considered (W o is a characteristic interface
width). The function fc has been defined to denote the
chemical portion of the free energy f. For dilute binary al-
loys the mobility M is set to Mðc;~/Þ ¼ ðDLvo=RT mÞqð~/Þc.
where qð~/Þ interpolates the diffusion from its liquid-phase
value DL, when qð~/ ¼ 0Þ ¼ 1, to its solid-state value Ds,
which implies that qð~/ ¼ êiÞ ¼ n, where n ¼ Ds=DL.

The driving force @fcð~/; c; T Þ=@/i in Eq. (15) can be sim-
plified via Eqs. (4) and (12) analogously to the single-order
parameter case shown in Ref. [7]. Specifically,

@fcð~/; c; T Þ
@/i

¼ �RT m ln k
vo

DT
mLcl

o

ðcð~xÞ � coð~/ÞÞ�g0ð~/Þ ð17Þ

Eq. (17) can be further simplified by eliminating cð~xÞ by
considering a dimensionless chemical potential:

u ¼ vo

RT m
ðl� lEÞ ¼ ln

c

cl
o½1� ð1� kÞ~gð~/Þ�

 !
ð18Þ

where lE is the reference equilibrium chemical potential of
the liquid. Eqs. (18) and (12) are used to write:

cð~xÞ
cl

o

� coð~/Þ
cl

o

 !
�g0ð~/Þ ¼ � ð1� kÞ

ln k
ðeu � 1Þ~g0ð~/Þ ð19Þ

where �g has been eliminated in favour of ~g using Eq. (4).
Eqs. (17) and (19) finally give:

1

H
@fcð~/; c; T Þ

@/i
¼ k
ðeu � 1Þ

1� k
~g0ð~/Þ ð20Þ

where ~g0ð~/Þ represents G0ð/iÞ, and the coupling constant k
is defined by:

k � RT mð1� kÞ2cl
o

voH
ð21Þ

Eq. (20) can be used to rewrite the phase field equation as:

sð~/; T Þ @/i

@t
¼ r � ðW 2ð~/Þr/iÞ � @x W ð~/Þ @W

@~/

@~/
@y

 !

þ @y W ð~/Þ @W

@~/

@~/
@x

 !
� /2

i ð1� /iÞ
2

� x/i

X
j>i

/2
j �

kðT Þ
ð1� kðT ÞÞ ðe

u � 1Þ~g0ð/iÞ ð22Þ

where x ¼ a=H . The coefficients s; k and the partition coef-
ficient k have been made temperature dependent to demon-
strate the ability to handle a general binary alloy with non-
linear phase coexistence boundaries, as described in Ref.
[13].

For uniform continuous cooling, a more convenient ref-
erence concentration is c1, the average alloy composition.
This modifies Eq. (18) to:

u ¼ vo

RT m
ðl� l1Þ ¼ ln

c

c1½1� ð1� kÞ~gð~/Þ�

 !
ð23Þ

making it possible to rewrite

cð~xÞ
cl

o

� coð~/Þ
cl

o

 !
�g0ð~/Þ ¼ � c1

cl
o

eu � cl
o

c1

� �
ð1� kÞ

ln k
~g0ð~/Þ

ð24Þ

where, using Eq. (4), �g has been eliminated in favour of ~g.
Following similar algebraic steps that lead to Eq. (20), the
driving term can be recast as:

1

H
@fcð~/; c; T Þ

@/i
¼ k
ðeu � cl

o
c1
Þ

1� k
~g0ð~/Þ ð25Þ

where now the coupling constant becomes:

k ¼ RT mð1� kÞ2c1
voH

ð26Þ
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For a dilute ideal alloy it is straightforward to write:

eu � cl
o

c1

� �
¼ eu � 1� T � T L

mLc1
ð27Þ

The order parameter equation of motion for uniform cool-
ing thus becomes:

sð~/Þ @/i

@t
¼ r � ðW 2ð~/Þr/iÞ � @x W ð~/Þ @W

@~/

@~/
@y

 !

þ @y W ð~/Þ @W

@~/

@~/
@x

 !
� /2

i ð1� /iÞ
2

� x/i

X
j>i

/2
j �

k
ð1� kÞ eu � 1� T � T L

mLc1

� �
~g0ð/iÞ

ð28Þ

3.2. Nonvariational formulation

To eliminate spurious kinetics inherent in all binary
alloy phase field models employing diffuse interfaces, the
approaches of Karma and co-workers are employed
[3,7,8]. First, the interpolation function ~gð~/Þ entering the
dimensionless chemical potential u is replaced by a new
interpolation function hð~/Þ, which has the same limits as
~gð~/Þ. In particular, the original function u in the chemical
potential is replaced by:

u ¼ vo

RT m
ðl� lEÞ ¼ ln

c

cl
o½1� ð1� kÞhð~/Þ�

 !
ð29Þ

while the u for uniform cooling yields:

u ¼ vo

RT m
ðl� l1Þ ¼ ln

c

c1½1� ð1� kÞhð~/Þ�

 !
ð30Þ

These new definitions do not affect the equilibrium results;
however, the definition for the equilibrium concentration
profile, Eq. (12), needs modification as hð~/Þ replaces
~gð~/Þ, resulting in:

coð~/oðrÞÞ
cl

o

¼ ½1� ð1� kÞhð~/oÞ� ð31Þ

In this work, the simple choice hð~/Þ ¼
P

i/i is employed.
This follows the usual summation rule of order parameters
in the chemical potential.

The second change to the variational model is a modi-
fied diffusion equation, Eq. (16), that employs a so-called
anti-trapping flux term. In this multi-phase field approach,
this source is a sum of currents arising from each order
parameter. This is given by:

~jat ¼ �atW ovð1� kÞeu
X

i

@/i

@t
r/i

jr/ij
ð32Þ

where v ¼ co
l is used for isothermal quenches into the coex-

istence region, and v ¼ c1 for the model with uniform
cooling. It is noted that during free dendritic growth, only

one current in Eq. (32) will be active at any point in space
as defined by the multi-dimensional phase space vector ~/.
Therefore, the evaluation of the sum at any point in space
(where an interface is in motion), only yields a value corre-
sponding to the single-order parameter that exists. Upon
merger, where all @t/i tend to zero, the current ~jat essen-
tially vanishes.

The interpolation function hð~/Þ, the anti-trapping flux
and the diffusivity function qð~/Þ provide three degrees of
freedom with which it has been shown that all spurious
effects occurring at moving solid–liquid interfaces can be
eliminated to second order. Here, the diffusion interpola-
tion function is chosen to be of the form
qð~/Þ ¼ 1�

P
i/i

	 

=½1� ð1� kÞhð~/Þ� þ n

P
i/i. The com-

bined equations of motion for the nonvariational fomula-
tion now become:

sð~/Þ @/i

@t
¼ r � ðW 2ð~/Þr/iÞ � @x W ð~/Þ @W

@~/

@~/
@y

 !

þ @y W ð~/Þ @W

@~/

@~/
@x

 !
� /2

i ð1� /iÞ
2

� x/i

X
j>i

/2
j �

k
ð1� kÞ ðe

u � 1Þ~g0ð/iÞ ð33Þ

@c
@t
¼ r � ðDLqð~/Þcru�~jatÞ ð34Þ

where Eq. (29) is used for u. For uniform cooling, the phase
field equations are modified to:

sð~/Þ @/i

@t
¼ r � ðW 2ð~/Þr/iÞ � @x W ð~/Þ @W

@~/

@~/
@y

 !

þ @y W ð~/Þ @W

@~/

@~/
@x

 !
� /2

i ð1� /iÞ
2

� x/i

X
j>i

/2
j �

k
ð1� kÞ eu � 1� T � T L

mLc1

� �
~g0ð/iÞ

ð35Þ
@c
@t
¼ r � ðDLqð~/Þcru�~jatÞ ð36Þ

where Eq. (30) is now used for u.

4. Free dendritic growth

A crucial property of the present multi-order parameter
model is that it exhibits the correct solute segregation and
re-distribution during solidification of free growing den-
drites. The convergence of the model was studied by con-
ducting two-dimensional simulations of two isothermal
free dendrites, grown using Eqs. (33) and (34). The anisot-
ropy was chosen to have the standard fourfold form
W ðwÞ ¼ W oasðwÞ, where asðwÞ ¼ 1þ �4 cos 4w and w is
the angle of the interface normal of each grain with the
x-axis. The timescale sðwÞ ¼ soasðwÞ2 and k ¼ DLso=a2W 2

o,
making the kinetic coefficient term b negligible [3,7] (so is
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a characteristic time and a2 ¼ 0:8839 [3]). Eqs. (33) and
(34) were simulated in a dimensionless form using a
finite-difference Euler time-stepping method. The other
phase field model parameters used are listed in Table 1.
The initial condition comprised two circular seeds of radius
r ¼ 22do, each at an orientation of 45� with respect to the
x-axis, and u ¼ ln½1� ð1� kÞX�, where the supersaturation
X ¼ ðcL � c1Þ=ðcL � csÞ with c initially defined by Eq. (29).

Fig. 1 plots the scaled dimensionless dendrite tip velocity
vs. time. Convergence of the model implies that, for differ-
ent interface widths ðW oÞ, the dimensionless steady-state
dendrite tip speed of each crystal must collapse to the same
solution. This is indeed the case as seen from Fig. 1. Fig. 2
plots the center line solute concentration profiles along the
dendrites corresponding to Fig. 1. Once again, there is
excellent convergence for each W o=do in each crystal, and
the solid-state solute impurity level is precisely as predicted
by the equilibrium phase diagram, appropriately corrected
for by the Gibbs–Thomson curvature correction.

The onset of grain boundary coalescence begins when
dendrite tips begin to interact. It is noted that at this stage
interface motion becomes predominantly curvature and
diffusion controlled, rendering the anti-trapping term
essentially unnecessary. This is automatically taken care
of by the construction of the anti-trapping current~jat, since
it scales with @ t/, which is observed to rapidly tend to zero
as grain impingement sets in.

5. Grain boundaries

This section examines the steady-state properties of
grain boundaries at coalescence and the grain boundary
energies that can be predicted by the present model.

5.1. Steady-state interface concentration

Below the solidus, equilibrium theory predicts a single
phase. In practice, there is a single phase with multiple
(meta-stable) grain boundaries. Without back-diffusion in
the solid (i.e. solid state diffusion) the boundaries remain
wet at temperatures well below the solidus [29]. When
back-diffusion is considered, it is expected that the thermo-
dynamic driving force required to homogenize the bulk
phases to the average concentration ðc1Þ will tend to drive
excess solute out of a grain boundary and allow the grains
to merge. This driving force is achieved via diffusion of the
excess solute piled up in the last liquid film from the bound-
ary into the surrounding solid. In the ideal case of equilib-
rium with no adsorption at a grain boundary, coð~/oÞ ¼ c1,
everywhere and the phase fields corresponding to two
impinged grains i and j should in theory sum to 1 (totally
ordered grain boundary), i.e. /i þ /j ¼ 1. In this case Eq.
(30) gives:

coð~/oÞ ¼ c1eu½1� ð1� kÞhð1Þ� ¼ c1 ) eu ¼ 1

k
ð37Þ

Most grain boundaries exhibit some segregation (adsorp-
tion) and there is only partial order at the grain boundary,
modeled here as an overlap between corresponding order
parameters across the grain boundary, i.e. /i þ /j < 1.
Physically, a grain boundary can be crudely thought of
as an amorphous undercooled solid [33]. In this case solute
segregation is still modeled via Eq. (30), but eu must be
computed by numerically determining (for a given interac-
tion x) the crossing /i þ /j and the maximum concentra-
tion cmax in the middle of the grain boundary. In

Table 1
Parameters for free growth.

Parameter Value

�4 0.02
k 0.15
Dx 0.4
Dt 0.008
X 0.55
at 1= 2

ffiffiffi
2
p	 


Fig. 1. Scaled dendrite tip velocity vs. scaled time for two different ratios
of do=W o, with parameters from Table 1.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance [Wo]

c s/c
lo

φ1 − do/Wo = 0.277

φ1 − do/Wo = 0.544

φ2 − do/Wo = 0.277

φ2 − do/Wo = 0.544

Fig. 2. Segregation profiles of the misoriented grains at time 1280so,
measured along the dendrite axis.
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simulations it was found that for a large enough range of
x, there is always a range of undercooling, where
/i þ /j � 1� d/ and cmax � c1 þ dc, where d/ and dc
are small. In this case, the steady-state concentration across
a grain boundary is well approximated by:

coð~/oÞ �
c1
k
½1� ð1� kÞhð~/oÞ� ð38Þ

It will be seen in the next section (Fig. 3) that Eq. (38) actu-
ally holds very well for a range of temperatures below the
solidus and interaction parameters x.

5.2. Illustrating the balancing force of back-diffusion

Below the solidus temperature, any two phase fields /i

and /j describing grains i and j will exhibit partial overlap
in any multi-phase field model. In this model, the degree of
overlap is set by the interaction parameter x, which, in
effect balances the force of back-diffusion driving /i and
/j past each other. The overlap also implicitly determines
the steady-state grain boundary concentration profile
coð~/oÞ via Eq. (38).

To illustrate this balance, consider the steady-state driv-
ing force @fc=@/i in Eq. (25) (with Eq. (27)) for a temper-
ature below the solidus. Substituting Eq. (38) gives:

1

H
@fcð~/o; co; T Þ

@/o
i

¼ �k eu � 1� T � T L

mLc1

� �
~g0 /o

i

	 

¼ �k

1

k
1� k � T � T L

mLðc1=kÞ

� �
~g0 /o

i

	 

¼ �k

dT
mLc1

~g0 /o
i

	 

ð39Þ

where �k ¼ k=ð1� kÞ; dT ¼ T s � T and T s is the solidus tem-
perature. Substituting Eq. (39) into a steady-state version
of Eq. (35) written for a planar interface gives:

x
Z 1

�1
/o

i /o
j

� �2 d/o
i

dx
dx ¼ kdT

mLc1ð1� kÞ ð40Þ

For the range of x, where /o
i þ /o

j � 1:

I ¼ k
mLc1ð1� kÞ

dT
x

ð41Þ

where I �
R 0

1
/o

i 1� /o
i

	 
2
d/o

i � �1=12. Eq. (41) illustrates
how back-diffusion below the solidus is balanced by the
interaction of phase fields, encapsulated by the overlap
integral. Clearly as x (which leads to a repulsive grain
boundary interaction) increases, a higher undercooling is
required to achieve the same degree of overlap.

5.3. Coalescence

One-dimensional simulations of Eqs. (35) and (36) were
conducted to examine the solidification and grain bound-
ary coalescence of two adjacent grains. Phase field and pro-
cess parameters used are listed in Table 2. Solidifying
grains were cooled at a rate _q to a temperature
DT ¼ 220 K below the liquidus. Following solidification,
back-diffusion occurred and eventually equilibrium was
reached. During solidification, zero interface kinetics was
assumed. For convenience, simulations were conducted
using modified interpolation functions that allowed phase
fields to vary from �1 < /i < 1 than that from 0 < /i < 1.

Fig. 3 shows the numerical steady-state phase field and
concentration profiles that are achieved for different x.
The corresponding steady-state profiles of Eq. (38) are
within about 4% of the numerically evaluated ones. The
range of x selected allowed a wide range of undercoolings
to be achieved without destabilizing the numerical solu-
tions. It is emphasized that grain boundary merger
becomes possible because of the thermodynamic driving
force that develops as a result of back-diffusion. The grain
boundary segregation evidenced in Fig. 3 is an example of
grain boundary adsorption. The degree of solute segrega-
tion at the grain boundary depends on x as well as W o,
and is a property inherent in all phase field models as
shown by McFadden and Wheeler [34].
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steady state ωobs=260

c/co ωobs=260

φ1 ωobs=265

φ2 ωobs=265

steady state ωobs=265

c/co ωobs=265

φ1 ωobs=270

φ2 ωobs=270

steady state ωobs=270

c/co ωobs=270

Fig. 3. Equilibrium concentration profiles of phase field and concentra-
tion for different values of the interaction parameter coefficient x at an
undercooling 220 K below the liquidus. The ratio of solid/liquid diffusion
constants is n ¼ 10�2.

Table 2
Simulation and alloy parameters used for grain boundary coalescence
simulations. Lf is the latent heat of fusion and _q is the cooling rate and c1
is the average alloy concentration.

Parameter Value

W o 1
k 7
Dx 0:4 ðW oÞ
Dt 0:008 ðsoÞ
DL 1� 10�10 m2=s
_q �5 K/s
Lf 1� 109 J=m3

T m 1000 K
mL �500 K
k 0.15
c1 0.05
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To model orientational dependence of grain boundary
energy when two order parameters overlap, the form of
W and s interpolate to a form that produces the correct
general physical behavior required of solid–solid systems.
Specifically W ð~/Þ follows the Read–Shockley form:

W ð~/Þ ¼ W o hf1� lnðh=hmÞgf1þ �4 cosð4wÞg ð42Þ
where W o sets the isotropic interfacial energy, h is the local
misorientation angle between grains i; j and hm is the mis-
orientation for which a grain boundary energy reaches its
maximum. The angle w is the local orientation of a grain
boundary with respect to an external reference axis. The lo-
cal misorientation angle h between grain i and j is given by:
hðrÞ ¼

PN
ij/

2
i /

2
j#ij=

PN
ij /

2
i /

2
j , where #ij is the global misori-

entation of grains i; j [35]. Prior to establishing the misori-
entation angle, the denominators are first evaluated to
establish interaction between grains. The choice is also
made to have the time constant (inverse mobility) sð~/Þ take
on a similar form as that of the gradient term, i.e. to lowest
order:

sð~/Þ ¼ ½so hf1� lnðh=hmÞgf1þ �4 cosð4wÞg��1 ð43Þ

5.4. Solid–solid interface energy

Surface energy is defined as the excess of the grand
potential through a planar interface. Namely:

c ¼
Z 1

�1
UGð~/o; coÞ � UG

E

h i
dx ð44Þ

where UGð~/o; coÞ ¼ f ð~/o; coÞ � lEcoð~/oðxÞÞ and where
UG

E ¼ f ð~/o ¼ êi; csÞ � lEcs. Here, f ð~/; cÞ represents all
terms in the free energy density of Eq. (2), lE is the equilib-
rium chemical potential, cs is the bulk solid reference con-
centration and coð~/Þ is the steady-state concentration
through the interface, which depends only on the phase
fields f/ig, as shown in Section 2.3. For the range of inter-
action parameters x and undercooling studied here,
/i þ /j is quite close to unity in the grain boundary. In this
limit it is straightforward to show, using Eq. (39), that:

c �
Z 1

�1

W 2
o

2

X
i

d/o
i

dx

� �2

þ
X

i

fD /o
i

	 
"

þ x
X

i

X
j–i

/o
i

	 
2ð/o
j Þ

2 � fDðêiÞ
#

dx ð45Þ

The coefficients W o and x can be tuned to produce a range
of surface energies. For the case of a single grain, Eq. (45)
reduces to Eq. (14). For wet grain boundaries the surface
energy is thus 2csl.

To quantify grain boundary energy vs. misorientation,
two grains were slowly cooled to a temperature T below
the solidus. Solidification, back-diffusion and coalescence
were allowed to occur, and the subsequent surface energy
calculated for different misorientations. The parameters
used in these simulations are listed in Table 2 with

n ¼ 10�2. Fig. 4 shows the grain boundary energy vs. mis-
orientation for several values of undercooling below the
solidus. Here the undercooling was chosen for each interac-
tion parameter x such as to satisfy Eq. (41). Each individ-
ual curve follows the Read–Shockley behavior. The small
high-angle variation is due to the use of Eq. (41), which
maintains approximately a constant interaction energy
for all undercoolings in the range examined.

Variation of high-angle grain boundary energies can be
achieved by changing the gradient energy coefficient W o.
This is seen in Fig. 5, which simulates grain boundary
energy vs. misorientation for two W o. The simulations were
both done at the same undercooling below the solidus and
for the same grain interaction term x. For the bottom
curve, W o ¼ 1 in Eq. (42) and in the top curve W o ¼ 2.
The change in energy due to W o is a volume effect as W o

sets the the volume (area in two dimensions) of under-
cooled grain boundary material. Through a combination
of different gradient energy coefficients W o and interaction
parameters x, it is thus possible to emulate a range of grain
boundaries energies, once these are in principle known
from experiments.

5.5. Solidification path and back-diffusion

The solidification path during back-diffusion and grain
boundary merger was also characterized for the case of
slow continuous cooling below the solidus. Fig. 6 shows
the average concentration of the solid and liquid in the
grain boundary, each superimposed, respectively, on the
phase diagram during cooling. The parameters used for
these simulations are listed in Table 2. The interaction
parameter here was fixed x ¼ 270. Solidification paths
for three ratios of solid/liquid diffusion coefficients n are
shown.

Fig. 6 shows that the liquidus line is followed quite
faithfully by the average liquid concentration, until the

Fig. 4. Grain boundary energy as a function of misorientation for several
final quench temperatures. For each interaction parameter, the underco-
oling was chosen to satisfy Eq. (41).
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interfaces approach and start interacting. At this point the
fraction of solid is approximately equal to 1 and what
remains is a thin supersaturated liquid film, effectively
requiring an unrealistically large undercooling for coales-
cence without the aid of back-diffusion. It is also noted that
while the solid fraction increases monotonically with
decreasing temperature, the average solid concentration
quickly approaches the average value of the alloy. Before
the deviation of the average liquid concentration from
the liquidus line, when the system is still undergoing cool-
ing, little solute is rejected into the already supersaturated
thin film of liquid. Activating back-diffusion, however,
causes the average concentration in the interdendritic space
to decrease and cross the two-phase region of the phase
diagram, for all three diffusion constants.

These results are consistent with the work of Rappaz
et al. [29]. It can be seen in Fig. 6 that the smaller the solid

diffusion, the lower the undercooling required and the
longer the simulation time before the effects of back-diffu-
sion are realized, thus closing the grain boundary. It should
be noted that the average solid is relatively uninfluenced by
this late-stage solidification process as the thin film of
liquid represents a very small volume fraction. The behav-
ior of the data in Fig. 6 also agrees qualitatively with the
sharp interface and multi-phase field results reported in
Ref. [29]. The differences in the appearance of the plots,
specifically with the sharp-interface results, can be attrib-
uted to the diffusiveness of the interface. At coalescence
the diffusiveness of the interface enhances diffusion along
the interface. This is seen in Fig. 6, where the deviation
of the average liquid concentration from the liquidus com-
mences slightly earlier. Note that the curve for the fastest
back-diffusion coefficient does not seem to suffer from this
to a noticeable degree. A way to reduce this effect may be
to dynamically thin the interface at the onset of coalescence
as done in Ref. [13]. In general, however, this deviation
from the liquidus line is minor.

6. Two-dimensional simulations of late stage solidification

Fig. 7 shows a two-dimensional simulation of the solid-
ification and coalescence of four randomly oriented grains

Fig. 5. Grain boundary energy for a given temperature 200 K below the
initial liquidus and x ¼ 270 for different values of W o. The curve
represented by the square symbols is for the W o ¼ 1 path and the other for
W o ¼ 2.
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Fig. 6. Effect of back-diffusion on solidification path and coalescence for
different solid diffusion constants.

Fig. 7. Microstructural evolution of four crystals, where gray scale
represents concentration (in black and white). In color, low concentration
values are seen as lighter shades (colder colors), while the darker shades
(warmer colors) represent higher concentrations. From top left to bottom
right, corresponding times are 1600so; 3200so; 4800so; 6400so; 8000so and
11; 200so, respectively.)

N. Ofori-Opoku, N. Provatas / Acta Materialia 58 (2010) 2155–2164 2163



Author's personal copy

corresponding to the parameters listed in Table 2. The sys-
tem was cooled to a temperature 60 K below the solidus.
The microstructure for several times is shown. The gray
scale corresponds to concentration, with dark shades corre-
sponding to a high concentration and lighter shades to
lower. (Online, warmer colors represent higher concentra-
tion and cooler colors lower concentration.)

The images in Fig. 7 model the microstructure and seg-
regation from the free dendritic growth stage at early times,
the emergence, growth and interaction of secondary den-
drite arms at intermediate times, to the onset of coalescence
and coarsening at late times, respectively. In a follow-up
publication, the model developed in this work, will be used
to statistically correlate secondary arm spacing and solute
segregation trends in equiaxed solidification during late
stage solidification of aluminum alloys.

7. Conclusions

A new multi-order parameter phase field model has been
developed for binary alloy solidification. The quantitative
behavior during free dendrite growth has been demon-
strated for multiple grains, showing good convergence with
different interface widths. The model was shown to yield
the correct physics of back-diffusion during grain coales-
cence, and was able to model a range of grain boundary
energies and interface segregation profiles. As with all
multi-phase field models, grain boundary energy is treated
here phenomenologically. A more detailed understanding
of grain boundary structure, segregation and energies
requires further research using more fundamental
approaches such as phase field crystal modeling, wherein
the interplay of thermodynamics and atomic scale grain
boundaries can be simultaneously modeled in alloys. This
will be studied in future work.
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