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The long wavelength limit of a recent microscopic phase-field crystal (PFC) theory of a binary alloy mixture is
used to derive an analytical approximation for the segregation coefficient as a function of the interface velocity,
and relate it to the two-point correlation function of the liquid and the thermodynamic properties of solid and
liquid phases. Our results offer the first analytical derivation of solute segregation from a microscopic model,
and support recent molecular dynamics and numerical PFC simulations. Our results also provide an independent
framework, motivated from classical density functional theory, from which to elucidate the fundamental nature
of solute drag, which is still highly contested in the literature.
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There are many theories explaining the morphologies and15

the underlying physics for near-equilibrium systems that16

evolve towards their equilibrium state [1]. By contrast, theories17

of physical phenomena associated with far-from-equilibrium18

systems remain less developed. Rapid solidification from19

highly undercooled melts serves as a paradigm of such20

phenomena. In processes like laser-induced surface melting,21

spray forming, and welding among other technologies, highly22

supersaturated metastable solid solutions can form. In many23

cases, the nonequilibrium nature of such process can be24

exploited to control the degree of supersaturation of the solid.25

Comprehensive reviews of rapid-solidification technologies26

that are currently used in the industry along with their27

theoretical development are offered by [2,3].28

At rapid-solidification rates, solute concentration at the29

solid-liquid interface (SLI) can deviate substantially from30

the values predicted by the equilibrium phase diagram, a31

phenomenon known as solute trapping [4–10]. In addition to32

solute trapping, the growth of a crystal with a composition33

differing from that of its melt requires solute diffusion to34

move across the SLI. The free-energy dissipation associated35

by interface diffusion leads to the phenomenon of solute drag,36

an effect which can strongly hinder the transformation rate.37

Solute drag arises due to a competition between interface38

diffusion rate and a chemical potential difference across the39

interface. When the velocity of the SLI is low, local equilibrium40

is assumed, the chemical potential difference between the41

SLI essentially vanishes, and solute drag is negligible. As42

the interface speed increases, solute diffusion limits the rate43

of partitioning across the interface (solute trapping), leading44

to an increasing chemical potential jump with velocity and,45

hence, an increasing solute drag. At large SLI speeds, solute46

partitioning eventually stops, as does diffusion of solute47

through the interface, and thus solute drag vanishes.48

A phenomenology of solute drag was proposed in the49

seminal work by Cahn [11] for the case of a grain boundary50

separating two solid phases. Although the Cahn model51

quantitatively predicts various aspects of the drag effect, it52

was assumed that the chemical potential is equal on both sides53

of the transformation front, an assumption that does not hold54

for a rapidly solidifying front. Later, Hillert and Sundman55

[12] incorporated a chemical potential jump into their phe-56

nomenology, and proposed that the maximum amount of free57

energy associated with drag is dissipated. A model for solute 58

drag for solidification was first proposed by Hillert [13], which 59

considered the structure of the interface and its effect on drag. 60

Solute drag experiments are difficult to perform. Some show a 61

significant change in solute concentration at the SLI interface 62

at rapid-solidification rates [14], while some [15] even find no 63

evidence of solute drag. Subsequent models proposed a partial 64

solute drag hypothesis [7,16–18]. More recently, atomistic 65

simulations of Yang et al. [17] and Humadi et al. [19] proved 66

that the solid-liquid interface stops partitioning solute at a finite 67

velocity, consistent with predictions of Sobolev [9,10] and in 68

contrast to earlier predictions of Aziz et al. [5,16]. 69

Traditional phase-field models of solidification consider 70

bulk mass and heat transport coupled to moving interfaces 71

through effective equilibrium boundary conditions [20–27] 72

that map onto traditional sharp interface models. While such 73

an approximation is appropriate at low solidification rates, 74

it is inappropriate at rapid cooling rates where, as described 75

above, nonequilibrium solute partitioning and drag become 76

dominant. Based on the pioneering works of Cahn and Hillert 77

[11–13], modified sharp interface models were developed for 78

rapid solidification [16]. However, these models are typically 79

phenomenological and are based on physically motivated, but 80

often ad hoc, parameters that do not link the solidification 81

kinetics to any microscopic quantity of the liquid and solid. 82

More recent phase-field modeling of rapid solidification has 83

shown that phase-field models inherently contain much of 84

the phenomenology of these sharp interface models [7,28]. 85

Still, no fundamental link between the mesoscale solidification 86

process and the microscopic parameters of the materials can 87

be made since solute trapping and drag fundamentally emerge 88

at the atomic scale, where traditional phase-field models, by 89

their very nature, lack any qualitative and quantitative detail 90

[27,29]. At present, no microscopic treatment of the trapping 91

coefficient and solute drag entering rapid-solidification models 92

exists. 93

Recently, an emerging atomistic continuum modeling 94

formalism coined the phase-field crystal (PFC) method has 95

been developed that presents an alternate atomistic framework 96

with which phenomena such as solute trapping can be studied. 97

In contrast to the traditional phase-field approach, PFC 98

models are formulated in terms of order parameters that are 99

periodic at the atomic scale, but whose dynamics evolve over 100
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diffusive time scales relevant to rapid-solidification processes.101

A phase-field crystal model of binary alloy solidification was102

first derived in Ref. [30] as a simplification of a truncated103

density functional theory expanded around the liquid state104

at coexistence. As such, the model inherits crucial micro-105

scopic liquid state parameters originating from the two-point106

correlation function of the solidifying liquid. The approach107

has been shown to self-consistently incorporate many physical108

features of nucleation, multiple crystal orientations, grain109

boundary energy, elastoplasticity and topological defects110

and their dynamics [31–38]. In the case of grain growth,111

Greenwood et al. recently simulated grain boundary solute112

drag using direct simulations of the structural XPFC model113

[39]. A significant advance in PFC modeling is its use114

with multiscale and renormalization methods to project out115

mesoscale phase-field models with complex order parameters116

[40–42], the coefficients of which maintain their connection117

to the microscopic liquid and solid state properties inherent in118

the generating PFC theory. In this work, we use a PFC-derived119

amplitude model of solidification to elucidate an analytical120

derivation of the nonequilibrium solute partition coefficient121

and examine the solute drag associated with solute trapping.122

Multiple scale analysis applied to the PFC alloy model123

in [30] yields the following moving front equations for the124

impurity concentration (ψ) and the amplitude of the reduced125

atomic number density (φ) [43]:126

βV 2 d2φ

dz2
− V

dφ

dz
= W 2(n̂)

d2φ

dz2
− ∂f

∂φ
,

(1)

γV 2 d2ψ

dz2
− V

dψ

dz
= d

dz

(
M

d

dz

{(
ω + 6B�

2φ
2
)
ψ + uψ3

})
.

Their derivation assumes that the atomic number density127

n ≡ (ρ − ρ̄)/ρ̄ is represented by n = n0 + ∑
j Aje

iGj ·�x ,128

where n0 is the reduced average alloy density, and ρ̄ is the129

reference liquid density at coexistence. It is assumed that130

n0 = 0 here for simplicity. The �Gj is the j th reciprocal131

lattice vector of a general multimode expansion of the density,132

and Aj is the complex density amplitude corresponding to133

the j th density wave. We consider here a two-dimensional134

triangular crystal structure but the qualitative physics of135

our results are not expected to change for other crystal136

structures. For solidification, it is suitable to set all the Aj137

to be real, i.e., Aj = φ. The equations are written in a138

comoving one-dimensional reference frame moving at velocity139

V , which is accurate for rapid solidification. The second140

order derivatives allow for a two-time-scale relaxation of the141

density and concentration fields. They can be motivated by142

considering mass and momentum conservation of two-species143

densities ρA and ρB [19,34,44]. The coefficients γ and β are144

microscopic relaxation parameters for the solute and density,145

respectively, while M is the mobility of impurity atoms.146

The variable W (n̂) = Bx
0

∑
j n̂ · �Gj , where n̂ is the local147

interface normal vector and Bx
0 is the lowest order coefficient148

of the solid compressibility. The liquid compressibility is149

denoted by Bl and expanded as Bl = Bl
0 + Bl

2ψ
2 [30].150

The bulk free energy is denoted by f (φ,ψ) and ∂f/∂φ =151

6[
B0 + Bl
2ψ

2]φ − 12tφ2 + 90νφ3, where 
B0 = Bl
0 − Bx

0 .152

The variables t,ν,ω,u are the respective coefficients of the bare153

φ3, φ4, ψ2, and ψ4 terms of a Landau expansion of the bulk154

free energy. Bulk compressibility of the liquid Bl = 1 − ρ̄Ĉ0, 155

and Bx
0 = ρ̄ (̂C)2

2/(4Ĉ4), where Ĉ2,Ĉ2,Ĉ4 are coefficients of a 156

fourth order expansion of the two-point correlation function 157

of the liquid state, given in Fourier space by C(k) = Ĉ0 + 158

Ĉ2k
2 + Ĉ4k

4 [30]. In what follows, we rescale φ̄ = φ/φs and 159

ψ̄ = ψ − ψs , where φs and ψs are the bulk order param- 160

eter and concentration of the solid phase, respectively. All 161

results presented here are for {ν,t,u,ω,Bl
2,B

x
0 ,W (n),φs,M} = 162

{1,0.6,4,0.008, − 1.8,1,2,0.06,1}. 163

For the parameters above, the equilibrium partition co- 164

efficient of the PFC model of Ref. [30] is Ke = 0.97. The 165

solidus-to-liquidus jump for this model is ε = (ψs + 1)/Ke − 166

(ψs + 1) � 1, making ε an ideal small parameter to expand ψ 167

in due to the high value of Ke in the PFC model. The jump in 168

concentration between liquid and solid is small in most alloy 169

systems and thus we anticipate the results derived below to 170

be applicable in general. Integrating the ψ equation in Eq. (1) 171

from −∞ to z and substituting ψ ≈ ψs + εψ1 + ε2ψ2 + · · · 172

into the result gives the following O(ε) equation for ψ1: 173

γV 2 dψ1

dz
− V ψ1 = M

d

dz

([
ω + 6B�

2φ
2
s φ

2 + 3uψ2
s

]
ψ1

)
.

(2)

Equation (2) will be used to approximate the concentration 174

profile in the liquid. Higher order terms are needed to 175

approximate concentration in the solid, but that will not be 176

necessary here and will be omitted in what follows. 177

In Eq. (1) the parameter W ≡ W (n̂) is a measure of the SLI 178

width and therefore we approximate the order parameter φ ≈ 179

φ0(z) ≡ [1 − tanh(z/W )]/2, and define z = 0, where φ0(0) = 180

1/2, as the interface between solid and liquid ordering anal- 181

ogous to molecular dynamics studies [17]. φ0(z) is the exact 182

lowest order solution of the PFC model for a pure material [45]. 183

We have found that it is also a reasonable approximation for 184

the density amplitude of the PFC alloy model. Substituting the 185

above expression for φ into Eq. (2) gives 186

− V

M
ψ1 = d

dz

{
b + δ

[
1 − tanh

(
z

W

)]2}
ψ1, (3)

where b ≡ ω + 3uψ2
s − γV 2/M and δ ≡ 6B�

2φ
2
s . This equa- 187

tion can be solved analytically with an integrating factor that 188

must be solved numerically. In favor of obtaining a tractable 189

analytic expression to work with, we exploit the fact that 190

δ/b ∼ 10−2 and | tanh | < 1 and seek an analytical solution 191

to lowest order in δ/b. This gives 192

ψ1 ≈ e−(V/Mb){z+(δW/b)�0(z)} {1 + O(δ/b) + · · · }, (4)

where �0(z) ≡ tanh( z
W

) − 2 ln[1 + tanh( z
W

)]. In obtaining 193

Eq. (4), the integration constant was found by applying 194

the boundary condition ψ(z = W/2) = ψe
� ≡ ε + ψs at 195

V = 0, where ψe
� is the equilibrium liquid concentration, and 196

z = W/2 defines the point where the concentration profile 197

reaches a maximum, consistent with molecular dynamics 198

[17] and previous PFC alloy simulations [19]. We also 199

take the far field concentration in the liquid to be the same 200

as the solid concentration ψs . For simplicity, we analyze 201

only the exponential part of Eq. (4). We found that including 202

the higher order terms gives essentially the same results. 203
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FIG. 1. Segregation coefficient as a function of the interface
velocity. The dotted (blue) curve represents the diffusive case where
the K(V ) tends to unity asymptotically as V → ∞. The solid (purple)
curve illustrates the case where the K(V ) reaches unity at finite
velocity, here V ≈ 0.4.

Similar formalism was derived for a phase-field model of204

solidification [46].205

The segregation coefficient K(V ) is defined to be the ratio of206

the interface solid concentration to that of the maximum liquid207

concentration, which occurs when φ = 1/2 at z = W/2. In the208

PFC model, the concentration is expanded around c = 0.5,209

which yields negative concentrations on the left side of the210

phase diagram. As a result, the solute partition coefficient for211

the PFC alloy model is defined as212

K(V ) = ψs + 1

[ψs + εψ1(W/2)] + 1
. (5)

Figure 1 plots K(V ) for two cases: the first case [solid (purple)213

curve] for γ 	= 0 and the second case [dotted (blue) curve] for214

γ = 0. For the first case, K(V ) = 1 at a finite V , while in215

the second case, K(V ) → 1 only asymptotically as the solid-216

liquid interface velocity V → ∞.217

There are two competing theories for explaining K(V ) in218

the literature. The first, by Aziz [5] assumes purely diffusive219

solute transport and flux balance across the interface to220

predict the segregation coefficient. Aziz predicts that K(V )221

approaches complete trapping [K(V ) = 1] asymptotically, and222

never reaches unity at finite V . More recently, Sobolev [9,10]223

proposed a phenomenology that considered inertial dynamics224

of solute atoms in the liquid. This led to the emergence of225

an effective diffusion coefficient, which makes it possible for226

K(V ) to reach unity at a finite velocity.227

In our microscopic PFC formalism, the constant b in Eq. (4)228

emerges as an effective diffusion coefficient. The value of b229

decreases to zero as the interface velocity increases. As a result,230

the liquid concentration tends to the solidus concentration.231

However, this is only true when the relaxation time of the solute232

diffusion flux is nonzero (γ 	= 0). Otherwise, b always remains233

nonzero, and does not change the classical diffusive nature234

of the concentration profile. This allows for a concentration235

jump to develop across the two sides of the interface, even for236

arbitrarily large interface velocities (V ).237

The above analytical PFC result is consistent with the238

previous numerical simulations of the alloy PFC model [19]239

as well as with recent molecular dynamics simulations [17].240

We note that a higher order perturbation analysis of the241

coupled Eqs. (1) would be required to compare the results242

quantitatively with the full numerical simulations. However, 243

the physics does not change. Our results offer a prediction of 244

the complete solute trapping velocity in terms of microscopic 245

parameters of the PFC theory. Namely, when the constant 246

b defined following Eq. (3) becomes zero, Eq. (4) predicts 247

that ψ1 will vanish, a consequence of complete trapping. The 248

condition of b = 0 occurs when V ∗ = {M(ω + 3uψ2
s )/γ }1/2, 249

where the approximate form of ψs was derived in Ref. [30] as 250

ψs ≈ ±ψsl(1 + G{1 − √
bliq/bsol}), and where the variables in 251

this expression are given by ψsl =
√

(
Bsl
0 − 
B0)/Bl

2, G = 252

−8t2/{135v(4
B0−3
Bsl
0 )},
Bsl

0 =8t2/135v, while bliq = 253

(ω + 3uψsl)/2 and bsol = bliq + 2Bl
2(4
B0 − 3
Bsl

0 )/5v. 254

Thus, we have shown that the complete trapping velocity 255

is inversely proportional to the square root of the relaxation 256

time of the solute diffusion flux and proportion to ψs , which 257

is determined by the properties of the two-point correlation 258

function of the liquid C(|k|), through Bl,B
x
0 , and the bulk 259

solid free-energy density, through (t,v,ω,u). 260

Solute drag in the context of the PFC formalism can also 261

be elucidated using Eq. (4). The theoretical formalism of 262

solute drag is briefly summarized here. The free-energy density 263

available for solidification of a binary alloy (denoted here as 264


Gs) is partially dissipated due to solute atoms diffusively 265

redistributing parallel to the solidifying front before attaching 266

to the solid phase. This dissipation is referred to as solute 267

drag, and reduces the total effective free energy available for 268

solidification (denoted here by 
Gc) to 269


Gc = 
Gs − 
Gd, (6)

where the maximum drag was shown to be 
Gd = (ψ� − 270

ψs)(μ� − μs) [7], while 
Gs = Fs(ψs,T ) − {F�(ψ�,T ) + 271

(ψs − ψ�)(μ�)}, derived by Cahn [47], where F denotes bulk 272

free-energy density and μ� and μs are the interdiffusional 273

chemical potentials of the liquid and solid phase and evaluated 274

at ψl and ψs , which are, respectively, the liquid and solid con- 275

centrations on the liquid and solid sides of the interface. We can 276

equivalently express 
Gs = ψs
μB + (1 − ψs)
μA, where 277


μA (
μB) are the solvent A (solute B) chemical potential 278

differences between the solid and liquid phases. Galenko 279

et al. [48–50] extended Eq. (6) to include nonequilibrium 280

contributions due to nonzero diffusional flux. They predicted 281

a relation for interface temperature versus velocity that was 282

in excellent agreement with experiments [5,51,52], as well as 283

with numerical results from a study of a two-time PFC alloy 284

model [19]. In what follows, we explore the behavior of the 285

components of Eq. (6) as predicted by amplitude projection of 286

the same PFC alloy model. 287

The amplitude equations (1) constitute a phase-field theory 288

derived by coarse graining a microscopic PFC model. Anal- 289

ogously to Ref. [7] we thus compute the above expressions 290

for 
Gs and 
Gd from the free energy of the PFC amplitude 291

model. This is derived from f (φ,ψ), which in the bulk gives 292

Fs = 45νφ4
s

2
− 4tφ3

s + 3
(
B� − Bx

0

)
φ2

s + uψ4
s

4
+ ωψ2

s

2
,

F� = uψ4
l

4
+ ωψ2

l

2
(7)

for the free-energy density in the solid (Fs) and liquid (F�). 293
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FIG. 2. The driving forces for crystallization for diffusion flux
relaxation time coefficients γ = 0,1.25,1.88, where the style (color)
corresponding to each γ is shown in panel (b). (a) The total driving
force available for transformation. (b) The maximal solute drag. (c)
The total available crystallization free energy vs interface velocity.

At low thermodynamic driving forces, molecular dynamics294

simulations and experiments suggest that V ∝ −
Gc [53].295

However, this relation becomes less accurate near complete296

trapping velocities. To study higher velocities, the solid297

concentration ψs and order parameter φs are assumed constant298

in the solid during steady-state front propagation, while the299

liquid concentration ψ = ψs + εψ1 is determined by Eq. (4).300

These quantities are substituted into F� and Fs to compute301


Gs, 
Gc, and 
Gd . Figure 2(a) shows three different cases302

of 
Gs versus V . The dotted blue line represents the diffusive303

case where the relaxation time for diffusional flux is zero304

(γ = 0). The solid (purple) and the dashed (yellow) lines show305


Gs for γ = 1.24 and γ = 1.88, respectively.306

Figure 2(b) plots 
Gd for the same γ values as Fig. 2(a).307

It is noteworthy that the maximum amount of solute drag308

(minimum of 
Gd ) does not change as the degree of309

trapping (γ ) changes. However, the curvature of 
Gd at310

large V is quite sensitive to γ . This occurs because as γ311

increases, complete trapping occurs at lower velocity (V ∗).312

This causes the concentration difference across the interface 313

to decrease rapidly for V > V ∗, thus leading to a decrease 314

in 
Gd , which depends on ψ� − ψs . This confirms previous 315

solute drag phenomenologies, and is consistent with recent 316

molecular dynamics results [17]. Our results illustrate that 317

as the solute relaxation coefficient γ changes V ∗ and the 318

degree of solute trapping, it affects the driving force for 319

complete crystallization mostly through 
Gd since 
Gs does 320

not change appreciably with γ for V > V ∗. Figure 2(c) shows 321

a nearly linear relationship of the driving force with velocity 322

up to above the speed of complete trapping V ∗, after which 323

it becomes constant. The slope of this dependence depends 324

on the relaxation time of solute flux, in agreement with the 325

nonequilibrium theory of Galenko in Ref. [48]. 326

Other materials parameters of our phase-field crystal theory 327

were also examined for their effect on solute drag. An 328

important one is the equilibrium solute partition coefficient 329

Ke, which is controlled by ν, the coefficient of the φ3 term 330

in the bulk PFC free-energy functional. Increasing ν leads to 331

increasing Ke. Materials with larger Ke exhibit lower complete 332

trapping velocities (V ∗) because less driving force is required 333

to reach complete trapping for a decreasing concentration 334

jump ψ� − ψs . Thus, solute drag 
Gd also decreases as Ke 335

increases. Figure 3 illustrates −
Gc vs V for three values of 336

ν (or, equivalently, Ke), at a fixed γ (other parameters are as 337

indicated at the beginning of this Rapid Communication). This 338

illustrates that in all cases, the driving force for crystallization 339

(
Gc) increases as solute drag decreases because of the 340

decreasing of 
Gd . This implies that solute drag is strictly a 341

kinetic process (i.e., 
Gd depends on V , through Ke). Previous 342

models have attempted to simplify the contribution of solute 343

drag by defining a single adjustable parameter f (Ref. [5,17]), 344

which varies from zero for the no drag limit and unity for 345

maximum drag. The discussion of the f parameter are further 346

discussed in Ref. [43]. 347

In summary, an amplitude model derived from a 348

microscopic phase-field crystal model has been derived to 349

study the phenomena of solute trapping and solute drag, two 350

important materials processes that remain poorly understood. 351

We have derived a first order analytic expression for the con- 352

centration profile in the liquid as a function of interface velocity 353

and position, and used it to derive the solute trapping coeffi- 354

cient K(V ). Our model predicts that when inertial dynamics 355

0.30.20.10.0 0.4 0.5
Velocity

20x10 

15 

5 

10 

0 

v=0.9

v=1.0

v=1.1

-5

−
Δ

G
c

FIG. 3. The driving force for crystallization; the three different
lines show the different Ke by changing the value of ν (γ = 1.88 is
fixed).

000400-4



RAPID COMMUNICATIONS

MICROSCOPIC TREATMENT OF SOLUTE TRAPPING AND DRAG PHYSICAL REVIEW E 00, 000400(R) (2016)

are included in solute transport, complete trapping occurs at a356

finite velocity, consistent with the phenomenology of Sobolev357

[9,10] and recent molecular dynamics (MD) simulations. A358

key result is the derivation of an expression for the complete359

trapping velocity as a function of the bulk compressibility of360

the solid and liquid and the bulk free energy of each phase.361

In addition, we used our result for K(V ) to elucidate the role362

of the solute drag coefficient. As V increases, the maximum363

solute drag decreases proportionately to the complete trapping364

velocity and solute flux relaxation time. The larger the365

relaxation time of the solute diffusion flux (γ ), the lower366

the complete trapping velocity and therefore the smaller the367

amount of solute drag. For fixed γ , the PFC model predicts a368

linear relationship between interface velocity and the total free369

energy for crystallization at small velocities, consistent with370

recent MD simulations. It was found that the total available371

free energy for solidification and the maximum solute drag372

are velocity dependent. Model parameters such as those that373

alter the equilibrium segregation coefficient (Ke) were also 374

examined. It was found that as Ke increases, complete trapping 375

occurs at slower velocities due to lower driving forces required 376

by the system. This also changes the maximum available solute 377

drag of the system. For the discussion of partial solute drag 378

and how it affects the system, we refer the reader to Ref. [43]. 379

The results of this work comprise independent predictions 380

of solute trapping and drag concepts emerging from a contin- 381

uum theory that is fundamentally derived from a microscopic 382

density functional theory. As a result, the analytical and 383

numerical results presented here can be related to both 384

thermodynamic material properties of the solid and liquid, 385

as well as to the microscopic correlation properties of the melt 386

from which crystallization occurs. 387
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