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Modeling structural transformations in binary alloys with phase field crystals
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We develop a phase field crystal model for structural transformations in two-component alloys. In particular,
the interactions between components are described by direct correlation functions that are an extension of those
introduced by Greenwood et al. [Phys. Rev. Lett. 105, 045702 (2010)] for pure materials. These correlation
functions result in broad density modulations that can be treated with high numerical efficiency, hence enabling
simulations of phase transformations between a wide range of crystal structures. A simplified binary alloy model
is shown to describe the equilibrium properties of eutectic and peritectic binary alloys in two and three dimensions.
The robustness and versatility of this method is demonstrated by applying the model to the growth of structurally
similar and dissimilar eutectic lamella and to segregation to defects.
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I. INTRODUCTION

The properties of engineering alloys are intimately con-
nected to the patterning of their internal microstructure, which
is established during solidification and thermomechanical pro-
cessing. Many fundamental processes controlling phase selec-
tion and microstructure morphology are understood largely via
empirical methods. This is partly because in situ measurements
of phenomena such as nucleation, dislocation-interface, and
dislocation-solute interactions, etc., are extremely difficult,
if not impossible to perform. Moreover, many of the basic
theoretical mechanisms at work during nonequilibrium phase
transformations, which ultimately guide the development of
microstructure, are poorly understood.

Progress in predicting microstructure formation during
materials processing has seen great advances in recent years,
particularly through the use of modeling techniques capable
of integrating mass and heat transport with the kinetics of
interface evolution. One such technique is the phase field
model, which has as its heart the dissipative minimization of
a free-energy functional that is expressed in terms of spatially
varying fields that describe impurities, temperature, and the
phases that evolve and interact during phase transformations.
Early works involving phase field models helped shape the
prevailing understanding about the role of process and material
parameters on the kinetics of crystallizing structures.1–9 More
recent phase field studies have incorporated additional physical
mechanisms such as strain relaxation through coupling to
solute-lattice interactions, dislocations, external strains, and
lattice misfits. Such models have afforded valuable under-
standing of topics that range from the role of strain on
dislocation flow10,11 to the effect of elastic anisotropy on
preferred precipitate growth directions.12–14

A longstanding weakness of traditional phase field models
has been their formulation in terms of spatially uniform fields
and the use of effective parameters. The latter issue — a vestige
from their emergence from mean-field theory—requires that
phase field models be asymptotically mapped onto their sharp
interface limit in order to be made quantitative. The former

issue precludes the self-consistent incorporation of elastic
and plastic phenomena that inherently arise from atomically
periodic states. These include elastic strain, dislocations,
structured grain boundaries and structural transformations.

An exciting extension to the phase field paradigm, coined
the phase field crystal (PFC) method, has recently been
advanced by using free-energy functionals that are minimized
by periodic, rather than uniform, order parameters. This began
with the work of Elder et al.,15,16 who modeled crystallization
using a free-energy functional that is minimized by triangular
structures in two dimensions and bcc structures in three
dimensions. This description was shown to capture the salient
physics of grain boundaries, misfit strains, dislocation climb,
and glide in metallic systems. A modification to the basic PFC
dynamics was developed to describe a host of phenomena
governed by rapid strain relaxation.17 Elder and co-workers
later extended the formalism to binary alloys.18 When the PFC
order parameter is interpreted as an atomic number density, the
same work (as well as Jin and Khachaturyan19) showed that it
is formally possible to derive all phenomenological phase field
crystal variants from the more microscopic classical density
functional theory (CDFT).

Despite the tremendous success of the initial PFC models,
two crucial features have been conspicuously missing from
the formalism. The first is the ability to generate a robust
range of stable crystal structures. The second is the ability to
model realistic material phase diagrams. Recently, Greenwood
et al.20,21 introduced a PFC formalism that begins with the free-
energy functional of CDFT. The ideal (entropic) contribution
of the free energy is expanded around the reference state to
quartic order, and interactions are encoded in a two-point direct
correlation function in reciprocal space that possesses peaks
for each family of lattice planes present in a desired crystal
structure. The relative heights of each family’s peaks are
modulated by a Debye-Waller–like exponential decay through
a phenomenological temperature parameter. Retaining only the
lowest order peaks of each planar family in the (directionally
averaged) correlation function allows for a minimal energy
kernel which produces broad “real space” density peaks—a
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crucial feature if the method is to stand any chance of being
numerically efficient. The modulation of the relative peak
heights makes it possible to simulate two-dimensional (2D)
square and triangular lattices and three-dimensional (3D) fcc,
bcc, hcp, and simple cubic (sc) lattices. More importantly, it
allows for different variants of these phases to coexist with
each other and with a liquid phase. Finally, by introducing a
tunable width for each peak, this approach makes it possible
to separately adjust the elastic coefficients of different phases.

This paper extends the approach developed by Greenwood
et al. to the case of two-component alloys. We begin with
the CDFT free-energy functional for two-component A and
B mixtures. We model A-A and B-B interactions using the
single-component correlation function introduced in Refs. 20
and 21. Interactions between A and B atoms are modeled
by interpolating single-component correlations as a function
of the local concentration of impurities. We showcase the
equilibrium properties of our formalism by computing several
alloy phase diagrams. We then demonstrate the robustness
of our method by simulating eutectic phases with differing
crystal symmetries. Finally, we illustrate the applicability of
our model to solute segregation and elastic anisotropy.

II. FREE-ENERGY FUNCTIONALS FOR BINARY ALLOYS

The free energy for a binary PFC model can be written
as a combination of the energy of the two density fields
separately and a component including their interaction. As
with the pure model, these components are broken into two
types. The first component is a purely entropic local energy
density !Fid responsible for driving the density to uniform
fields (i.e., disordered phases such as a liquid). The second
component is an excess free-energy density!Fex which drives
the density fields to form periodic structures (i.e., crystals).
The excess energy is responsible for elasticity in crystalline
phases, as well as for the interaction of topological defects
such as dislocations and interfaces. The total free energy is
written in dimensionless form as

!F

kTρo
=

∫ (
!Fid

kTρo
+ !Fex

kTρo

)
d3r, (1)

where ρo is a reference state density, k the Boltzmann constant,
and T the temperature.

The purely entropic component of the free energy contains
the sum of the ideal free energy of the individual fields ρA

and ρB ,

!Fid

kT
= ρA ln

(
ρA/ρo

A

)
− δρA + ρB ln

(
ρB/ρo

B

)
− δρB. (2)

Following Elder et al.,18 we define the total mass density per
unit volume as ρ = ρA + ρB and write the total reference
density of the system as the sum of the two indepen-
dent reference states of A and B, ρo = ρo

A + ρo
B . As in

Provatas et al.,22 we also define an atomic number fraction
of B atoms, i.e., solute concentration, as c = ρB/(ρA + ρB)
and a corresponding reference composition co = ρo

B/ρo. For
convenience, we further define a dimensionless density field
via the definition n = ρ/ρo − 1. In terms of the concentration
c and the dimensionless density n, the ideal free-energy density

can be recast as
!Fid

kTρo
= (n + 1) ln(n + 1) − n

+ (n + 1)
[
c ln

(
c

co

)
+ (1 − c) ln

(
1 − c

1 − co

)]
. (3)

The excess free-energy density is expanded to second order
in the density, using two-point correlation functions to describe
A-A, B-B, or A-B interactions, namely,

!Fex =
∑

ij

!Fij

= −1
2

∑

ij

δρi(r)
∫

dr ′C
ij
2 (|r − r ′|)δρj (r ′), (4)

where C
ij
2 describes the correlation of species i with the

field-describing species j . This expression can alternatively
be written in terms of the dimensionless density field n and
the composition field c. To proceed, we make the assumption
that the solute concentration c varies on much larger length
scales than the periodicity of the density field n. It is important
to appreciate that the PFC model does not localize individual
vacancies and solute atoms but allows them to relax rapidly
on diffusive time scales. This implies that we can make
the approximation c(r ′) → c(r) in the integrals appearing in
Eq. (4). For example,
∫

dr ′C
ij
2 (|r−r ′|)n(r ′)c(r ′) ≈ c(r)

∫
dr ′C

ij
2 (|r−r ′|)n(r ′). (5)

To simplify notation, hereafter we use the the notation
that n(r ′) = n′ and c(r ′) = c′. Furthermore, in what follows
it will be assumed that the k = 0 mode of all correlation
functions is zero. As discussed for the case of a pure material
in Greenwood et al.,21 a nonzero amplitude peak at k = 0 in
the correlation function shifts the free energies when the mean
density deviates from the reference state, thus changing the
phase diagram in the density dimension; for the bulk phases
at the reference density the k = 0 mode has no contribution
to the free energy. With these assumptions, we arrive at the
following excess free-energy density

!F

kTρo

=
∫

dr
n2

2
− η

n3

6
+ χ

n4

12
+ (n + 1)!Fmix(c)

−1
2
n

(∫
dr ′Cn

effn
′ +

∫
dr ′Cc

effc
′
)

−1
2

(c − co)
(∫

dr ′Ccon
eff n′ +

∫
dr ′Ccoc

eff c′
)

, (6)

where the prefactors η and χ are added as fitting parameters
to fit the ideal energy to a polynomial expansion (η = χ = 1
corresponds to a Taylor series expanded around the reference
density) and !Fmix(c) denotes the entropy of mixing,

!Fmix(c) =
{
c ln

(
c

co

)
+ (1 − c) ln

(
1 − c

1 − co

)}
. (7)

The effective correlation functions in the excess free energy
are modulated by the composition as

Cn
eff = c2CBB

2 + (1 − c)2CAA
2 + c(1 − c)

(
CBA

2 + CAB
2

)
,

Cc
eff = c

(
CBB

2 − CBA
2

)
− (1 − c)

(
CAA

2 − CAB
2

)
,
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C
con
eff = c

(
CBB

2 − CAB
2

)
− (1 − c)

(
CAA

2 − CBA
2

)
,

C
coc
eff = CBB

2 + CAA
2 −

(
CBA

2 + CAB
2

)
. (8)

A. Simplified binary free-energy functional

The model in Eq. (6) can be further simplified by coarse
graining the various terms. Following, for example, the coarse-
graining procedures in Refs. 22– 25, it is straightforward to
show that the cross terms in n and c vanish in the long-
wavelength limit, since the density oscillates rapidly about
n = 0 and c is a smooth field. Meanwhile, the second-order
correlation term in c gives, to leading order, a gradient term in
c, analogous to those in Cahn-Hilliard theory. The technical
details of coarse graining the various terms in the free energy
are not reproduced here.

The assumptions of the previous paragraph lead to the
following simplified dimensionless alloy PFC free-energy
functional

!F

kTρo

=
∫

dr

{
n2

2
− η

n3

6
+ χ

n4

12
+ (n + 1)!Fmix(c)

− 1
2
n

∫
dr ′Cn

eff(|r − r ′|)n′ + α| %∇c|2
}

. (9)

The entropy of mixing !Fmix(c) is modified according to

!Fmix(c)→ω

{
c ln

(
c

co

)
+(1 − c) ln

(
1 − c

1 − co

)}
. (10)

The parameter α is introduced to subsume any dependency
on C

coc
eff of the square gradient term in c, which emerges from

coarse graining Eq. (6).
Equation (9) has the form of a Cahn-Hilliard model [when

!Fmix(c) is expanded] plus a PFC contribution for the total
density analogous to that in Greenwood et al.21 Furthermore,
the parameters η, χ , and ω are introduced to fit the ideal
energy away from the reference density ρo and entropic energy
away from the reference composition co. This can be motivated
by noting that higher-order correlation functions would yield
corrections to the density expansion, as recently shown by
Huang et al.25 For convenience, !Fmix is left as in Eq. (10),
rather than expanding in powers of c.

B. Correlation functions

The effective correlation function Cn
eff(|r − r ′|) in the free

energy is a polynomial interpolation of CAA
2 , CBB

2 , CAB
2 ,

and CBA
2 , weighted by the composition field. The correlation

functions CAB
2 and CBA

2 represent, respectively, contributions
to the excess free energy for the cases where A atoms
are in a crystalline structure preferred by B atoms and B
atoms that are in a structure preferred by A atoms. In this
respect we can approximate these correlation functions by a
composition-modulated interpolation between CAA

2 and CBB
2 .

We thus introduce here a form for Cn
eff given by

Cn
eff = X1(c)CAA

2 + X2(c)CBB
2 , (11)

where

X1(c) = 1 − 3c2 + 2c3

X2(c) = 1 − 3(1 − c)2 + 2(1 − c)3 (12)

are interpolation functions which interpolate between the two
correlation functions, weighting each as a function of the local
composition, analogous to finite-element shape functions.

Each alloy component has as input to the model its own
correlation function, thus influencing the preferred structure
for that component and free energy changes due to local
structural changes. The correlation functions Cii

2 (|%k|) are
constructed to include relevant reciprocal space peaks at
positions determined by each component’s equilibrium crystal
unit cell structure. The positions of the peaks correspond to
the crystallographic Bragg peaks for a particular element’s
structure. The curvature at the tips of each Bragg peak is tuned
to fit the elastic coefficients, while the heights of the peaks are
linked to the temperature. The method for this construction is
described in detail in Ref. 21. These effects are all crucial in
driving structural transformations.

C. Model dynamics

The dynamics of the total density and concentration fields
obey the usual dissipative dynamics applied to each species
density (i.e., ρA and ρB). Following the procedure in Elder
et al.,18 this translates to the following equations of motion for
n and c:

∂n

∂t
= %∇ ·

{
Mn(%r) %∇

[
n − η

n2

2
+χ

n3

3
+!Fmix−

∫
Cn

effn
′
]}

,

(13)

∂c

∂t
= %∇·

{
Mc(%r) %∇

[
(n+1)

δ!Fmix

δc
−α∇2c− 1

2
n

∫
δCn

eff

δc
n′
]}

.

(14)

Note that these equations are fully deterministic; conserved
noise may be added to the fields to facilitate nucleation and
transitions over barriers25 but is not used in this paper.

III. EQUILIBRIUM PROPERTIES OF THE MODEL

This section examines the equilibrium properties of the
simplified binary alloy PFC model presented above. First we
outline the method of phase-diagram construction and how
each component in the free-energy functional affects the shape
of the phase coexistence lines. We then consider several case
studies. First we look at the case where A and B solids are
both structurally similar by examining a phase diagram for
a 2D square-square transition. Second we examine in two
dimensions a eutectic transformation between two structurally
different components for the case of square and triangular
solid phases. Finally, we consider 3D bcc and fcc structures
that form a peritectic phase diagram.

A. Phase-diagram construction method

The phase coexistence between the respective phases is
determined by a common tangent construction between the
free-energy curves of the bulk phases at the reference density
(n̄ = 0). We calculate the energy curves by considering single-
mode approximations for the bcc and triangular phases and
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two-mode approximations for the fcc and square phases. It
was shown in Ref. 21 that the energy contribution due to
additional modes for the bcc and triangular phases in the PFC
approximation is small and is thus neglected. The periodic
phases (square, triangle, fcc, and bcc) are approximated by the
sum of these density modes as defined by

ni(%r) =
∑

j

Aj

∑

l

e2π i%kl ·%r/ai , (15)

where the subscript i denotes a particular solid phase, i.e.,
i = fcc represents an fcc ordering with lattice spacing afcc, j
is the index over the included modes of the i phase, Aj is the
amplitude of mode j , and l is the index over the collection of
reciprocal space peaks corresponding to mode j . Accordingly,
%kl is the reciprocal lattice vector normalized to a lattice spacing
of 1, corresponding to each index l.

The correlation functions for each pure phase, CAA
2 and

CBB
2 , are constructed like those in Refs. 20 and 21. Specifically,

a reciprocal space peak of Cii
2 corresponding to mode j has

the general form

Ĉii
2j = e

−
σ2k2

j
2ρj βj e

− (k−kj )2

2α2
j , (16)

where ii = AA, BB. The total kernel Ĉii
2 is taken as the

envelope of all peaks Ĉii
2j included to represent the atomic

interactions. When the peaks do not overlap, Ĉii
2 can be treated

as the simple sum of all peaks. This construction defines the
peak positions and widths in the correlation kernel from each
family of planes in a given unit cell. The first exponential
term in Eq. (16) includes the effect of temperature through
a Debye-Waller–like amplitude modulation, with σ playing
the role of an effective temperature, ρj the atomic density
of the plane, and βj being the planar symmetry. The second
exponential sets the peak positions of the reciprocal lattice
vector kj and is of Gaussian form with width αj . By varying
αj we can take into account surface energy, defects, and elastic
properties.

An equilibrium phase diagram can be constructed via the
simplified binary free energy in Eq. (9) as follows. Energy
curves as a function of the composition c are calculated by
inputting the density field approximation of Eq. (15) for each
structural phase into Eq. (9) and integrating over the unit cell.
The resulting free energy is then minimized with respect to the
amplitudes Aj . The liquid-phase free energy is found by setting
Aj = 0 and the density to the reference density (i.e., n̄ = 0).
A common tangent construction is then performed on the
resulting solid and liquid phases. This methodology is outlined
in more detail in the Appendix. Some binary phase diagrams
relevant to materials science phenomena are examined below.

B. Eutectic alloys

First we demonstrate the equilibrium properties of an alloy
where the elements are structurally similar, only differing in
the equilibrium lattice spacings of their constituent elements.
Each element is represented by a correlation function Cii

2 ,
where the structure produced for each element is topologically
identical, i.e., the number of peaks and the ratio of their
positions in Fourier space is identical. However, they differ in

FIG. 1. Phase diagram for a square-square system with the inset
showing the phase diagram of a triangle-triangle mixture. The
equilibrium coexistence lines are shown in thick black dots and
metastability lines are shown in thin gray dots. The phase diagrams
share identical parameters for the noninteracting parts of the energy.
Specifically, the parameters for the ideal free-energy contribution
were η = 1.4, χ = 1, while ω = 0.02 and c0 = 0.5 for the entropy of
mixing. For the square-square system, the widths of the correlation
peaks (i.e., the setting of the elastic coefficients) correspond to
α11A = 0.9, α10A =

√
2α11A, α11B = 0.9, and α10B =

√
2α11B . The

peak positions for species A correspond to k11A = 2π and k10A =√
2k11A and for species B, k11B = 4π/

√
3 and k10B =

√
2k11B . For the

triangle-triangle system, peak widths are α10A = 0.8 and α10B = 0.8
and peak positions are k10A = 2π and k10B = 4π/

√
3.

the absolute position of the peaks and through the width of each
peak through αj , thus producing different equilibrium lattice
spacings, elastic, and surface energies for each element. Giving
both elements square symmetry leads to the phase diagram
shown in Fig. 1, while the inset shows the corresponding
phase diagram for a triangle-triangle binary system. Both
diagrams are asymmetric with clearly defined eutectic points
and metastable coexistence lines (gray dotted). In the solid
solution phases SqA and SqB the density field n will take the
structure corresponding to the effective correlation function,
while the concentration field is relatively uniform with small
amplitude modulations that follow the density field.

Phase diagrams can also be constructed for structurally
dissimilar elements. Here we choose element A to have a
correlation function with square symmetry by including two
peaks in CAA

2 , while element B has a correlation function
corresponding to a triangular structure and therefore only
contains a single peak in CBB

2 . In this case we make the atomic
diameter dimensionally 1 for both the square and triangle
lattices. Using the method described above gives the eutectic
phase diagram in Fig. 2(a).

Using the conserved dissipative dynamics described by
Eqs. (13) and (14) we can test the validity of the approx-
imations made in our phase-diagram construction. Square
and triangular phases of the equilibrium lattice spacing
are initially seeded in a narrow channel at a composition close
to the equilibrium composition, as predicted by the phase
diagram for a small seed. The liquid phase, represented by
a constant density field, is set to a composition such that the
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FIG. 2. (Color online) Eutectic system for two structurally
dissimilar elements. (a) Phase diagram for a mixture of element
A (square) and element B (triangle); solid dots are equilibrium
points calculated via the single-mode expansion method described
in the text, gray dots depict metastable coexistence points, and
open circles are dynamic simulations. The parameters for the ideal
energy are η = 1.4, χ = 1, while ω = 0.02 and c0 = 0.5 for the
entropy of mixing. For the square structure, the widths of peaks
and peak positions are α11A = 1.5, α10A =

√
2α11A and k11A = 2π ,

k10A =
√

2k11A. The triangular structure has peak width and position
corresponding to α11B = 1.5 and k11B = 4π/

√
3. (b) Time slices of

an evolving compositional profile through a solid-liquid interface
corresponding to a quench to point “a” in the phase diagram. A
corresponding density-concentration profile of the advancing 1D
solid-liquid interface in a channel is shown on the left. The color
represents local composition, where blue is saturated at c = 0.1 and
red is c = 0.6.

mean system composition has a value in the coexistence region
of the phase diagram. An example of such a setup is depicted
in Fig. 2 (left). The composition between the solid and liquid
phases naturally segregates during the growth of the front,
producing a lengthening diffusion tail ahead of the interface
until the interface eventually comes to rest, as expected
in one-dimensional (1D) diffusion-limited front growth. A
sequence of evolving compositional profiles is shown in
Fig. 2(b). After obtaining equilibrated composition profiles
such as these over several temperatures in both the square-
liquid and triangle-liquid coexistence regions, we compare the
resulting bulk concentrations to the analytic phase diagram in
Fig. 2(a). We find that removing the temperature dependence of
the ratio of the two amplitudes (A11:A10) corresponding to the
two square correlation peaks (i.e., use the ratio at σ = 0 for all
temperatures) results in good agreement at low temperatures,
but it begins to deviate as the temperature increases. This
approximation is detailed in the Appendix.

Eutectic systems modeled by our PFC alloy formalism
exhibit all the essential features required to investigate elastic
and plastic phenomena in phase transformations in experimen-
tally relevant alloy systems. One such phenomenon involves
eutectic growth under different processing conditions and in
which the constituent lamellae may assume different crystal
symmetries. Another scenario occurs when the lamellae have
the same crystal structure but are lattice mismatched at their
common interface. Example simulations of these situations are
shown below.

C. Peritectic alloys

The model is easily extended to three dimensions, where
it can describe bcc-fcc transformations. We present here
a particular construction of a phase diagram for structural
transformations that features a peritectic point akin to the
Fe-Ni phase diagram. The resulting phase diagram is shown in
Fig. 3(a), while a simpler isomorphous fcc liquid-phase
diagram is shown in Fig. 3(b). These two classes of phase
diagrams can be obtained by controlling the underlying
lattice spacing, preferred crystal structure, and relative phase
transformation temperature of each species.

For the Fe-Ni–type phase diagram in Fig. 3(a), we consider
two elements of similar atomic radii: element A, with a
normalized diameter of 1, and element B, with a normalized
diameter of 1.016. Element A transforms at high temperature
(σ ) from the liquid phase into the bcc phase. At a lower
temperature element A has a more energetically stable phase,
the fcc symmetry. Element B transforms directly from the
liquid phase into the fcc symmetry at a temperature between
that of element A’s transformation point from liquid to bcc and
bcc to fcc. Both elements have a stable fcc phase at sufficiently
low temperatures.

As discussed in Ref. 21, a bcc symmetry emerges when free-
energy kernels are dominated by a single peak while fcc phases
become increasingly stable for kernels that have two modes
of comparable strength, the second of which corresponds to
the second dominant Bragg peak of the reciprocal lattice. For
both element A and B we use a kernel comprised of two peaks
corresponding to an fcc symmetry. For element A to undergo
a transformation from liquid to bcc to fcc, the second peak
of its correlation kernel must be comparable to the first peak
at low temperatures and negligible as its σ approaches the
melting temperature (i.e., leaving a one-peak kernel). On the
other hand, element B must maintain the relative heights of
the two peaks over the entire range of the stable fcc phase.

The mechanism to engineer the properties of the correlation
function described in the previous paragraph is already buried
within the Debye-Waller decay of each peak. To make this
more clear, the Debye-Waller prefactor to the correlation
function peaks can be redefined by introducing an effective
transition temperature σ 2

Mj = (2βjρj )/k2
j in Eq. (16) such that

each peak is now defined as

Ĉii
2j = e

− σ2

σ2
Mj e

− (k−kj )2

2α2
j . (17)

Each peak now has its own scaling factor, allowing the
transition temperature from a liquid to a bcc or from a liquid to
an fcc phase to be controlled independently. Thus, for element
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FIG. 3. Phase diagram for 3D fcc-bcc mixtures. In both cases the
ideal and mixing terms of the free energy are set to η = 1.3, χ = 1,
and ω = 0.01, and a reference composition of co = 0.5. Thick black
dots and thin gray dots represent the equilibrium and metastable
coexistence lines, respectively. (a) Peritectic phase diagram. The
widths of the correlation peaks are set to α111A = 0.4, α100A = 0.4,
α111B = 0.6, and α100B = 0.6, and the effective transition temper-
atures are set to σM111A = 1.2, σM100A = 0.8, σM111B = 1.05, and
σM100B = 1.05 for elements A and B, respectively. (b) Isomorphous
phase diagram for two elements transforming from liquid to fcc
symmetries. The widths of the correlation peaks are set toα111A = 0.8,
α100A = 0.8, α111B = 0.9, and α100B = 0.9 and the effective transition
temperatures are set to σM111A = 1.0, σM100A = 1.0, σM111B = 0.8,
and σM100B = 0.8, for elements A and B, respectively.

A we require a transition at high temperature to the bcc phase
and at a lower temperature from the bcc phase to the fcc phase.
Setting the σMj parameter corresponding to the first peak to be
larger than that of the second peak causes a transition from a
single-peak-dominated kernel to a two-peak-dominated kernel
in the region of stability over the liquid phase, i.e., bcc at high
temperature, fcc at low temperature.

For element B we desire solidification directly to fcc. In
this case at high temperature a two-peak-dominated kernel is
needed, so the Debye-Waller coefficients σMj for both peaks
are set to the same value, i.e., they both raise and lower
comparably with temperature (σ ). This leads to solidification
from liquid directly to the fcc phase, which remains stable

(over the bcc structure) at all temperatures below the transition
temperature. However, recall that element B was chosen to
have a lower melting temperature than element A. Then σM1A

for the first peak of A must be larger than σM1B for the first
peak of element B. A phase diagram for this type of scenario
is illustrated in Fig. 3(a).

Construction of an isomorphous phase diagram between
liquid and fcc phases is also possible. For both elements
A and B the liquid transforms directly to the fcc phase;
however, this transformation occurs at different temperatures
for both phases. Keeping the lattice spacings given above
for the peritectic phase diagram, the effective transition
temperatures σMj for each element are set such that the density
field transforms from liquid to fcc but at different effective
temperatures at each composition. The difference between the
effective temperatures and the difference in the correlation
peak widths (αj ) of each element cause an asymmetry in the
energy about the liquid energy, producing an isomorphous
phase diagram as shown in Fig. 3(b).

The phase diagrams shown here demonstrate the robustness
of our model to generate, through the parameters introduced,
various types of materials phase diagrams. Several approxima-
tions were made in the calculation of the phase diagrams and
their numerical validation for the case of the square-triangle
system. The analytic and numerical phase boundaries were
in good agreement, with minor deviations as expected, due
to the limitations of the one and two mode expansions. It is
noted that unlike previous binary PFC models, we opted here
to keep the full form of the entropy-of-mixing term rather
than expanding it in a power series. Also, we considered two
different amplitudes for the case of two-mode structures. In
the Appendix we demonstrate the changes that occur when
a single amplitude is used for the expansion of the density of
multimode structures. We find that the physics, i.e., the general
type of alloy and form of the phase diagram, does not change;
however, there are shifts in the phase diagram.

IV. APPLICATIONS

The PFC approach opens the door to a myriad of possible
applications that require atomic-level elastic and plastic effects
to properly capture the physics of anisotropy, elasticity, and
defects that occur over the diffusive time scales on which
phase transformations take place. This section uses some
of the alloy systems derived above to demonstrate their
application to two practical materials phenomena. The first is
the solidification of eutectic lamella that are both structurally
similar and dissimilar. The second application deals with solute
segregation of composition around defects.

A. Eutectic lamellae growth

Growth mechanisms ranging from dendritic growth in
solidification to grain growth in the solid state are widely
studied throughout materials science. Where single dendritic
growth and grain growth is concerned, there is a plethora
of theoretical, experimental, and numerical works that have
been put forth. Comparatively less work has been done on the
subject of eutectic growth. One aspect in particular that has
been lacking in previous phase field and related theoretical
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studies of eutectic growth is the exclusion of structural and
elastoplastic effects that occur during the co-operative growth
of lamellar phases. The present model, having the capability to
describe phases with differing structures, elasticity, plasticity,
and chemical interactions as well as defects, offers an avenue
from which we can investigate eutectic growth under realistic
conditions. Below we showcase qualitatively the growth of
eutectic lamellae when the two elements are structurally
similar but have different preferred atomic spacings.

We use the structurally similar phase diagrams for the
square-square binary system calculated above and show the
results in Fig. 4. All simulations were conducted in a domain
of 10,000!x × 2000!x, which corresponds approximately to
1500 × 300 lattice spacings. Uniform mesh and time spacings
of !x = 0.15 and !t = 3 were used and the dynamical
equations were solved semi-implicitly in Fourier space for
greater stability and efficiency. The initial condition consists
of eight individual lamellae, four of each phase or structure,
and each approximately 22 × 37 lattice spacings and with
concentration corresponding to the tie line for the given
temperature below the eutectic, σ = 0.09. Since our structures
already have a lattice mismatch, we have only considered,
for simplicity, those cases when there exists an orientational
mismatch. We have taken several time slices through the
evolution of lamellar colonies for each misorientation as shown
in Fig. 4 for the square system. We have also examined an
example for growth of lamellae with structurally dissimilar
crystal structures in Fig. 5.

As the misorientation between the lamellae is altered, the
coarsening rate, growth rate, and spacing of the lamella are
different due to the surface energy differences and elastic
interactions as well as differences in the short-circuit diffusion
paths between lamella. The influence of the misorientation of
the lamella is clearly shown in the late time images of Fig. 4.
Different misorientations can lead to different pinch-off rates.
When a particular lamella is pinched off there is a temporary
depletion of the solute and the system must locally wait for
solute to diffuse laterally in order to continue its growth. It is
this pinching off and coarsening process that ultimately leads
to the final structure. These behaviors are related to the solid-
solid and solid-liquid interfacial energies and the coherency
of the interface as a function of the misorientation between
lamellae and the lattice mismatch. The model allows us to
study the effect of the mismatched lattices, misorientations,
and the effect of the elastic and surface anisotropy in a very
natural way.

For the simulations presented above, there were several
factors that determined suitable initial conditions from which
to proceed. Aside from the general mismatch between the two
structures, we also had to contend with the effects of finite
size from both the simulation domain as well as the size of the
lamellae. With an insufficient domain size, one is restricted
to a certain size of lamellae, having no guarantee that the
lamellae chosen will grow due to a finite-system size strain. If
growth does occur, however, it will not be cooperative growth,
such as the growth shown in the above figures. If the domain
size is sufficiently large enough, then size of the lamellae
should be chosen so that cooperative growth is observed.
In our simulations we find that each of the lamella should
not be less than approximately 20 − 30 lattice spacings. It is

FIG. 4. (Color online) Portions of the simulation domain from the
eutectic growth channels simulated with the free energy producing the
square-square phase diagram of Fig. 1. The temperature is quenched
to σ = 0.09 at an average concentration of c̄ = 0.56. Here the color
represents concentration, with low concentration being blue (SqA) and
high being red (SqB ). Each column of images represents a different
misorientation angle of the low-concentration lamella relative to the
high-concentration lamella. The misorientations shown are (a) 0,
(b) 4, and (c) 20 degrees. The simulation times are increasing from
bottom to top.

noted that in experimental conditions, lamellae can grow in
confined interdendritic spaces, making some of these above
observations relevant to describe their growth.
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FIG. 5. (Color online) Portion of the simulation domain from the
eutectic growth channel with structurally different phases. Element
A prefers to solidify to a square symmetry and element B prefers
to solidify to a triangular symmetry. In these structurally different
lamellae the surface energy between the triangle-liquid interface (γ1),
square-liquid interface (γ2), and the square-triangle interface (γ12) are
set by the correlation kernel variables αAi and αBi .

B. Compositional segregation

Segregation of solute atoms to defects and boundaries
occurs due to both chemical and elastic driving forces. Our
PFC model is ideally suited to study such interactions given
the control of both structural and elastic properties through the
correlation kernel. We consider here an example of segregation
in a two-component alloy in 2D, where element A prefers a
square symmetry and element B prefers a triangular structure.
By alloying these two elements at B-atom concentration of
c = 0.1, we can use the model to investigate the equilibrium
segregation of solute element B to a defect at a boundary.
Consider a low-angle tilt boundary made of an array of
dislocations with a large interdislocation spacing where the
bulk structure is dominated by element A in the square phase.
The elastic parameters of pure materials A and B can be set by
matching the correlation peak widths for each element. The
initial composition field is set to be uniform everywhere. Using
the dynamics of Eqs. (13) and (14), the system is allowed to
relax in both composition and density. We consider two cases
here. The first, shown in Fig. 6(a), is an elastically isotropic
square phase with a solute element B preferring the triangle
phase. The second case, shown in Fig. 6(b), is an elastically
anisotropic square phase with a solute element B preferring
the triangle phase.

There are three effects of the choice of relative elastic
coefficients between elements A and B displayed here. For
the first effect, we note that the bulk modulus of the square
phase is proportional to the inverse sum of the widths of these
two peaks, i.e., C11 + C12 ∝ α−2 (Ref. 21). Thus the elastic
stiffness is changed by increasing or decreasing the two peak
widths. As illustrated by Fig. 6, the amount of solute that segre-
gates to the defect is smaller when the matrix element is more
pliable (a) and increases when the matrix element is stiffer (b).

FIG. 6. (Color online) Solute segregation to an edge dislocation
in 2D, forming part of a tilt boundary. The density profile is shown
in gray scale. Contour plots show isocontours of c = 0.12, 0.13, and
0.14, from outside to inside, for (a) α1A = 0.8

√
2 and α2A = 0.8

for the square phase in element A (elastically isotropic case) and
(b) α1A = 0.8 and α2A = 0.8 for the square phase in element A
(elastically anisotropic case).

The second effect to note is the topology of the composition
profile around the defect. In addition to increasing the value
of the stiffness matrix element of the square phase, the
elastic anisotropy can also be tuned by changing one peak
width relative to the other. For an elastically isotropic matrix
Fig. 6(a), the compositional profile around the defect is also
relatively isotropic. There is still some anisotropy in the profile
due to the anisotropic structure of the defect itself. However,
as the stiffness matrix element becomes more anisotropic
[Fig. 6(b)] the compositional profile around the defect also
assumes a more anisotropic profile, featuring more elliptical
isocontours of the composition field.

The third effect is in the density field itself. The triangular
phase is essentially a sheared state of the square phase. Tuning
the elastic coefficients such that the system can shear from the
square state with no barrier into the triangular state is achieved
by making the correlation peaks infinitely wide. By choosing a
finite width for the correlation peaks, we are selecting the shear
barrier which the system must overcome to transform from one
state to the other. In the presence of a defect the system is in
a state of frustration and attempts to form one state or the
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other. By decreasing the shear energy barrier the system will
begin to choose a more triangular structure within the defect
itself. This is shown in Fig. 6(a) through the emergence of a
low-amplitude peak in the defect. In the case where the matrix
element is stiffer and has a larger shear energy barrier, the
density field that comprises the defect attempts to conform to
the matrix topology, eliminating the emergence of the extra
peak within the defect [Fig. 6(b)]. All of these effects play a
role in the selection of the compositional and density profiles
around the defects. The relaxed state of these fields will thus
affect how defects move and interact with grain boundaries or
other defects during thermomechanical processing.

V. SUMMARY

We have introduced a field crystal (PFC) methodology for
structural transformations in binary alloys. We have shown
how to construct the model in terms of a slowly varying
composition field and an atomically modulated density field.
In addition, we simplify the model for the case where the
diffusion of impurities can be assumed to vary on length
scales much longer than the interatomic distances. This
simplified alloy model incorporates much of the structural
information of the two separate elements by inclusion of the
two different correlation functions, CAA

2 and CBB
2 . This allows

each element’s elastic properties to be entered into the model
independently. The resultant behavior of the solid solution
depends on the mixture of these correlation kernels. Even at
this level of simplification we are able to simulate a robust
range of realistic phase diagrams, including a peritectic phase
diagram [Fig. 3(a)], eutectic phase diagrams (Figs. 4 and 5),
and an isomorphous phase diagram [Fig. 3(b)].

The model itself opens up a plethora of potential appli-
cations where atomic scale elasto-plastic effects couple to
the diffusive time scales governing many practical materials
processes of interest in engineering alloys. We showcased two
such examples in this paper. The first studied the lamellar
spacing selection for both structurally similar and structurally
dissimilar phases. Our binary PFC model makes it possible
to study in a more natural way the elastic, orientational,
and segregation effects of spacing and lamellar growth and
coarsening. The second phenomenon examined is that of solute
segregation to grain boundaries and defects in a material.
The model incorporates both elastic and chemical interactions
between the composition field and the density structure
through the effective correlation function Eq. (11). Both of
these effects were shown to cause segregation to defects and
will play an important role in the migration of these defects
and boundaries.
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APPENDIX: AMPLITUDE MINIMIZATION
AND FREE-ENERGY INTEGRATION

The construction of the energy curves is performed by
making certain approximations to the density field which allow

the mathematics to be more tractable. From Eq. (15) it can be
seen that the fcc density approximation is constructed via two
amplitudes. The free energy in Eq. (9) is integrated over a
single unit cell using the following density approximation for
each phase: constant, triangle, and square for 2D and constant,
bcc, and fcc for 3D phase diagrams. The free-energy functional
is reproduced here:

!F

kT Vρ0
= 1

a3

∫

cell
dV

{
n2

2
− η

n3

6
+ χ

n4

12
+ α| %∇c|2

+ (n + 1)!Fmix(c) − 1
2
n

∫
Cn

eff(|r − r ′|)n′
}

,

(A1)

where V is volume over the unit cell.
Under the multimode approximation, the composition

field is assumed to be constant in the bulk lattice and
correspondingly, the gradient term in composition in this
equation is zero. Likewise, the premultiplying component n
to the !Fmix(c) term integrates to zero over the unit cell,
since the integration is completed around the reference density
n̄ = 0. These considerations leave the following integral to be
calculated:

!F

kT Vρ0
= 1

a3

∫

cell
dV

{
n2

2
− η

n3

6
+ χ

n4

12

+!Fmix(c) − 1
2
n

∫
Cn

eff(|r − r ′|)n′
}

. (A2)

The !Fmix(c) term is pulled from the integral entirely
since it depends only on the smooth field c and is thus
trivial to compute. The ideal component to the energy
is also easy to integrate in terms of the density-mode
approximation above, yielding a function in terms of the
density amplitudes, A1 and A2, and the parameters η and
χ . For example, inputting a two-mode general expression
for a square density field yields !Fid/V = 2(A2

1 + A2
2) −

4ηA2A
2
1 + 12χA2

1A
2
2 + 3χ (A4

1 + A4
2). The trivial minimum

of this energy is A1 = A2 = 0, in the limit of the ideal
energy expansion. The particular choice of η and χ can
lead to different minimizations of !Fid with nonzero
amplitudes,21 however, we restrict η and χ in ranges
that have a zero amplitude minimization for the ideal
energy.

The lattice spacing a nontrivially depends on composition,
as it is linked to the form for the resultant correlation function
based on bulk composition, Cn

eff . We consider two cases in
this paper. The first is the case where the lattice spacings for
the elements are similar. In this case the correlation peaks
closely align and we treat the resultant peak positions to
correspond to lattice spacings interpolated by the composi-
tional interpolation functions, i.e., the lattice spacing for fcc
in the peritectic phase diagram afcc = X1a

A
fcc + X2a

B
fcc. The

second is the case where the peaks in the correlation function
do not align at all, as is the case for the square-triangle
phase diagram of Fig. 5. Here we assume the lattice spacing
does not vary greatly from the dominant structure, which
can be seen by the very small shift in the peak positions
in Cn

eff .
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With this approximation, the convolution can be integrated
mode by mode in the density expansion of Eq. (15). In
Fourier space the convolution integral becomes trivial, with
the periodic density expansion yielding a Dirac δ function
so that the convolution returns the mode that was input,
modulated by the correlation peak height at that mode
frequency, i.e.,

∫
Cn

eff(|r − r ′|)n =
∑

m

∫
Cn

eff(|r − r ′|)nm =∑
m Ĉn

eff(k = kj )nm, where m denotes the individual modes
in the density approximation. Summing over all the reciprocal
space modes for a given density expansion and integrating over
the unit cell gives an excess energy

!Fex = −M1A
2
1Ĉ

n
eff(k = k1) − M2A

2
2Ĉ

n
eff(k = k2), (A3)

where the different symmetries M1 and M2 take values of
half of the number of modes used to construct the phase. A
triangular phase, for instance, uses six modes in reciprocal
space, corresponding to k1 and zero modes for k2, so that
M1 = 3 and M2 = 0. Correspondingly, we use for square
symmetry M1 = 2 and M2 = 2, bcc M1 = 24 and M2 = 0,
and fcc M1 = 16 and M2 = 12. The function Ĉn

eff(k = kj ) is
simply the value of the correlation kernel at the frequency
of the mode in question. k1 and k2 are the resultant peak
positions corresponding to the lattice position modified by
the composition, i.e., afcc = X1a

A
fcc + X2a

B
fcc.

The total free energy per unit cell is therefore a fourth-order
polynomial function in A1 and A2, and also a function of c
and σ . Before constructing the phase diagram this polynomial
must be minimized with respect to the amplitudes A1 and
A2. To make this calculation tractable, we make a further
assumption that the second amplitude of the two-mode density
fields is a function of the first amplitude A2 = f A1. For the
purpose of calculating the phase diagram we assume that f
varies very little over the range of σ values we are interested in.

FIG. 7. Square-square phase diagrams showing both the two- and
single-amplitude approximations. Parameters used for the calculation
are given in the text.

We compute f explicitly for the case of σ = 0. For the
square phase f = 0.605 and for the fcc phase f = 0.568.
The amplitude is then easily minimized as a function of both
c and σ , and is substituted back into the free energy, giving an
energy as a function of c and σ only. These energies for the
different structures are used to construct the phase diagrams.

Figure 7 shows a comparison between the phase diagram
using our minimization technique that uses two amplitudes
and which uses a single value for all amplitudes in the density
expansion, i.e., where A2 = A1.24 As mentioned previously,
the qualitative features are not altered. However, the phase
diagram undergoes a quantitative shift as a function of
temperature.
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