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This work uses Ginzburg-Landau theory derived from a recent structural phase-field-crystal model of binary
alloys developed by the authors to study the roles of concentration, temperature, and pressure on the interfacial
energy anisotropy of a solid-liquid front. It is found that the main contribution to the change in anisotropy with
concentration arises from a change in preferred crystallographic orientation controlled by solute-dependent
changes in the two-point density correlation function of a binary alloy, a mechanism that leads to such
phenomena as solute-induced elastic strain and dislocation-assisted solute clustering. Our results are consistent
with experimental observations in recent studies by Rappaz et al. [J. Fife, P. Di Napoli, and M. Rappaz, Metall.
Mater. Trans. A 44, 5522 (2013)]. This is the first PFC work, to our knowledge, to incorporate temperature,
pressure, and density into the thermodynamic description of alloys.
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I. INTRODUCTION

Dendritic growth has been the focus of both theoretical and
experimental studies for some time. As the main kinetic growth
mechanism in solidification, dendritic structure also sets the
template for microstructure patterning in metals throughout
their processing cycle. Dendrites have long been understood
to emerge as a result of thermal or diffusive instabilities in the
solid-liquid interface and subsequently grow in the orientation
of lowest stiffness [1], which is a measure of local changes
in the capillary length that in turn controls the local dendritic
undercooling for solidification.

It was typically thought that dendrite orientation in alloys
was restricted to the primary crystallographic directions of
the alloying species in question; for alloys made up of solute
components with different preferred directions, a discontin-
uous switch in orientation was expected as composition was
varied. However, experimental studies [2–4] have shown that,
in fact, there exists a class of materials for which a continuous
variation in orientation can be observed, which may depend
on alloy composition [3,5].

To date there has been, to our knowledge, no systematic
fundamental study of the possible mechanism behind the
continuous variation of dendrite orientation in alloy materials.
Most studies using molecular dynamics (MD) models have
examined pure substances [6–9], with a focus on fluctuations,
though the application of molecular dynamics to alloys
is possible assuming the availability of appropriate alloy
potentials. Traditional phase-field models of alloys are not
appropriate to examine anisotropy as their description of
the interface is phenomenological, by construction. Indeed,
phase-field models must incorporate information about surface
energy and interface kinetics derived from microscopic-level
theories or by making contact with sharp interface models
of solidification that contain microscopic-level parameters
[1,10–12].

Among other modern numerical modeling techniques, the
phase-field-crystal (PFC) method in particular has proven

effective at discerning physical behavior at atomic length
scales and diffusive time scales [13–16]. Complex amplitude
Ginzburg-Landau theories derived directly from PFC [or from
classical density functional theories (c-DFT)] incorporate
properties emanating from density wave fluctuations in the
liquid. Specifically, the connection of such complex amplitude
theories with a liquid phase correlation function can offer
insight about the relation of interfacial energy anisotropy to
microscopic properties of the solidifying liquid [8,9,17–19].
Moreover, since PFC theory is based on an atomic-scale
order parameter, the resulting GL theory also incorporates
fundamental crystallographic information about the solidify-
ing crystal phase into calculation of the interface anisotropy
parameter.

This work uses a recent structural PFC (XPFC) alloy
model [20,21] to derive an effective Ginzburg-Landau (GL)
theory to investigate the mechanism behind the changing
anisotropy of the solid-liquid interface energy in alloys. In
particular, we restrict ourselves to the study of a binary alloy
and the effect of altering alloy composition on the interfacial
anisotropy. The present work extends previous research using
PFC-type models to calculate surface energy anisotropy in
pure materials [8,22,23] to the case of alloys. Results are
compared to the experiments of Rappaz et al. [5] on the Al-Zn
system.

This study incorporates both concentration and average
density changes in the determination of the equilibrium bulk
states of the model and, as such, into the calculation of
surface energy; past work on this type on alloys assumed
an average density of n0 = 0 [23]. This is done by deriving
the pressure-density-temperature (P -no-σ ) phase diagram of
the alloy. This is the first study to incorporate pressure
and density into the thermodynamic descriptions of PFC
alloys.

In what follows we present the details of the XPFC alloy
model II, as well as the derivation of a set of complex
amplitude equations derived from model III. Section V
outlines the construction of a pressure-density-temperature
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phase diagram for alloys and applies it to the XPFC alloy
free energy. Section VI presents calculations of interfacial
energy from the model, as well as the method of extracting
interface anisotropy. Results are analyzed with a focus on
how anisotropy changes with the concentration of the alloying
element. The significance of our results are discussed and
compared with experimental work in Sec. VII.

II. XPFC MODEL OF BINARY ALLOYS

This section reviews a PFC-type model used to study
structural transformations [20,24], hereafter referred to as
the XPFC alloy model. The XPFC model has been coarse
grained into a complex amplitude Ginzburg-Landau (GL)
theory [21,25] and will be the main tool used to study interface
energy anisotropy. For brevity, XPFC and GL theories will only
be reviewed here.

A. Free energy functional

The derivation of the binary XPFC alloy model is motivated
from classical density-functional theory of binary mixtures. It
begins by defining the spatial density fields ρA and ρB of
the two component species, A and B. This functional is then
transformed in terms of the dimensionless total density field n

and a fractional concentration field c, defined by

ρ = ρA + ρB

n = ρ/ρ0 − 1 (1)

c = ρB

ρA + ρB

= ρB

ρ
,

where the total reference density is ρ0 = ρ0
A + ρ0

B . In terms of
these fields the alloy free energy was shown to reduce to

�F

kBTρ0

=
∫

d�r
{

n2

2
− η

n3

6
+ χ

n4

12
+ ω(n + 1)�Fmix(c)

+α|∇c|2 − 1

2
n

∫
d �r ′[X1(c)CAA

2 + X2(c)CBB
2

]
n′

}
,

(2)

where

�Fmix(c) = (1 − c) ln

(
1 − c

1 − c0

)
+ c ln

(
c

c0

)
(3)

represents the entropic mixing of the two fields, kB is the
Boltzman constant, T is the temperature, and c0 = ρ0

B/ρ0 is a
reference concentration. The other parameters and functional
forms appearing in Eq. (2) are described in the following.

The parameters η, χ , and ω, though formally equal to 1,
will hereafter be treated as free parameters used to control the
density dependence of the ideal free energy for values away
from the reference density ρ0, i.e., to match the bulk Landau
free energy to material properties. This is loosely justified
by noting that the k = 0 mode of higher-order correlation
functions in c-DFT will contribute local polynomial terms
in c and n of unknown magnitude [25]. It is thus practical to
introduce the parameter set {η,χ,ω}.

The second line of Eq. (2) is the excess free energy. The
first excess term accounts for fluctuations in concentration
through the Cahn-Hilliard parameter α. Its value is related
to the differences in particle correlation functions at k = 0
[20,26]. It is treated as a constant here since the objective is to
study the role of such parameters on anisotropy.

The second excess term accounts for A-A interactions
(CAA

2 ), B-B interactions (CBB
2 ), and A-B interactions through

the concentration-dependent interpolation functions X1(c) and
X2(c), which are discussed below. The core component of
XPFC-type models is the single particle correlation function,
the form of which is given in k space by Ref. [27],

Ĉii
2j (|�k|) = e

−σ2(|�ki
j
|)2

2ρi
j
βi
j e

−(|�k|−|�ki
j
|)2

2(αi
j

)2
, (4)

where �ki
j is the reciprocal lattice vector defining the j th mode

or family of lattice planes in the crystal structure of element
i. The constants ρi

j and βi
j are constants representing the

planar atomic density and the number of planar symmetries,
respectively, of the j th family of planes of element i. αi

j is used
to control the elastic modulus of element i in the direction of
lattice planes j [28]. The model temperature is controlled by
the parameter σ . The full correlation function of species i,
denoted Ĉii

2 (|�k|), is the envelope of
∑

j Ĉii
2j (�k).

The competition in alloy systems between A-dominant and
B-dominant crystal structures is predominantly modulated
via changes in concentration c. This is effected through
concentration-dependent correlations in the total density n.
In theory, the density excess term in Eq. (2) will contain an
infinite series of multipoint correlation functions of all orders,
each multiplied by a polynomial (of the corresponding order)
in c and (1 − c). Since the form of these correlation functions is
not known, we model the effect of concentration on two-point
correlations in the total density through an effective two-point
correlation function of the form

Ceff(|�r − �r ′|) =
N∑

i=1

Xi({cj })Cii
2 (|�r − �r ′|), (5)

where N is the number of solute species and {cj } represents
the set of solute species in the alloy (j = 1, . . . ,N). In this
study N = 2, {ci} = c and the Xi(c) used are given by

χ1(c) = 1 − 3c2 + 2c3

(6)
χ2(c) = 1 − 3(1 − c)2 + 2(1 − c)3.

Equations (6) were derived in Ref. [24] and provide a
robust way to model quantitatively the form of numerous
experimentally relevant phase diagrams for practical alloys. In
this study we will work with an alloy system similar to Al-Zn.

B. Euler-Lagrange equations

This section derives equations for the equilibrium solutions
for the n and c fields in an XPFC binary alloy. Working in the
grand-canonical ensemble, we begin by minimizing the grand
potential functional given by


[ρA,ρB ] = F̃ [ρA,ρB] − μA

∫
ρA(�r)d�r − μB

∫
ρB(�r)d�r,

(7)
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where F̃ represents the free-energy functional written in
terms of the density fields ρA and ρB , while μA, μB are
the chemical potentials of the respective species. Equilibrium
fields are defined through the minimization of the grand
potential,

δF̃ [ρA,ρB]

δρA

= μ
eq
A

(8)
δF̃ [ρA,ρB]

δρB

= μ
eq
B .

In what follows, we will be using the variables n and c and
as such need the corresponding Euler-Lagrange equations in
these fields. Applying the variable transformation in Eq. (1) to
Eq. (7) yields


[n,c] = F [n,c] − μeq

∫
(n(�r) + 1)c(�r)d�r

−μA

∫
(n(�r) + 1)d�r. (9)

It is straightforward to show using the functional chain
rule and Eq. (8) that the variational of δ
[ρA,ρB]/δρA =
δ
[ρA,ρB]/δρB = 0 leads to δ
[n,c]/δn = δ
[n,c]/δc = 0.
Thus, the Euler-Lagrange equations with respect to the fields
c and n become

δF

δn
= μeqc(�r) + μ

eq
A

(10)
δF

δc
= μeq[n(�r) + 1],

where F ≡ �F/kBTρo and where we have defined a chemical
interdiffusion potential as μeq ≡ μ

eq
B − μ

eq
A .

It is noteworthy to consider the difference in conservation
laws satisfied by (ρA,ρB) versus (n,c). In particular, since ρA

and ρB represent physical density fields of each species, they
satisfy ∫

ρA(�r) d�r = const
(11)∫

ρB(�r) d�r = const.

From the definition of n = ρA + ρB , it is clear that n is also a
conserved field, i.e., ∫

n(�r) d�r = const. (12)

However, the field c is not generally globally conserved, as can
be seen from its definition. This does not cause any problems
when considering equilibrium properties of the model; care
must be taken when describing dynamical evolution, however.
One must formally begin form conservation equations for
ρA and ρB and use the transformations in Eq. (1) to arrive
at appropriate equations for n and c, which convolve both
fields.

III. AMPLITUDE REPRESENTATION OF XPFC MODEL

The long-wavelength limit of Eqs. (10) is derived through
a coarse-graining procedure applied to the original XPFC
free energy. Equations generated from the coarse-grained free

Q1

Q2Q3

FIG. 1. (Color online) Reciprocal basis vectors to simultane-
ously represent square and triangular symmetries. Vectors �Q1, �Q2,
and �Q3 make up the single-mode triangular lattice description, while
�k1,�k2 describe the first mode of the square and �q1,�q2 the second.

energy are known as amplitude equations. Their value is
to make a connection with the length scales of traditional
phase-field theories. Working with amplitude equations is also
useful for practical reasons as it is nontrivial to numerically
stabilize an equilibrium profiles of the microscopic XPFC
model when variable average density and concentration are
permitted.

Coarse graining of the binary XPFC free energy is done
via volume-averaging techniques developed in Refs. [21,25].
This method is based on a standard ansatz to break down the
density field into a density wave decomposition that allows the
representation of crystal symmetries available to the full XPFC
model. Here we limit ourselves to the square-triangle phases
of a eutectic binary alloy system. The total density expansion
for the solid phase in this system is represented by

n(�r) = n0 +
2∑

j=1

Aj e
i�kj ·�r +

2∑
l=1

Ble
i �ql ·�r +

3∑
m=1

Cmei �Qm·�r ,

(13)
where n0(�r) is the average density; Aj and Bl are the (in
general complex) amplitudes controlling density variation
in the (1,0) and (1,1) directions, respectively, of a square
lattice; and Cm are the amplitudes controlling density variations
in the three directions of a triangle phase. The reciprocal
lattice vectors for each mode in Eq. (13) are shown in
Fig. 1.

The density mode expansion in Eq. (13) is substituted
into the binary XPFC free energy, after which a smoothing
procedure is carried out whereby spatial oscillations on a scale
several times greater than the lattice constant are integrated
out. This yields a Ginzburg-Landau free energy FCG that is a
function of no, c, and {Aj ,Bl ,Cm}. Since we wish here to
examine only the influence of crystal structure and solute
on the interface energy, we ignore the effects of elasticity
and topological defects in solid phases. This amounts to
assuming that the amplitudes of each mode of Eq. (13) are
real. It is necessary to track {Aj ,Bl ,Cm} separately in order to
retain an explicit angular dependence with respect to interface
orientation.
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The coarse-grained free energy FCG[c,no,Aj ,Bl ,Cm] for
the XPFC alloy model is quite extensive and is thus re-
produced in Eq. (A1). For details the reader is referred
to Refs. [20,21,29]. In terms of FCG, the Euler-Lagrange
equations for the {no,c,Aj ,Bl ,Cm} become

δFCG

δno

= μeqc(�r) + μA

δFCG

δc
= μeq{no(�r) + 1}

δFCG

δAj

= 0 (14)

δFCG

δBl

= 0

δFCG

δCm

= 0.

It is noted that the first two equations follow from Eq. (10), ex-
cept they now involve the average density no and concentration
c. These fields vary on the scale of the amplitudes in the density
expansion in Eq. (13) [25]. The chemical potentials μ

eq
A and μeq

are as in Eq. (10). The amplitudes are nonconserved parameters
and thus simply minimized subject to all parameters and field
configurations of no and c.

Equations (14) are solved in one dimension. The angle
θ of the interface normal �n with respect to a horizontal
reference axis is taken into account by projecting the gradients
in Eq. (A1) along n̂, and writing �k · ∇ → �k · n̂ ∂u, where u is
the direction transverse to the interface and �k is a reciprocal
lattice vector.

Equations (14) are subject to boundary conditions that
define solid-liquid equilibrium. With respect to the normal
coordinate u, these are given by

lim
u→±∞ no(u) = nL,S

lim
u→±∞ c(u) = cL,S (15)

lim
u→±∞ �k(u) = �k(cL,S,nL,S ; σ,p),

where nL,S and cL,S describe the liquid (L) and solid (S)
values of the average density and concentration, while �k

stands for one of {Aj ,Bl ,Cm}. The procedure for determining
{cS,cL,nS,nL,μeq,μA} is deferred to Sec. V.

IV. NUMERICAL SOLUTION OF EULER-LAGRANGE
EQUATIONS

The Euler-Lagrange equations in Eq. (14) are solved in one
dimension at constant model temperature (σ ) and pressure (p)
using a simple pseudotime algorithm given by

n0
t+1 = n0

t + dtM

(
μeqc + μa − δFCG

δn0

)
, (16)

ct+1 = ct + dtM

[
μeq(n0 + 1) − δFCG

δc

]
, (17)

for no and c, and

Aj
t+1 = Aj

t − dt M
δFCG

δAj

Bl
t+1 = Bl

t − dt M
δFCG

δBl

(18)

Cm
t+1 = Cm

t − dt M
δFCG

δCm

for the amplitude equations, where j , l, and m run over
the indices associated with each amplitude in the density
expansion sum of Eq. (13) and where M is constant to affect
convergence time. The results of this work are independent of
M . At each time step, far-field boundary conditions determined
from Eq. (15) are applied.

It is noted that while Eqs. (16)–(18) are numerically
practical to implement, it was found that the driving forces
never become exactly zero. As such the interface drifts a little
as the system starts to melt, as Eqs. (16) and (17) are not
conserved equations. This numerical artifact has also been
seen in past simulations done with n0 = 0 [17], but was
small enough that the evolution of the system was unaffected
over the time scale of convergence of the excess free energy
characterizing the solid-liquid energy. This issue is alleviated
by decreasing the spacial and pseudo time steps (dx and
dt , respectively), but this is impractical due to the drastic
increase simulation time. Instead, it is emphasized that the
interface structure and interface energy both converge to their
final values very rapidly, in all cases before any appreciable
interface translation toward complete melting occurs; the time
scales for the system to melt entirely are approximately an
order of magnitude longer than those for the grand potential
of the system to converge, as shown in Fig. 2. Since this
translation does not involve any shifting of far-field bulk values
of the fields, the excess free energy in all results reported
here converges well before this numerical artifact becomes
observable. We take our system to be converged when the
total grand potential of the system has stopped changing up to
10−9.

An alternate, more precise, numerical method to eliminate
the drifting is to replace the first of Eq. (18) by

nt+1
0 = nt

0 + dtM∇2

(
δFCG

δn0
− μeqc

)
(19)

and apply periodic boundary conditions. This is essentially
a conservation equation that adjusts the drifting of the fields
such that μA is “pinned” to a constant consistent with the
equilibrium μeq, which is a function of the pressure. We have
confirmed that both methods reproduce the same results for
the surface energy.

V. PHASE COEXISTENCE IN PRESSURE-
TEMPERATURE-CONCENTRATION-DENSITY SPACE

A major result of this work is the construction of a
three-dimensional density (no)–concentration (c)–temperature
(σ ) phase diagram of an XPFC alloy. This is significant as past
work with alloy PFC models has been limited to constructing
a two-dimensional (2D) phase diagram in concentration and
temperature, around a density no = 0. This simplification,
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FIG. 2. (Color online) Sample one-dimensional density profiles
from our simulations to illustrate convergence of their form. (a)
The dashed red line is the interface at t = 0; solid black line is the
equilibrium interface converged at t = 6515. (b) The dashed red line
is the converged t = 6515 profile; the solid black line is the interface
at t = 60 000. While the profile has been slightly translated to the left,
its shape rapidly converges as does the excess free energy computed
form it.

however, does not maintain a constant pressure for all points
on the 2D concentration-temperature phase diagram.

A. Coexistence conditions

To construct a numerical phase diagram, we neglect spatial
gradients in FCG [Eq. (A1)] and retain the minimal number of
modes stabilizing the crystal structure of a desired solid phase.
Furthermore, for the purposes of constructing a phase diagram
we do not require an explicit angular dependence and as such
we can assign all members of an amplitude set to the same
value, that is, Aj = A, Bl = B, and Cm = C. A single mode
is required for the triangle phase (A = B = 0) in Eq. (13),
yielding

Ftri(no,c) = 3
(
1 − n0η + n2

0χ
)
C2 + 2(2n0χ − η)C3

+ 15
χ

2
C4 + n2

0

2
− η

n3
0

6

+χ
n4

0

12
− 3Ĉeff

(∣∣�kB
10

∣∣)C2, (20)

where �kB
10 denotes a reciprocal lattice vector that sets the length

scale for a triangular lattice favoured by element B in this work.
For the square phase, a two-mode approximation is required

[C = 0 in Eq. (13)], yielding

Fsq(no,c) = 2
(
1 − n0η + n2

0χ
)
(A2 + B2) + 3χ2(A4 + B4)

+ 4(2n0χ − η)A2B + 12χA2B2

+ n2
0

2
− η

n3
0

6
+ χ

n4
0

12

− 2Ĉeff
(∣∣�kA

10

∣∣)A2 − 2Ĉeff
(∣∣�kA

11

∣∣)B2, (21)

where �kA
10 and �kA

11 are the first and second reciprocal lattice
vectors of the square phase, which set the two length scales
for the preferred crystal lattice of element A. Finally, in the
above,

Ĉeff(|�k|) =
2∑

i=1

Xi(c)Ĉii
2 (|�k|) (22)

is the effective correlation function in k space [see Eq. (5)].
Equations (20) and (21) are numerically minimized with

respect to C and {A,B}, respectively. The solutions are
substituted back into Eqs. (20) and (21), yielding lengthy
expressions for the solid free energies that are evaluated
numerically [29]. Furthermore, setting all amplitudes to zero
yields the reference liquid free energy, denoted hereafter
FL(no,c).

To calculate the required equilibrium (far-field) values
in density and concentration for coexisting solid and liquid
phases, four independent equations must be solved. First is
the equality of chemical potentials μA and μeq = μB − μA in
each phase. This gives

μeq = 1

nS + 1

∂FS

∂cS

= 1

nL + 1

∂FL

∂cL

, (23)

μA = ∂FS

∂nS

− cS

nS + 1

∂FS

∂cS

= ∂FL

∂nL

− cS

nL + 1

∂FL

∂cL

, (24)

where FS is either of Ftri or Fsq. In addition, the pressure
in solid and liquid must be the same. Pressure is given by
p = −
, implying

p = (nS + 1)
∂FS

∂nS

− FS = (nL + 1)
∂FL

∂nL

− FL. (25)

By fixing the temperature σ and the pressure p of the system,
Eqs. (23)–(25) yield the following set of four equations:

μL
eq(σ,nL,cL) = μS

eq(σ,nS,cS), (26)

μL
A(σ,nL,cL) = μS

A(σ,nS,cS), (27)

pL(σ,nL,cL) = p, (28)

pS(σ,nS,cS) = p, (29)

where μS
eq/μ

S
A/pS and μL

eq/μ
L
A/pL are shorthand for the

middle and right-hand expressions, respectively, in Eqs. (23)–
(25). These equations are solved to obtain equilibrium values
for nS,nL,cS,cL. We can additionally calculate numerical
values of the mode amplitudes from these far-field values.
Once solved, the left-hand sides of Eqs. (23)–(24) also yield
μeq and μA, respectively.
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0.15

c

FIG. 3. Binary alloy phase diagram; the solid line is calculated
with n0 = 0 while the dashed line is a c-σ projection of a c-n0-σ
phase diagram at a constant pressure of p = −0.07. The eutectic
point shifts from a model temperature of σ = 0.10 for the n0 = 0
case to σ = 0.125 for the constant pressure case.

It is important to note that not every combination of average
values n0, c0 leads to coexistence at any given pressure;
herein lies a problem with the n0 = 0 simplification, which
assumes that all of the concentration space can be accessed at
a constant average density. Indeed, in order for this to be true,
pressure must be varied. From the full set of far-field values
that emerge from Eqs. (26)–(29), we must equate the density
and concentration lever rules, i.e.,

c0 − cL

cS − cL

= n0 − nL

nS − nL

, (30)

to solve for the allowable range of n0 and c0 (or vice versa),
for given temperature and pressure parameters.

B. Numerical phase diagrams

We present the numerically calculated phase diagrams
for a eutectic binary alloy with square and triangular solid
phases and having equal first correlation peak width in both
species, that is, αA

10 = αB
10 = 1.5. The stiffness parameter for

the second length scale of the square is chosen as αA
11 = √

2αA
10

in order to preserve elastic isotropy in the square phase
[24].

By way of analogy with the simplified n0 = 0 phase
diagram construction, Fig. 3 presents a constant pressure
alloy phase diagram in variables c and σ , which comes
from a constant-pressure phase diagram in the variables
c, n0, and σ projected onto the temperature-concentration
axes. We see the same general shape in the phase diagram,
but notably the eutectic has shifted away from the n0 = 0
approximation.

Figure 4 shows a 3D c, n0, and σ phase diagram at
constant model pressure of p = −0.07. The planar surfaces
in the topmost image represent the solid-liquid coexistence
regions for the square [orange (lighter surface)] and triangle
[blue (darker surface)] phases. The area above the curves
corresponds to the liquid region of the phase diagram and
below to the solid region. The negative-most and positive-most
edges of these surfaces along no are the respective solidus
and liquidus lines, while points anywhere along the red lines

FIG. 4. (Color online) (a) Solid-liquid coexistence regions of the
binary alloy phase diagram in 3D temperature (σ ), concentration
(c0), and density (n0) space at a constant model pressure, p = −0.07.
The orange (lighter surface to the left) represents the square-liquid
coexistence plane, while the blue (darker surface to the right) is
the triangle-liquid. The solid red line across each plane indicates
coexistence tie lines. The line defined by intersecting surfaces is the
eutectic line; note the change of eutectic temperature as a function
of no. (b) Rotated view of above (square-liquid on the left; triangle-
liquid on the right), but including in green solid-solid coexistence
region (flattened surface at rear of the figure with tie line in yellow);
note the limited region of density space where such coexistence is
possible.

traversing each surface represent average values c0, n0, that can
yield coexisting solid-liquid phases at a fixed temperature and
pressure. The line at which the two surfaces intersect defines
a eutectic line in (c,no,σ ) space. The flatter green surface in
the bottom image represents the solid-solid coexistence region,
which exists only for a limited range of densities n0, in contrast
to the solid-liquid regions.

C. Pressure space projection of numerical phase diagram

It is also possible to construct a constant-temperature phase
diagram displaying the pressure-concentration equilibrium of
the alloy. Figure 5 shows the pressure-concentration phase
diagram for a binary alloy at a constant model temperature
σ = 0.12. At constant σ and decreasing p the phase diagram
mimics the behavior seen for constant p and increasing σ . Note
in particular that the respective sizes of the square and triangle
solid-liquid coexistence regions are comparable to those seen
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FIG. 5. c-p phase diagram for a binary alloy projected from a
three-dimensional c-p-n0 phase diagram for the case of constant
model temperature σ = 0.12. The shape is an inversion of the typical
temperature-concentration phase diagram, with a “eutectic pressure”
at p = −0.75.

in Fig. 3. We also note the presence in this case of a “eutectic
pressure” for the constant temperature case, located at roughly
p = −0.75.

Figure 6 presents pressure-concentration cuts of the
triangle-liquid coexistence region in Fig. 5 at different σ . This
clearly shows the manner in which both the shape and position
of the major features of the liquidus and solidus lines vary with
temperature.

The pressure dependence of the binary alloy phase diagram
is clearly significant and may strongly impact the potential of
a simulation to stabilize certain structures and/or coexistence
regions. Care must therefore be taken, especially when
comparing PFC simulations to experimental work, to ensure
that simulations conform to a constant pressure. The results of
this section will be used in what follows to perform constant
pressure simulations to investigate the solid-liquid interface of
a binary alloy derived from the XPFC model.
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FIG. 6. Pressure-concentration curves plotted for three tempera-
tures for the triangle-liquid coexistence region of the phase diagram
in Fig. 5. Both the position and the width of the coexistence region
changes with temperature.

VI. CALCULATING INTERFACIAL ENERGY

The interfacial energy is measured via the alloy grand
potential


[c,no] = FCG[c,no] − μA

∫
d�r(no + 1)

−μeq

∫
d�r c (no + 1) (31)

written in terms of the coarse-grained free energy FCG and the
smoothed fields no and c. Subtracting the bulk grand potential
(calculated from either the solid or liquid region) from the
total,


interface = 
total − 
bulk, (32)

defines the excess free energy of the solid-liquid interface.
To calculate the unit interfacial energy, γsl, we divide by the
interface length, obtaining

γsl = 
total − 
bulk

Lint

= 1

Lint

(∫
d�r{(FCG − FS/L) + μA(nS/L − no)

+μeq[cS/L (nS/L + 1) − c (no + 1)]}
)

, (33)

where FS/L is the coarse-grained bulk free energies, cS/L is
the far-field concentrations, and nS/L is the far-field average
densities in the bulk solid and liquid phases, respectively.
Equation (33) will be used in the next section to compute
the surface energy and its anisotropy in binary alloys.

A. Fitting the anisotropy

Consider the equation used to fit the interfacial energy data
from our simulations

γsl(θ ) = γ0 (1 + ε4 cos 4θ + ε8 cos 8θ + · · · ). (34)

In fitting simulation data for γsl(θ ), Eq. (34) can be taken to
any desired order, where contributions from successive orders
yield smaller and smaller corrections to γsl. We desire the
smallest order expansion that accurately captures the behavior
of the stiffness S(θ ) = γsl(θ ) + γ ′′

sl (θ ), where primes denote
differentiation with respect to θ . Past work with pure materials
and alloys of species with symmetric phase diagrams found a
first-order fit to be sufficient. However, in those situations both
species (for the case of alloys) had the same preferred crystal
structure and as such no competition between crystal structures
was seen; in such a situation it is reasonable to expect a simple
first-order fit to be sufficient to capture the stiffness.

In this work the presence of a species minimized by a
triangle crystal structure but existing in a square phase has
a pronounced effect on the interfacial energy; a first-order
expansion results in a notably poor fit to the data. We must
be careful, however, in considering higher-order terms, as
anisotropies in γsl are exaggerated in the stiffness S, and care
must be taken that artificial angular dependencies introduced
by higher-order fits to γsl(θ ) are eliminated by systematically
determining a fitting order beyond which spurious angular
dependencies stop occurring. We find in particular that a
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second-order fit introduces an artificial local maximum in
stiffness at the location of the global minimum for higher-
order fits; to avoid such misleading results we studied taking
successively higher-order fits until no significant change
occurred in the resulting stiffness curves. We found that this
can be ensured by using a sixth-order fit to γsl,

γsl = γo(1 + ε4 cos 4θ + ε8 cos 8θ + ε12 cos 12θ

+ ε16 cos 16θ + ε20 cos 20θ + ε24 cos 24θ ). (35)

It is noted that some important features of the stiffness
anisotropy curve can still be well reproduced by the first-order
fit, specifically, the number of minima and maxima and their
position in terms of angle. The values of the lowest-order
fitting parameters γ0 and ε4 only change by 0.002% and 0.2%,
respectively, from a first-order to a sixth-order fit. For regions
where a double local minima may exist in stiffness (not seen
in our work but observed by Gonzales and Rappaz [5] for a
composition of 0.58), the third-order fit should be adequate to
maintain an accurate global minimum while also sustaining
the presence of multiple local wells or peaks. In all cases a
higher-order fit is required if information about the depth and
steepness of the maxima or minima is desired. The stiffness
and interfacial energy curves shown in the following sections
were generated with a sixth-order fit; however, for the purposes
of determining the direction of dendrite orientation we report
only γo and ε4. For details on the full range of fitting parameters
in the data below, the reader is referred to Ref. [29].

B. Solute dependence of anisotropy

A continuous transition of surface anisotropy minima was
reported experimentally in Al-Zn, as the concentration of Zn
crosses over from the Zn-poor to the Zn-rich part of the phase
diagram [5]. To investigate the mechanism of this continuous
transition, we used the amplitude model derived in Sec. III
to investigate a binary alloy with phase diagram shown in
Fig. 7, which has similar features to that of Al-Zn. The XPFC
alloy system is modelled by defining component A (which
favors a square lattice) with a significantly higher stiffness

Liquid
Square

Triangle

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

c

FIG. 7. Theoretical phase diagram obtained from the choice of
XPFC parameters in Table I, in which the left-side (square) species
strongly dominates. This was constructed at a constant model pressure
of p = −0.07. This system has similarities with Al Zn.

TABLE I. Correlation function peak positions, widths, and
heights (�ki

j , αi
j , and σM , respectively) used to create the square-biased

binary alloy phase diagram.

�ki
j αi

j σM

�kA
10 1 π2

3

�kA
11

√
2 2π2

3

�kB
10 3.5 8π2

9

than component B (which is set to favor a triangular lattice).
The specific choice of parameters is listed in Table I. To obtain
surface energy curves we initialized simulation profiles with
far-field values for concentration and density obtained from
the calculated phase diagram in Fig. 7; all simulations were
performed at a constant pressure of p = −0.07. Simulations
were considered equilibrated when the total grand potential
value 
 converged with an error less than 10−9. The resulting
plots of surface energy γsl versus angle θ were fit to the form
in Eq. (35), and stiffness plots obtained via S = γsl + γ

′′
sl.

We first consider the solid-liquid interface in the square-
liquid coexistence region at a constant temperature σ and
different values of average concentration c0. In the context
of a binary alloy, keeping the temperature constant amounts
to staying on the same phase coexistence tie line and thus
keeping the same far-field values for concentration and density.
As a result, we do not expect to see a difference in the
resulting interfacial profiles or excess energies. Simulation
results confirm that there is no significant change in the
resulting interfacial energy and stiffness curves.

We next scan the above system over temperature; each
gives a different set of far-field values for the bulk fields.
We see a clear change in the magnitude of interfacial energy
and stiffness curves with temperature. This is shown in Fig. 8.

Before proceeding with the “model Al Zn” system in Fig. 7,
it is pertinent to carefully consider what is being measured both
in our simulations and in the experiments of Refs. [3,5], which
observed a concentration-dependent change in dendrite orien-
tation, providing strong motivation for this study. A change in
stiffness anisotropy was observed with changing percentages
of zinc via determination of the dendrite orientation of a
fully solidified sample. Samples were solidified gradually via
directional solidification, and results were presented both in
terms of average composition and of nominal composition
of the solid phase. For a sufficiently steady cooling rate
the far-field solid composition will correspond to the solid
composition from the last solid-liquid tie line encountered as
the sample cools. In our simulations, each model temperature is
thus associated with a particular tie-line composition of solid.
This implies that the anisotropy behavior that we observe is
the result of composition changes in the solid or at least a
convolution of both concentration and temperature.

We next examine results for the Al Zn-like system obtained
from the parameters in Table I. Figures 9 and 10 show the
parameters γo and ε4 resulting from fits to Eq. (35) in terms
of both solidus concentration and temperature. Higher-order
fitting parameters are omitted, but were found to follow the
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FIG. 8. (a) Interfacial energy γ and (b) stiffness S curves (nor-
malized by the isotropic surface energy γo) for the αA

10 = αB
10 = 1.5

alloy system of Sec. V, shown for a constant average concentration
c0 = 0.2 and three model temperatures. The overall shape of the
curves shown stays the same; however, there is a change in the heights
of the respective maxima and minima.

same general trend as ε4 and are of successively decreasing
orders of magnitude (10−4 and smaller).

For high temperatures [low concentrations (c) of compo-
nent B] the isotropic interface energy γo in Fig. 9 shows
an increasing trend with decreasing temperatures (or with
increasing c). This is analogous to the findings of other
works that studied the role of interface energy in a isotropic
Zn-Al system, over a limited range of Al concentrations and
temperatures [17]. On the other hand, γo exhibits a maximum
as temperature is further decreased or c is further increased.

The anisotropy parameter ε4 in Fig. 10 exhibits a change
of ∼10% change over the range of concentrations (or tem-
peratures) examined, significantly greater than the changes of
1% previously reported for a pure material [23]. This change
of ∼10% corresponds to change in solidus concentration on
the order of 0.01. This change is on the same order of that
reported by Gonzales and Rappaz [5] in experimental work
over the same difference in solidus concentration.

It is plausible that the situation described by the data
of Figs. 9 and 10 is explained by two competing effects
not present in previous studies. At low concentration, the
expected temperature dependence of the isotropy dominates.
However, as concentration increases, increased amounts of

FIG. 9. The isotropic interface energy γo, plotted in terms of both
(a) temperature and (b) associated solidus concentration.

the triangular-forming species (B) intrude on the dominant
square phase. This will inhibit the formation of the species-A
preferred square structure and cause the value of γo to
tend toward a lower value consistent with presence of the
lower-stiffness phase favored by the B atoms. Similarly, the
anisotropy parameter of the solvent, which is more sensitive to
temperature decreases than γo, begins to increase more slowly
as c increases. In cases where the species A and B are of
comparable stiffness, this effect is likely less pronounced and
we expect the temperature dependence of these quantities to
behave monotonically, at least for an extended range from that
in Fig. 10. It is noteworthy that changes in γo are on the order
of 10−5 (effectively constant on the scale of the anisotropy
changes) and as such may not be large enough to be considered
as important as the changes in the anisotropy parameter.

Figure 11 and Fig. 12 show, respectively, the interfacial
energy curves γ /γo and normalized stiffness curves S/γo

for different solidus concentrations. It is noted that as a
solidus composition of 0.5 is approached, the global stiffness
minimum at θ = 45◦ becomes much less well defined. In fact,
for the highest concentrations, we see a range from roughly
30◦ to 60◦ where the stiffness curve is almost flat, suggesting
there is no strongly preferred dendrite orientation within this
range. These results agree well with behavior seen by Rappaz
et al. at concentrations around 0.58. We have not been able
to observe the flip of maxima to minima seen experimentally
at high zinc concentrations. It is plausible that this is due the
fact that we have not been able to accurately reproduce the
long, thin isomorphous region of square-liquid coexistence in
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FIG. 10. The first-order anisotropic parameter ε4 plotted in terms
of both (a) temperature and (b) solidus concentration. In both plots
ε4 exhibits a plateau; it does so slightly more sharply in terms of
concentration as sufficiently high concentration of the secondary
species (B) is reached. Higher values of concentration were not
attainable within the square solid-liquid coexistence region of this
XPFC alloy system.
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FIG. 11. (Color online) Normalized interfacial energies γ (θ ) for
the case of a large stiffness disparity between alloy species (alloy
system of Fig. 7). The highest amplitude curves correspond to
lowest solidus concentrations and vice versa. Concentrations shown
are 0.117,0.162,0.201,0.243,0.290,0.348,0.430. These curves were
used to extract the data in Figs. 9 and 10.
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FIG. 12. (Color online) Normalized stiffness curves S(θ )/γo

corresponding to the interfacial energy curves of Fig. 11.
The highest amplitude curves correspond to lowest solidus
concentrations and vice versa. Concentrations shown are
0.117,0.162,0.201,0.243,0.290,0.348,0.430.

our alloy system, analogously to the experimental Al-Zn phase
diagram. Because of this we were not able to access such high
solidus concentrations in our simulations.

VII. CONCLUSIONS

We derived a new Ginzburg-Landau theory based on a
recent structural PFC model of binary alloys. We additionally
derived a formalism for studying phase coexistence in our
model in pressure-concentration-density-temperature space.
The model was used to conduct constant pressure simulations
to investigate the effect of solute species concentration, and
temperature, on the solid-liquid interface energy and its
anisotropy. Our model predicts a concentration dependence
in the interface stiffness that originates in the elemental in-
teractions inherited from the liquid state correlation functions
built into the original XPFC theory.

Recent work by Rappaz and coworkers has reported a
continuous transition in the anisotropy of the solid-liquid
interface as the concentration of Zn is increased in Al-Zn
alloys. Our simulations are consistent with these observations
and suggest that the results are a consequence of solute
(B) atoms infiltrating the preferred lattice structure of the
solvent (A) species. Specifically, in the case where the two
species prefer different lattice symmetries, and one of the
species is sufficiently stiff in comparison to the other, we
may not see a discontinuous transition from one preferred
dendrite orientation to the other. Rather, the stiffer material
holds on to its preferred structure while becoming “weaker”
in the low stiffness direction corresponding to the second,
softer, element. This can lead to flattened regions of the
stiffness curve with no strongly preferred direction for dendrite
growth.

We observed that the role of concentration, modulated
by temperature, causes a much more significant change in
interface anisotropy than is observed due to a change in
temperature alone in a single component material.

We are unable in our simulation to completely separate the
temperature and concentration dependence of the interfacial
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anisotropy, although a comparison of our constant-σ versus
changing-σ anisotropy results does strongly suggest that the
role of concentration on interface anisotropy is modulated by
the temperature as a control. It is plausible that this convolved
effect is a limitation of the accessible phase space of a binary
alloy. A possible future direction for research is to move to
a higher-order (i.e., ternary) alloy, thereby adding a second
concentration field; this should create a phase space wherein
multiple tie lines can be constructed for a fixed temperature.
The presence of a coexistence plane rather than a coexistence
line may be the key to deconvolve the effects of temperature
and concentration in their role on interface energy.
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APPENDIX: AMPLITUDE EXPANSION FREE ENERGY

The procedure for coarse graining the XPFC free energy
in Eq. (2) uses a box or volume averaging method to project

out the short-wavelength behavior of n(x) onto the density
amplitudes {Aj ,Bl ,Cm}, the concentration c, and average
density no. The procedure is too lengthy to review here but
is thoroughly documented in Refs. [21,25,29]. For the alloy
system, we employ a two-peaked correlation function that
interpolates between square and triangular phases in 2D (FCC
and BCC in 3D). A multimode expansion for n(�x) that allows
for both these phases is given by Eq. (13). Since in this work
elastic and plastic effects on the interface energy are neglected,
the amplitude of each density wave is assumed to be real.
In Eq. (13) there are two square modes (one with the two
amplitudes Aj and the other with the two amplitudes Bl) and
one triangular mode with three amplitudes Cm. Under these
conditions, coarse graining Eq. (2) yields a Ginzburg-Landau
free energy involving ĈII

2 and the two-point correlation of
element I = A or B, and X1(c) and X2(c) are interpolation
functions (see text). The reciprocal lattice vector �kB

10 is used
to set the scale of the triangular lattice favored by element
B in this work, while �kA

ij denotes the lattice vectors in the
(i,j ) = (1,0) or (i,j ) = (1,1) directions, which are used to
define a square crystal symmetry for element A. For simplicity,
gradients in the average density no are neglected in this term.
Variations of no through the interface are controlled through
variations in the amplitudes and concentration. The resulting
free coarse-grained energy is given by:

FCG =
∫

d�r
{

1

2
n2

0 − η

6
n3

0 + χ

12
n4

0 + ω(n0 + 1)�Fmix(c) + α|∇c|2 + (
1 − ηn0 + χn2

0

)(
A2

1 + A2
2 + B2

1 + B2
2

+C2
1 + C2

2 + C2
3

) + (
4χn0 − 2η

)(
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where �Fmix(c) is defined in Eq. (3).
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