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This paper introduces a new structural phase field crystal (PFC) type model that expands the PFC methodology
to a wider class of structurally complex crystal structures than previously possible. Specifically, our approach
allows for stabilization of graphene, as well as its coexistence with a disordered phase. It also preserves the ability
to model the usual triangular and square lattices previously reported in two-dimensional (2D) PFC studies. Our
approach is guided by the formalism of classical field theory, wherein the free-energy functional is expanded to
third order in PFC density correlations. It differs from previous PFC approaches in two main features. First, it
utilizes a hard-sphere repulsion to describe two-point correlations. Second, and more important, is that it uses
a rotationally invariant three-point correlation function that provides a unified way to control the formation of
crystalline structures that can be described by a specific bond angle, such as graphene, triangular, or square
symmetries. Our approach retains much of the computational simplicity of previous PFC models and allows
for efficient simulation of nucleation and growth of polycrystalline 2D materials. In preparation for future
applications, this paper details the mathematical derivation of the model and its equilibrium properties and uses
dynamical simulations to demonstrate defect structures produced by the model.
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I. INTRODUCTION

Graphene is one of the most exciting new two-dimensional
(2D) materials discovered. It has been found to exhibit
interesting electrical [1,2] and mechanical properties [3,4].
Crystals of graphene can be obtained by exfoliating cleaved
graphite samples onto an oxidized silicon wafer to produce
flakes of graphene [5]. A more scalable method of obtaining
graphene is through chemical vapor deposition (CVD) [6,7],
a method that produces a polycrystalline material. While,
theoretically, graphene can be about a hundred times stronger
than steel, the properties of graphene realized in experiments
typically reveal a wide variability, up to an order of magnitude
from their theoretical predictions [8,9].

Variability in the strength properties of graphene, par-
ticularly how these are related to the defect structure, still
remains largely unexplored, particularly theoretically. Recent
work suggests that it is linked to the defect microstructure at
grain boundaries [8–10]. The topological defects in graphene
typically take the form of periodic patterns of heptagonal and
pentagonal disclinations, the patterning of which is dictated
by the tessellation requirements of atoms in adjacent grains
[11–13]. The complexity of forming and measuring graphene,
however, makes it challenging to experimentally isolate and
examine the role of specific defects and grain boundaries on
the growth and properties of this material.

Computational modeling can serve as a route for theo-
retically understanding the difficult-to-measure properties of
graphene. First-principles studies are useful in examining
the adsorption process of carbon onto metal surfaces during
graphene formation [14]. Molecular dynamics (MD) studies of
graphene have been successful at predicting the anisotropy of
graphene morphologies on metal surfaces [15] or the energy
of specific defect structures [13]. On the continuum scale,
phase field models have been used to study how anisotropic
diffusion of carbon on a surface can yield the formation of the
dendritic graphene structures [16]. To date, there has not been
a model that can address both the atomically varying defect

microstructures of graphene and its nucleation and diffusional
growth kinetics from a disordered state on a surface.

The phase field crystal (PFC) modeling approach is a
promising approach for modeling many microstructure phe-
nomena. The approach describes the thermodynamics and
dynamics of phase transformations through an atomically
varying order parameter field that is loosely connected to the
atomic density field. Like traditional phase field (PF) models,
PFC models naturally capture most of the salient physics
of nucleation, polycrystalline solidification, grain boundaries
[17–21], and multicomponent, multiphase solidification [22–
25]. Unlike traditional PF models, PFC models also capture,
in the context of a single order parameter, elasticity and
plasticity phenomena relevant to solid-state processes such as
dislocation source creation, dislocation stability [26,27], and
creep [28]. The most important feature of PFC-type models
is that they incorporate the above phenomena from atomic to
micron length scales and over diffusional times scales, where
the emergent properties of nonequilibrium phase transforma-
tions are typically manifested. PFC modeling has been used to
elucidate phenomena ranging from grain boundary premelting
[18,29,30] to the nucleation pathways of defect-mediated
nucleation of precipitates, the latter of which led to TEM and
atomic probe experiments to validate the PFC predictions [31].

The original PFC model was predominately used for the
study of 2D triangular and three-dimensional (3D) bcc crystal
symmetries [17,32]. Later models introduced multipeaked
two-point correlation kernels in the nonlocal part of the
free energy that allowed for a simple yet robust approach
to simulate most of the common metallic crystal structures
(2D square, bcc, fcc, hcp) in phase transformations [33,34].
These so-called structural PFC (XPFC) models were later
generalized to binary and multicomponent (and multiphase)
alloys [23,35]. More recently, a new multipeaked two-point
correlation was introduced to stabilize graphene and kagome
lattices, and a morphological phase diagram distinguishing
the stability ranges of the two solid phases was explored
numerically [36].
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This paper introduces a structural PFC theory that breaks
with the tradition of previous PFC models and expands the
free energy up to three-point correlations in the PFC density
field. Unlike previous PFC theories, the two-point excess
term is based on hard-sphere-like interactions. It is shown
that this allows for stabilization of triangular symmetry in
two dimensions. In this formalism, more complex crystal
structures that are describable by a particular bond angle are
stabilized using a rotationally invariant three-point correlation
function we introduce for the excess free energy. This term
allows for the stabilization of triangular, square, and graphene
structures in two dimensions. It is noteworthy that beyond
stabilizing the aforementioned structures, this formalism also
allows for stable coexistence of these structures with a
disordered phase, a feature crucial for modeling nucleation
and growth of polycrystalline 2D materials from a vapor or a
disordered arrangement of atoms on a surface. In preparation
for future applications, this paper highlights the derivation of
our PFC free energy, examines its equilibrium properties, and
use dynamics to demonstrate defect structures produced in
polycrystalline samples.

II. NEW STRUCTURAL PFC MODEL

The derivation of our model begins by defining the spatial
PFC density field ρ of a species of atoms. From this, a
dimensionless density field is defined as n = (ρ − ρ̄)/ρ̄, where
ρ̄ is the reference density of a disordered phase around which a
functional expansion of the free energy is carried out. Treating
the field n as an order parameter with which to describe
microstructure variations, we expand the free energy of a
crystallizing system as

�F

kBT ρ̄
= Fid [n] + Fex,2[n] + Fex,3[n]. (1)

The term Fid is the ideal free energy, which ignores interac-
tions. Its form here is given by

Fid =
∫

dr
{

n2

2
−η

n3

6
+χ

n4

12

}
, (2)

where η and χ are dimensionless parameters to adjust the form
of the ideal free energy. This form is a Landau expansion of the
true ideal free energy. In what follows η = χ = 1. The term
Fex,2 is the first term in the expansion of excess free energy,
which incorporates two-point interactions. Its form is written
as

Fex,2 = −1

2

∫
n(r)

∫
C2(r − r′)n(r′)dr′ dr, (3)

where C2 is the two-point correlation function. The term
Fex,3[n] is the second term in the expansion of the excess free
energy and describes interactions at the level of three-point
correlations in the density n. Its form, assuming translational
invariance, is given by

Fex,3 =−1

3

∫
n(r)

∫
C3(r−r′,r−r′′)n(r′)n(r′′)dr′dr′′dr, (4)

where C3 is the three-point correlation function. The remainder
of this section will discuss the explicit forms of C2 and C3 and
their mathematical properties.

r0
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πr2

0

0
r

C2

FIG. 1. Two-point correlation function in real space.

A. Two-point correlations

We define C2 in Fex,2 using a simple repulsive term. The
length scale defined by this term will set the crystal lattice
spacing. We define the circ function as a circular step function
of unit radius and height centered on the origin,

circ(r) =
{

1 : r � 1,

0 : r > 1.
(5)

In two dimensions we then define C2 as

C2(r) = − R

πr2
0

circ

(
r

r0

)
, (6)

where r0 sets the cutoff for the repulsive term and R sets the
magnitude of the repulsion. The normalization factor has been
set such that in reciprocal space Ĉ2(0) = −R, where Ĉ2(k)
denotes the Fourier transform of C2(r). The form of C2(r) is
depicted schematically in Fig. 1.

It is convenient to simulate PFC models numerically in
Fourier space. The Fourier transform of Eq. (6) becomes

Ĉ2(k) = −2R
J1(r0k)

r0k
, (7)

where Jm are the Bessel functions of the first kind. Figure 2
shows a plot of Ĉ2(k). Using Eq. (7), the excess free energy
due to two-point correlations in Eq. (3) can be written with the
use of the convolution theorem as

Fex,2 = −1

2

∫
n(r)F−1{Ĉ2(k)n̂(k)}dr. (8)

While there is no attraction between atoms at the level of
two-point correlations, the system can still undergo a phase
transition and solidify when the density is great enough.
The lattice constant a0 is related in a nontrivial way to
the cutoff length r0. Assuming for simplicity that most
of the energy is carried in the first reciprocal space mode (K1)
of the density, the energy of the system will be minimized when
the first mode lies on the peak of −2RJ1(r0k)/(r0k), i.e., when

5 10 15

−R

0
kr0

Ĉ2(k)

FIG. 2. Plot of −2RJ1(r0k)/(r0k) in units of kr0.
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TABLE I. The ratio of r0 to a0 for various two-dimensional crystal
lattices. K1 is the reciprocal lattice vector of the first mode of a crystal
structure.

Lattice K1a0 r0/a0

Triangular 4π/
√

3 0.707854 . . .

Square 2π 0.81736 . . .

Graphene 4π/3 1.22604 . . .

K1 ≈ 5.13562/r0. Table I gives the ratio r0/a0 for various
two-dimensional lattices.

Since the two-point correlation function has only one
equilibrium distance and is completely isotropic, it strongly
favors a lattice with the highest packing fraction. In two
dimensions this is the triangle phase, a result consistent with
the classical result of hard-sphere theory [37]. To stabilize
more structurally complex solid phases we must either include
additional distances (as in XPFC models) or introduce a
term which breaks the isotropy in interactions. Since we
require our free energy to be rotationally invariant, this
breaking of isotropy can only be relative to some local-density
configuration. This is not possible to achieve with a two-point
correlation function; we must proceed to higher order and
consider three-point correlation functions. This will permit us
to favor particular relative angles between nearest-neighbor
atoms in order to produce crystal structures of interest,
particularly those of nonmetals.

B. Three-point correlations

Three-point correlations in the model are described by
the excess energy in Eq. (4). This term is computationally
expensive compared to the two-point excess term of Eq. (3). By
use of the convolution theorem the two-point correlation can be
computed by transforming to reciprocal space and multiplying
pointwise. The computational complexity is therefore on the
order of O(N log N ), the complexity of the fast Fourier
transform (where N is the total number of grid points
in the system). There is no such reduction in complexity
available for Eq. (4) to our knowledge. By comparison, it
requires a prohibitive O(N3) number of calculations, making
it impractical for most purposes.

To remedy this problem we propose to separate C3(r −
r′,r − r

′′
) in the following manner:

C3(r − r′,r − r′′) =
∑

i

C(i)
s (r − r′)C(i)

s (r − r′′), (9)

where C(i)
s will be defined below. While this separation limits

the possible forms of C3, it is sufficiently flexible to produce a
wide variety of crystal structures, including the ones previously
modeled by XPFC and similar 2D models. When Eq. (9) is
inserted into Eq. (4), we obtain

Fex,3 =−1

3

∫
n(r)

∑
i

( ∫
C(i)

s (r − r′)n(r′)dr′
)2

dr. (10)

Details on how to approach this term computationally will
be discussed below. Here it should be apparent that reducing

the integration over r′ and r′′ to one just over r′ considerably
reduces the computational complexity of the three-point term.

We next define the C(i)
s functions. We work in polar

coordinates and separate r into r and θ according to

C(1)
s (r,θ ) = Cr (r)C(1)

θ (θ ) = Cr (r) cos(mθ ), (11)

C(2)
s (r,θ ) = Cr (r)C(2)

θ (θ ) = Cr (r) sin(mθ ), (12)

Cr (r) = X

2πa0
δ(r − a0), (13)

where X is a parameter defining the strength of the interaction,
a0 corresponds to the lattice spacing, and m defines bond order
(discussed below) of the crystal phase.

It may appear as though Eqs. (11) and (12) break the
isotropy of the free energy, but in fact they do not. While each
term in the sum over i in Eq. (10) exhibits angular dependence,
the total sum is rotationally invariant. To see this, consider the
sum in Eq. (10) and expand the square. This gives

∑
i

( ∫
C(i)

s (r − r′)C(i)
s (r − r′′)n(r′)n(r′′)dr′ dr′′

)
. (14)

Defining r1 ≡ r − r′,r2 ≡ r − r′′ and pulling the sum inside
the integral gives∫ ( ∑

i

C(i)
s (r1)C(i)

s (r2)

)
n(r − r1)n(r − r2)dr1 dr2. (15)

Considering the sum in the parentheses, changing to polar
coordinates ri → (ri,θi) gives

∑
i

C(i)
s (r1)C(i)

s (r2) =
∑

i

C(i)
s (r1,θ1)C(i)

s (r2,θ2) (16)

= Cr (r1)Cr (r2)
∑

i

C
(i)
θ (θ1)C(i)

θ (θ2). (17)

Inserting C
(i)
θ from Eqs. (11) and (12) yields

∑
i

C(i)
s (r1)C(i)

s (r2) = Cr (r1)Cr (r2){cos(mθ1) cos(mθ2)

+ sin(mθ1) sin(mθ2)}. (18)

Finally, noting the identity

cos(θ1) cos(θ2) + sin(θ1) sin(θ2) = cos(θ2 − θ1) (19)

gives

∑
i

C(i)
s (r1)C(i)

s (r2)=Cr (r1)Cr (r2) cos[m(θ2 − θ1)]. (20)

Since Eq. (20) depends only on the difference θ2 − θ1,
the free energy remains isotropic. Moreover, by selecting
the appropriate values for m we can favor certain crystal
bond angles over others. For example, m = 6 favors sixfold
triangular crystals, m = 4 favors fourfold square crystals, and
m = 3 favors threefold graphene crystals.

It will be useful below to have the Fourier transforms of
C(i)

s (r,θ ). Starting with C(1)
s (r,θ ), we rewrite it as a multipole
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expansion,

C(1)
s (r,θ ) = X

2πa0
δ(r − a0)

eimθ + e−imθ

2
, (21)

which transforms as

Ĉ(1)
s (k,θk) = X

imeimθkJm(ka0) + i−me−imθk J−m(ka0)

2
(22)

= Xim
eimθk + e−imθk

2
Jm(ka0) (23)

= Xim cos(mθk)Jm(ka0), (24)

where (k,θk) are the polar coordinates in Fourier space. In
Eq. (23) we have used the fact that J−m(r) = (−1)mJm(r).
Proceeding similarly for C(2)

s (r,θ ) gives

Ĉ(2)
s (k,θk) = Xim sin(mθk)Jm(ka0). (25)

III. EQUILIBRIUM PROPERTIES OF THE MODEL

This section derives the equilibrium properties of our
structural PFC model defined by Eqs. (1)–(3) and (10) with
Eqs. (11)–(13). In particular, we construct phase diagrams
describing solid-disorder coexistence for the case of three
crystal systems: graphene, triangular, and square.

To describe the equilibrium properties of the model, we can
expand the density of a crystal structure in a Fourier series:

n(r) =
∑

q

φqe
iq·r, (26)

where q are the reciprocal lattice vectors of the crystal
structure. The vectors q can be grouped according to their
magnitude; these groups are collectively referred to as modes,
which are indexed by the integer k. The vectors within a mode
are indexed by j , and the notation qk,j is used to refer to a
vector j of mode k. To simplify the equilibrium analysis, we
assume that all amplitudes φq of a given mode are equal and
real, i.e., φqk,j

= φk ∀ j (see Fig. 3).
With these changes our expansion becomes

n(r) ≈
N∑

k=0

φk

( ∑
j

eiqk,j ·r
)

, (27)

where we have truncated the expansion to N modes.

φ0

φ1

φ2

φ3

φ4

FIG. 3. Organization of amplitudes according to modes. Dots
represent reciprocal lattice vectors, and circles connect vectors of
equal magnitude, i.e., in the same mode.
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Triangular

φ0
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FIG. 4. Triangular-disorder phase diagram using only two-point
correlations (X = 0).

To determine equilibrium properties of the model we use
an approach well documented in numerous other PFC papers
[22]. We begin by inserting Eq. (27) into the ideal and
excess free energies and integrating over a unit cell. Since
φk are constants, the integration removes the dependency on
r, leaving a free energy dependent on the amplitudes φk and
the model parameters (R and X). The constant φ0 corresponds
to the average system density, while φk,k > 0 comprise a set
of order parameters for the crystal phase. Minimizing the free
energy numerically with respect to φk determines the phase
and free energy of the system for a given {φ0,R,X}. When all
φk = 0 the system is in the disordered state. For nonzero φk

the system is in a crystal state. Mapping out the convex hull
of the free energy as a function of φ0 gives a common tangent
line that defines coexistence values of φ0 corresponding to the
solid and disordered phases.

A. Triangular-disorder coexistence

Using the above procedure with a five-mode expansion
for a 2D triangular phase, we produce a phase diagram for
triangular-disorder coexistence. As noted above, the rejection
term R is sufficient to produce a triangular phase without the
need for three-point correlations. Figure 4 shows the phase
diagram in {φ0,R} space obtained by setting X = 0.

With R fixed, we can also produce a triangular-disorder
phase diagram in {φ0,X} space. Setting the three-point
correlation function to produce sixfold symmetry (m = 6),
Fig. 5 shows such a phase diagram with R = 6.

B. Square-disorder coexistence

To simulate square phases we require both two- and three-
point correlation functions in the free energy. To calculate
the phase diagram for square-disorder coexistence, we use a
five-mode density expansion to describe the square phase and
set m = 4. Figure 6 shows a square-disorder phase diagram
constructed with R = 5.

C. Graphene-disorder coexistence

The graphene crystal structure can be described using a
triangular lattice with a two-atom basis. The primitive vectors
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Disordered

Triangular

φ0

X−1

FIG. 5. Triangular-disorder phase diagram using two- and three-
point correlations, with m = 6 and R = 6. Here r0/a0 = 0.70785.

of the triangular lattice are (in terms of the coordinate vectors
x and y)

a0 =
√

3x, a1 =
√

3

2
x + 3

2
y, (28)

while the basis atoms are located at

d0 = −
√

3

2
x − 1

2
y, d1 = −

√
3

2
x + 1

2
y. (29)

We must distinguish between graphene and triangular phases
on the basis of the amplitudes φk of the density expansion.
Assume we have a density expansion of a triangular phase nT

as in Eq. (27). From this we can construct a graphene density
field by

nG(r) =
∑

i

nT(r − di). (30)

This gives

nG(r) =
N∑

k=0

φT
k

( ∑
j

Sk,j e
iqk,j ·r

)
, (31)

Sk,j =
∑

i

e−iqk,j ·di , (32)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0.3

0.35

0.4

0.45

Disordered

Square

φ0

X−1

FIG. 6. Square-disorder phase diagram using two- and three-
point correlations with m = 4 and R = 5. Here r0/a0 = 0.81736.
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φ0
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FIG. 7. Graphene-disorder coexistence phase diagram, with
m = 3 and R = 6. Here r0/a0 = 1.2259.

where Sk,j are the structure factors for graphene. The basis
vectors in Eq. (29) have been selected such that the structure
factors are independent of j , so for our purposes Sk,j = Sk .
Computing the first four structure factors, we find

S0 = 2, S1 = −1, S2 = 2, S3 = −1. (33)

Note that some modes have negative structure factors. This
is in contrast to the structure factors of the triangular crystal
structure, which are all unity. We can thus distinguish between
the triangular and graphene phases by the signs of φk: when
φ1 < 0, we have a graphene phase, and where φ1 > 0, we have
a triangular phase.

The presence of these negative amplitudes for graphene
makes it difficult to stabilize graphenelike structures using
a two-point correlation function alone. This can be seen by
inserting the amplitude expansion for a triangular lattice into
the two-point correlation term in Eq. (3) and integrating over
a unit cell, giving

Fex,2 = −1

2

(
Ĉ2(q0)φ2

0 + 6Ĉ2(q1)φ2
1 + 6Ĉ2(q2)φ2

2 + · · · ).
(34)

Since all amplitudes in Eq. (34) are squared, the two-point
correlation function alone cannot break the symmetry between
positive and negative amplitudes, the latter of which are
required to stabilize graphene. Moreover, since the ideal free
energy is minimized by positive amplitudes, the triangular
phase results. The three-point correlation function, however,
results in terms of odd power which makes it possible to
minimize the free energy with negative amplitudes in order
to produce a graphene phase.

Using a five-mode triangular density expansion in the
free energy with m = 3 and applying the common tangent
construction yields a graphene-disorder coexistence phase
diagram in {φ0,X} space. Figure 7 shows such a phase diagram
for the case R = 6. As expected, it was found that φ1 < 0 for
the ordered region of the phase diagram.

IV. DYNAMICAL SIMULATIONS

In this section we demonstrate the dynamical stability of
the phase coexistence predicted by the phase diagrams of the
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previous section. We also demonstrate the robustness of our
model to simulate the nucleation, growth, and formation of
polycrystalline graphene, square, and triangular crystal phases
from a disordered phase. For the case of graphene, we also
demonstrate the formation of experimentally relevant defect
structures at grain boundaries.

The density n represents a conserved order parameter. As
a result, its evolution is described by model B dynamics for
conserved fields [38]. This gives

∂n

∂t
= Mn∇2

(
δF

δn

)
, (35)

where Mn is an effective mobility that sets the scale of the
diffusional dynamics of n. Equation (35) should also have a
noise source to subsume the role of thermal fluctuations. In
this work noise will be ignored.

To simulate Eq. (35), it is instructive to compile the various
terms in the variational δF/δn. The variational of the ideal term
is straightforward. The variational of the two-point excess term
in Eq. (3) becomes

δFex,2

δn
= −

∫
C2(r − r′)n(r′)dr′ ≡ −C2 ∗ n, (36)

where ∗ indicates convolution. Terms such as this may
be efficiently computed in reciprocal space by use of the
convolution theorem.

The three-point excess term of Eq. (10) is more complex.
For each term in the summation we expand the square,

F
(i)
ex,3[n] = −1

3

∫
C(i)

s (r − r′)C(i)
s (r − r′′)n(r)n(r′)n(r′′)

× dr′ dr′′ dr. (37)

We find the functional derivative using the well-known formula
[39]

F [n + δn] − F [n] ≡
∫

δn
δF

δn
dr. (38)

Applying this to Eq. (10) and discarding terms of order
O((δn)2), we are left with three terms,

F
(i)
ex,3[n + δn] − F

(i)
ex,3[n]

= −1

3

∫
C(i)

s (r − r′)C(i)
s (r − r′′)δn(r)n(r′)n(r′′)dr′ dr′′ dr

− 1

3

∫
C(i)

s (r − r′)C(i)
s (r − r′′)n(r)δn(r′)n(r′′)dr′ dr′′ dr

− 1

3

∫
C(i)

s (r − r′)C(i)
s (r − r′′)n(r)n(r′)δn(r′′)dr′ dr′′ dr.

(39)

Swapping r and r′ in the second term and r and r′′ in the third
gives

F
(i)
ex,3[n + δn] − F

(i)
ex,3[n]

= −1

3

∫
δn(r)

∫ [
C(i)

s (r − r′)C(i)
s (r − r′′)n(r′)n(r′′)

+C(i)
s (r′ − r)C(i)

s (r′ − r′′)n(r′)n(r′′)

+C(i)
s (r′′ − r′)C(i)

s (r′′ − r)n(r′)n(r′′)
]
dr′ dr′′ dr. (40)

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Density fields of (a) and (b) triangular, (c) and (d) square,
and (e) and (f) graphene growth, showing early (left) and late (right)
times during solidification. Systems are initialized with Gaussian
density fluctuations. For all three systems φ0 = 0.3, and values of
r0/a0 match those in Table I. For the triangular system, R = 7
and X = 0. For the square system, R = 6 and X−1 = 0.5. For the
graphene system, R = 6 and X−1 = 0.4.

Combining the last two terms (by swapping r′ and r′′ in the
third term) gives

F
(i)
ex,3[n + δn] − F

(i)
ex,3[n]

= −1

3

∫
δn(r)

∫ [
C(i)

s (r − r′)C(i)
s (r − r′′)n(r′)n(r′′)

+2C(i)
s (r′ − r)C(i)

s (r′ − r′′)n(r′)n(r′′)
]
dr′ dr′′ dr. (41)

Finally, it is noted from Eqs. (11) and (12) that C(i)
s (−r) =

(−1)mC(i)
s (r). This leads to

δF
(i)
ex,3

δn
= −1

3

{[
C(i)

s ∗ n]2 + 2(−1)mC(i)
s ∗ [

n · (C(i)
s ∗ n)

]}
.

(42)

The first term can be computed by performing the convolution
in reciprocal space and then returning to real space in order
to compute the square. The second term can be computed in
several steps: performing the inner convolution in reciprocal
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(a)

c d 

27° 

(b) (c)

FIG. 9. Comparison of simulated and experimentally determined
defect structures of polycrystalline graphene. The defect structure
of Fig. 8(f) is highlighted in (a). The grain boundary is resolved
by a line of 5–7 defect structures. These defect structures match
those found experimentally in polycrystalline graphene membranes
grown by chemical vapor deposition (CVD) [40]. (b) shows an atomic
resolution transmission electron microscope (TEM) image of one
such graphene membrane; the defect structure is highlighted in (c).
(b) and (c) reprinted by permission from Macmillan Publishers Ltd:
Nature [40], copyright 2011.

space, returning to real space for the multiplication by n, and,
finally, transforming to reciprocal space once again to compute
the outer convolution.

A. Polycrystalline 2D materials, defects, and coexistence

We simulate the growth of triangular, square, and graphene
phases by choosing parameters corresponding to the solid
region of the phase diagram and initializing the system with
Gaussian noise. The system subsequently solidifies into a
polycrystalline solid. Figure 8 shows early and late time frames
for the density of triangular, square, and graphene systems
under crystallization.

The defect structures which emerge along the graphene
grain boundaries are noteworthy. Closer inspection of grain
boundaries such as those in Fig. 8(f) reveals that where
misaligned grains impinge, the grain boundary is resolved
into a line of so-called 5–7 (pentagons and heptagons) defects.
These are highlighted in Fig. 9. These structures are in
excellent agreement with the structures seen experimentally

0 200 400 600 800 1,000 1,200 1,400

0.06

0.08

0.1

0.12

0.14

r

n

(b)

(a)

FIG. 10. Simulation of the coexistence between the ordered
and disordered phases of graphene. (a) Density field n(r) of the
equilibrium interface between phases. (b) Smoothed average density
along the longitudinal axis. X−1 = 0.5,R = 6. Average densities of
0.057 and 0.134 in the disordered and ordered phases, respectively,
match closely the theoretical values from the phase diagram in
Fig. 7.

in polycrystalline graphene [40]. As in these experimentally
determined structures, our simulated grain boundary consists
of an aperiodic line of 5–7 defects.

To demonstrate dynamic coexistence between the graphene
and disordered phases, a 2000 × 100 system with periodic
boundary conditions was seeded with a large initial slab of
graphene and allowed to reach equilibrium with the disordered
phase [Fig. 10(a)]. We set X−1 = 0.5 and R = 6. This
approach, where the slab extends through the system traverse
to the long dimension, negates the effects of curvature on
the equilibrium coexistence densities since the order-disorder
interface is a straight line. Figure 10(b) shows the smoothed
density across the interface in the longitudinal direction. It
can be seen that the equilibrium coexistence densities in the
ordered and disordered regions closely match those of the
phase diagram in Fig. 7.

V. CONCLUSIONS

This paper introduced the formalism of a structural PFC
theory that is truncated at three-point density correlations in
the excess free energy. This approach makes it possible to
simulate microstructural evolution in metallic and nonmetallic
materials, as well as their coexistence with a disordered phase.
Among the most important novel materials that can be studied
with our new formalism is polycrystalline graphene.

Our approach differs from previous ones in two major
ways. First of all, it treats two-point correlations more formally
through the use of hard-sphere-like interactions. As a result,
the crystallography of structurally more complex phases than
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2D triangular must be described in a unified way through
the rotationally invariant three-point correlation introduced
in this work. We showed that the form of our three-point
correlation is rotationally invariant and robust enough to
capture all crystal structures described through a single bond
angle.

After deriving the mathematical details of our new model,
we calculated its equilibrium properties. We then used dy-
namical simulations to illustrate the growth of polycrystalline
graphene and other solids and dynamical coexistence of
graphene with a disordered phase. We also compared the defect
structures generated at grain boundaries against corresponding
results from the experimental literature, finding excellent
agreement.

It is expected that the structural PFC formalism introduced
here is easily amenable to the recent formalism of Ref. [25],
whereby the addition of an additional long-wavelength inter-
action energy term can be used to bring the pressure P , X, and
φ0 axes simultaneously under control. Similarly, our model is
extendable to multiple components. These additions and their
subsequent applications will be presented in future papers.
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