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The phase-field-crystal (PFC) modeling paradigm is rapidly emerging as the model of choice when investigating
materials phenomena with atomistic scale effects over diffusive time scales. Recent variants of the PFC model,
so-called structural PFC (XPFC) models introduced by Greenwood et al., have further increased the capability
of the method by allowing for easy access to various structural transformations in pure materials [Greenwood,
Provatas, and Rottler, Phys. Rev. Lett. 105, 045702 (2010)] and binary alloys [Greenwood, Ofori-Opoku, Rottler,
and Provatas, Phys. Rev. B 84, 064104 (2011)]. We present an amplitude expansion of these XPFC models,
leading to a mesoscale complex order parameter, i.e., phase-field, model for two-dimensional square-triangular
structures. Amplitude models retain the salient atomic scale features of the underlying PFC models, while
resolving microstructures on mesoscales as traditional phase-field models. The applicability and capability of
these complex-order parameter models is demonstrated with simulations of peritectic solidification and grain
growth exhibiting the emergence of secondary phase structures.
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I. INTRODUCTION

Understanding complex phenomena during microstructural
and phase evolution in materials and condensed matter sys-
tems, particularly those associated with system elasticity and
plasticity, is at the heart of materials science research. In situ
investigation of these phenomena is difficult by experimental
means and our theoretical understanding of some of the under-
lying mechanisms at work is often incomplete, mainly due to
the nonequilibrium nature and multiple scales on which these
physical mechanisms operate. The design of engineering ma-
terials can thus benefit from tractable, yet fundamental, models
that capture the full spectrum of microstructural phenomena.

To date, the most successful microstructural modeling
approach has come from the use of phenomenologies that
have their origins in Ginzburg-Landau and Cahn-Hilliard
theories. These models intrinsically operate on the length and
time scales relevant to most microstructural processes, i.e.,
mesoscopic, where information from shorter time and length
scales is introduced through effective parameters. The most
popular approach is the phase-field (PF) method. This method,
notably, has seen great success in the area of solidification.1–7

Over the last decade, another class of phase-field models has
emerged, i.e., the phase-field-crystal (PFC) model.8,9 Unlike
its traditional counterpart, the PFC method is an atomic-scale
modeling formalism, operating on atomistic length scales
and diffusive time scales. The free energy of PFC models
is minimized by periodic fields. As such, the method self-
consistently incorporates elasticity, multiple crystal orienta-
tions and topological defects. It is rapidly becoming the
methodology of choice when investigating atomistic scale
effects over diffusive time scales. It has been formally shown,
by Elder and coworkers9 and Jin and Khachaturyan,10 that
PFC and PFC-type models, respectively, can be derived
from classical density functional theory (CDFT). The PFC
method has been successfully applied in the description of

solidification,11 spinodal decomposition,9 elastoplasticity,12

thin-film growth and island formation,13 crystal nucleation and
polymorphism,14,15 amorphous or glassy states,16,17 among
many others.

Most recently, an improved variant of the PFC model has
emerged that allows one to control complex crystal structures
and their equilibrium coexistence with bulk liquid, i.e., the
so-called structural PFC (XPFC) models. Greenwood et al.18,19

accomplished this by introducing a class of multipeaked, two-
point direct correlation functions in the free-energy functional
that contained some of the salient features of CDFT, yet were
simplified to be numerically efficient. This XPFC formalism
was later extended to binary20 and N -component21 alloying
systems and applied to phenomena such as dendritic and
eutectic solidification,21 elastic anisotropy,20 solute drag,22

quasicrystal formation,23 solute clustering and precipitation
mechanisms in Al-Cu24 and Al-Cu-Mg21,25 alloys, and 3D
stacking fault structures in fcc crystals.26

Coarse-graining approaches have recently shown that PFC-
type models can be used to derive the form of traditional PF
models, expressed, however, in the form of complex order
parameters, which makes it possible to simulate different
crystal orientations and defect structures on mesoscopic length
and time scales. These amplitude models, remarkably, retain
many salient atomistic level phenomena, making them prime
candidates for multiple scale modeling of microstructure
phenomena. Recent amplitude descriptions have been used to
describe anisotropic surface energy of crystal-melt interfaces
in pure materials and alloys,27–29 solidification of multiple
crystallites using an adaptive mesh,30 island and quantum
dot formation,13 segregation and alloy solidification,31,32 grain
boundary premelting,33,34 and lattice pinning effect on solid-
liquid interfaces.35 However, these, for the most part, have
involved pure materials or binary alloys where both elements
had the same crystal structure, with calculations based on
a single mode approximation of the system free-energy
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functional, i.e., the correlation function was approximated by
single peak function.

The purpose of this work is to apply a new coarse-graining
approach to the recent XPFC formalism. Recent studies in-
volving coarse-grained PFC models suggest that an amplitude
model capable of describing multiple crystal structures and
elastoplastic effects will be valuable in elucidating atomistic
scale interactions, material properties and dynamic processes
at the mesoscale, as well as motivating more consistent deriva-
tions of mesoscale continuum models, such as PF models.
Here, we present the amplitude expansion of the XPFC model
of the single component system used in Refs. 18 and 19, for
two-dimensional (2D) square-triangular structures. At the core
of our approach is a Fourier method applied to the excess part
of the free-energy functional, coupled to the volume-averaging
technique described in Refs. 28, 29, and 36. After derivation
of the corresponding coarse-grained free-energy functional,
we perform dynamic simulations illustrating solidification
and subsequent coarsening, peritectic growth, and solid-solid
interactions between different crystal structures.

The remainder of this paper is organized as follows. We
begin by reviewing the free-energy functional of the XPFC
model in Sec. II. Section III goes through the various steps
of generating a complex-amplitude free-energy functional,
including the construction of an appropriate density expansion,
then a brief remark on the volume-averaging technique and
finally the coarse graining of the XPFC free-energy functional.
The dynamics of the set of amplitude equations are discussed
in Sec. V, followed by numerical illustrations of the model in
Sec. VI.

II. FREE ENERGY FUNCTIONAL FROM CDFT

This section reviews the free-energy functional used in
Greenwood et al.18,19 Particularly, we highlight the excess term
in the free energy and examine its correlation kernel, which
plays a central role in obtaining different crystal structures
in the XPFC model. This is followed by a discussion of the
equilibrium properties of the model.

A. XPFC free-energy functional of a single component system

The free-energy functional for the XPFC model is derived
from the classical density functional theory of Ramakrishnan
and Yussouff,37 containing two contributions. The first is an
ideal energy that drives the system to constant homogenous
fields, e.g., liquid. The second contribution is an excess term in
particle interactions, truncated at the two-particle interaction,
which drives the system to be minimized by periodic fields, i.e.,
solid. In dimensionless form, the resulting XPFC free-energy
functional can be written as18,19

F

kBTρo

=
∫

dr
(

Fid

kBTρo

+ Fex

kBTρo

)
, (1)

where

Fid

kBTρo

= n2

2
− η

n3

6
+ χ

n4

12
,

(2)
Fex

kBTρo

= −n

2

∫
dr′C2(|r − r′|)n(r′).

Here, n is the dimensionless number density, kB is the
Boltzmann constant, T is the temperature, and ρo is a
reference liquid density of the system. η and χ are constants,
formally equal to unity, however, as discussed in Ref. 19,
deviations from unity allow for better mapping to thermo-
dynamic parameters, and can physically be motivated from
the contributions of the k = 0 component of higher-order
particle correlation functions.38 Finally, C2(|r − r′|) is the
direct two-point correlation function at the reference density
ρo. The construction of the XPFC correlation function is what
differentiates the XPFC from other PFC variants. We briefly
review this next.

B. Correlation function, C2(|r − r′|)
The correlation kernel for the XPFC model is constructed

in Fourier space, since real space convolutions are simply
multiplicative in Fourier space. This also makes the XPFC
formalism better equipped for simulations using spectral
methods. The correlation function C2(|r − r′|) defined at the
reference density ρo, is denoted as Ĉ2(|k|) in Fourier space. A
reciprocal space peak of Ĉ2(|k|),19 for a given mode, j , i.e., a
peak corresponding to a family of planes of a desired crystal
structure, is denoted by

Ĉ2j = e
− σ2k2

j

ρj βj e
− (k−kj )2

2α2
j . (3)

The first exponential in Eq. (3) sets the temperature scale via a
Debye-Waller prefactor that employs an effective temperature
parameter, σ . ρj and βj represent the planar and atomic
densities, respectively, associated with the family of planes
corresponding to mode j . These parameters are formally prop-
erties of the crystal structure, but can be exploited as constants
for convenience.20,21 The second exponential sets the spectral
peak position at kj , where kj is the inverse of the interplanar
spacing for the j th family of planes in the unit cell of the
crystal structure. Unlike spectral Bragg peaks resulting from
diffraction experiments for single crystals, here, each peak is
represented by a Gaussian function, with αj being the width of
peak j . The {αj } have been shown in Ref. 19 to set the elastic
and surface energies and their anisotropic properties. Including
only those peaks of the most dominant family of planes, the
total correlation function for the crystal structure of interest,
Ĉ2, is then defined by the numerical envelope of all peaks Ĉ2j .

Finally, a comment about the k = 0 mode of the correlation
function. This mode is the infinite wavelength mode and
sets the bulk compressibilities of the system. For simplicity,
in Refs. 18,19, the value of the k = 0 was set to zero. A
nonzero amplitude at k = 0, however, merely shifts the local
free energy at densities away from the reference density (ρo),
thereby causing a compression of the phase diagram about the
reference density.19 This, however, does not alter the stability
of the equilibrium crystal structure, since the correlation kernel
is constructed about the reference density. It is noteworthy that
in addition to setting some bulk properties of the system, the
k = 0 will also have an effect on surfaces separating bulk
phases, e.g., surface energy. In the following, our coarse-
graining procedure is done in a general manner that considers
a nonzero k = 0 mode, admitting another degree of freedom
in mapping to thermodynamic properties of the XPFC model.
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C. Equilibrium properties

The free energy of Eq. (1) can be shown to yield coexistence
of varying crystal structures in equilibrium with liquid.18,19 In
2D, square-liquid and triangle-liquid phases have been studied.
In three dimensions (3D), face-centered cubic (fcc) and liquid,
hexagonal-close packed (hcp) and liquid, and body-centered
cubic (bcc) and liquid phases have been demonstrated with
single and two-peaked kernels. Furthermore, the free energy
of Eq. (1) can also yield peritectic systems in both 2D and 3D,
where multiple solid phases can coexist with liquid. These
peritectic systems are comprised of square-triangle-liquid and
fcc-bcc-liquid in 2D and 3D, respectively.

Figure 1 shows a sample phase diagram resulting from
minimization of the free energy in Eq. (1), here for 2D
structures. The phase diagram is a result of an input correlation
kernel corresponding to a square crystal structure. To stabilize
a square crystal structure, the correlation function requires
two peaks, k10 and k11, corresponding to the first two primary
families of planes for a square crystal structure. We choose
k10 = 2π and k11 = 2π

√
2 and set ρ10 = 1, β10 = 1, α10 = 1

and ρ11 = 4, β11 = 4, α11 = 1. To stabilize the triangular
structure, a single primary peak is sufficient, since additional
peaks have a negligible effect on the total energy.19 We
rescale the position of that peak to be commensurate with the
k10 peak of the square. In doing so, the two-peaked square
correlation function can simultaneously permit square and
triangular structures, where the structure with the minimum
energy can be parameterized by the average density no and
temperature parameter σ . After rescaling, the emergent crystal
structures will have dimensionless lattice spacings of asq = 1
and atri = 2/

√
3, respectively. To construct a phase diagram,

a density mode approximation is introduced for each of the
crystal structures of interest, inserted into the free energy
and after following standard minimization techniques (see
Appendix of Ref. 20), the phase diagram shown in Fig. 1
is attained.

In calculating the phase diagram, the parameters were
chosen to represent a generic peritectic system and not a

FIG. 1. Phase diagram resulting from the minimization of the
free energy of Eq. (1) for 2D structures expanded in a two-mode
approximation. Parameters are k10 = 2π and k11 = 2π

√
2, ρ10 = 1,

β10 = 4, α10 = 1, and ρ11 = 1/
√

2, β11 = 4, α11 = 1. The emergent
square and triangle structures have dimensionless lattice spacings of
asq = 1 and atri = 2/

√
3, respectively.

specific material. However, extensions of the XPFC method to
binary and ternary systems20,21,24,25 have been successfully
mapped to some materials systems and give reasonable
agreement to experimental phase diagrams (e.g., Fe-Ni, Al-
Cu). Next, we shall use the 2D system just discussed to con-
struct a complex order-parameter model via a coarse-graining
technique.

III. COMPLEX ORDER-PARAMETER MODEL:
2D SQUARE-TRIANGLE STRUCTURES

Recently, numerous works have been published that per-
form amplitude expansions, particularly of PFC-type models.
The main approaches that have been used are the multiple
scale analysis,31,35,38,39 volume-averaging method,28,29,36 and
the renomarlization group (RG) approach,30,40–42 with the
multiple scale method being the most widely applied across
disciplines. Older works where these expansions have been
performed directly on CDFT models, like the work of Haymet
and Oxtoby43,44 and Lakshmi et al.45 fall under the volume-
averaging method. Others still, e.g., Kubstrup et al.,46 fall
under the multiple scale analysis. The central theme in all these
techniques is that the density can be separated into so-called
“fast” length scales, where the density oscillates rapidly, and
“slow” length scales, where the amplitudes of the oscillations
vary slowly with respect to the rapidly varying oscillation of
the density. Beyond this, each method has its own additional
underlying assumptions and approximations.

A noteworthy consideration is the validity or accuracy of
the various methods in arriving at the same self-consistent
system of equations. Namely, the multiple scale analysis and
RG methods operate on the PFC equations of motion, after
which the coarse-grained free-energy functional is derived.
The volume-averaging method can operate on both the PFC
free-energy functional and the dynamical equations, however,
it has been implemented for the most part at the energy
functional level of the PFC or CDFT free-energy functionals.
A point of criticism against the volume-averaging method has
been the lack of a covariant gradient operator47 in the amplitude
equations. However, this problem can be circumvented by
expanding to higher order in the amplitude expansion. In
previous implementations, only a second-order expansion
was taken of the “slow” variables (i.e., the amplitudes).28,29

While to second order, surface energy calculations can be
performed quite quantitatively, dynamic simulations become
fixed to certain orientations. It has been shown48 that an
expansion of amplitudes appearing in the excess term to at
least fourth order is necessary in order to recover the lowest-
order covariant gradient operator in the volume-averaging
approach.

This work will use the volume-averaging technique to
perform calculations, in conjunction with a novel method to
handle the excess term in the PFC free-energy functional.
To begin, we first discuss the separation of scales via an
expansion of the density that describes two crystal lattices.
After discussing the density expansion, we briefly outline the
basic features of the volume-averaging method. As the method
has been published elsewhere, the outline given will highlight
the important concepts of the method, after which it is applied
to the ideal portion of the free energy. Finally, we introduce

104106-3



OFORI-OPOKU, STOLLE, HUANG, AND PROVATAS PHYSICAL REVIEW B 88, 104106 (2013)

the method of handling the excess term, which completes the
amplitude derivation for the 2D XPFC model.

A. Density expansion in two lattices

Kubstrup et al.46 in a study of pinning effects between
fronts of hexagonal (i.e., triangular) and square phases, have
proposed a construction through which variable phases can
be described by a single density expansion definition. This
density expansion, for the XPFC model, can be written as

n(r) = no(r) +
6∑
j

Aj (r)eikj ·r +
6∑
m

Bm(r)eiqm·r + c.c., (4)

where no(r) is the dimensionless average density and is a
“slow” variable, “c.c.” denotes the complex conjugate, and
{Aj } represent the amplitudes describing the first mode of
our structures, while all {Bm} represent the amplitudes for
the second mode. Like the dimensionless average density, the
amplitudes are also “slow” variables.

Note that only the first mode {kj } was considered by
Kubstrup et al.46 in the study of pattern formation, while
in Eq. (4) we have included both the zeroth mode no (as
a result of density conservation) and also the second mode
{qm}, which is needed for stabilizing the square structure in
the XPFC formalism. The density expansion we construct can
be schematically inferred from Fig. 2. Figure 2 represents
the reciprocal lattice vectors that enter the density expansion
in Eq. (4) and comprises two interlaced triangular structures
misoriented by 30◦, i.e., vectors k1,k2,k3 and k4,k5,k6 each
forming a triangular lattice, respectively. It will be useful in

FIG. 2. (Color online) Schematic representation of misoriented
by 30◦ vector sets {k1,k2,k3} and {k4,k5,k6}, respectively, which
form a resonant set and compromise two triangular lattices. Vectors
ki and ki+3 (i = 1,2,3) are orthogonal to each other, forming the
first mode of the square correlation kernel. The other set of vectors,
{qm}, correspond to different orientations of the second mode of
the correlation kernel necessary to stabilize the square structure
in the XPFC formalism and are formed from a linear combination
of the orthogonal pairs from the two triangular sets.

what follows that the property of resonance is satisfied by
these two vector sets. Resonance between density waves is
satisfied when k1 + k2 + k3 = 0 and k4 + k5 + k6 = 0. The
square structure can be partly constructed from combinations
of the reciprocal lattice vectors of the two triangular sets.
For example, k1 and k4 (which are orthogonal, i.e., k1 ·
k4 = 0) represent the first mode of a square lattice, while
the second mode of the square can be constructed from a
linear combination, such as q1 = k1 + k4 and q4 = k1 − k4.
Analogous associations can be made for the second and third
set of square lattices which arise from the two interlaced
triangular lattices. In total, the density expansion for a system
described by the vectors of Fig. 2 amount to 12 vectors and
therefore 12 complex amplitudes.

The expansion described by Eq. (4) and the vectors of
Fig. 2, corresponding to one of the 12 amplitudes proves to
be tedious and cumbersome to deal with. A simpler, more
intuitive expansion is also proposed here as a comparison.
This is illustrated by the reciprocal lattice vectors of Fig. 3.
Unlike the previous expansion, this expansion requires six
vectors and hence six amplitudes. At first glance, there seems
to be a limited number of degrees of freedom afforded to us by
an expansion of this kind, in particular the preset orientation
of the square structure that is constrained to the {k1,k4}
direction. This and other nuances that may exist between
the two expansions may be ascertained through numerical
simulations. For convenience, we will be using this latter
expansion in our derivation to follow. In Appendix B, we
also report the complex-amplitude model derived from the 12
amplitude expansion described by Eq. (4). The simpler density
expansion based on the vectors of Fig. 3 is written as

n(r) = no(r) +
4∑
j

Aj (r)eikj ·r +
2∑
m

Bm(r)eiqm·r + c.c. (5)

FIG. 3. (Color online) Second schematic representation of the
reciprocal set of basis vectors that comprise a density simultaneously
describing crystals with square and triangular symmetry, respectively.
Vectors k1,k2,k3 form a resonant set and compromise a single
triangular lattice. Vectors k1 and k4 are orthogonal forming the first
mode of the square correlation kernel. The other set of vectors, {qm}
dashed-dotted, comprise the second mode of the square correlation
kernel.

104106-4



COMPLEX ORDER PARAMETER PHASE-FIELD MODELS . . . PHYSICAL REVIEW B 88, 104106 (2013)

B. Volume-averaging technique for coarse graining

As mentioned in the previous section, the amplitudes {Aj }
and {Bm} along with the dimensionless average density no

are all slowly varying on atomic scales. After inserting the
density expansion of Eq. (5) into the XPFC free-energy terms
of Eq. (2), to lowest order, the terms that will survive in
the coarse-graining procedure are those where the oscillating
exponential phase factors vanish. In particular, under coarse
graining, the free energy effectively becomes a series of terms
with “slow” variables multiplying phase factors of the form
ei	Ql ·r, where 	Ql are sums or differences in the reciprocal
lattice vectors. As in all coarse-graining approaches, the
lowest-order approximation, i.e., so-called “quick and dirty”
approach,40 amounts to the situation where the only surviving
coarse-grained terms result from all 	Ql ≡ 0, i.e., where a
resonant condition is satisfied. This is the standard condition
from the symmetry requirement of translational invariance of
the total free energy.49

Formally, coarse graining can be done by the volume-
averaging method using a convolution operator,28 which can
be defined by

〈f (r)〉V ≡
∫ ∞

−∞
dr′f (r′)ξV (r − r′), (6)

where f (r′) is the function being coarse grained, for our
purposes, collections of “slow” variables or “slow” variables
multiplied by phase factors and V is the coarse-graining
volume, i.e., typically the volume of a unit cell. The function
ξV in the integrand of Eq. (6) is a smoothing function that is
normalized to unity, i.e.,

∫ ∞

−∞
dr ξV (r − r′) ≡ 1. (7)

In the long-wavelength limit, Lslow 	 L 	 a where L ∼
V 1/d , in d dimensions, where Lslow is the length scale of
variation of the “slow” variables (i.e., microstructural fea-
tures), and a is the equilibrium lattice spacing. This condition
implies that the function ξV (r) varies on dimensions much
larger than the lattice constant, e.g., a = 2π/|kj |, but is sharp
on the length scale of variation of the average density and
amplitudes. Equation (6) is formally applied by changing the
dependent variable in the free-energy functional from r to r′,
multiplying the resulting free energy by the left-hand side of
Eq. (7) (i.e., 1) and inverting the order of integration, thus
arriving at a series of terms of the form of Eq. (6). Equation
(6) defines a noninvertible limiting procedure that can be used
to average a function over some volume. The reader is referred
to Refs. 21, 28, and 36 for greater detail about the application
of the volume-averaging convolution operator.

C. Coarse graining the ideal term

Inserting the density expansion of Eq. (5) into the ideal
portion of the free energy Fid and coarse graining, as described
in the preceding section, yields to the lowest order in the

average density and amplitudes,

F
cg
id

kBTρoV
=

∫
dr

{
n2

o

2
− η

n3
o

6
+ χ

n4
o

12
+ (

1 − η no + χ n2
o

)

×
(

4∑
j

|Aj |2 +
2∑
m

|Bm|2
)

− (η − 2χno)

× [A1A2A3 + A∗
1A

∗
4B1 + A1A

∗
4B

∗
2 + c.c.]

+ χ

2

[
4∑
j

A2
j (A∗

j )2 +
2∑
m

B2
m(B∗

m)2

]

+ 2χ

[(
4∑
j

4∑
m>j

|Aj |2|Am|2

+
4∑
j

2∑
m

|Aj |2|Bm|2 + |B1|2|B2|2
)]

+χ
[
2A∗

2A
∗
3A

∗
4B

∗
2 + 2A∗

2A
∗
3A4B

∗
1 + A2

1B
∗
1 B∗

2

+A2
4B

∗
1 B2 + c.c.

]}
, (8)

where ∗ denotes the complex conjugate and in the coarse-
grained free energy the spatial variable, r, is scaled by the
lattice constant a. As alluded to earlier, the correlation-
containing excess term has received some attention in the
coarse graining of PFC models. In the following section, we
introduce a general Fourier method to coarse grain this term
in the context of the present XPFC model.

D. Coarse graining the excess term

We first rewrite the correlation kernel in its Fourier series
representation, i.e.,

C2(|r − r′|) =
∫

dk Ĉ2(|k|) eik·r e−ik·r′
. (9)

The convolution term, the integral over dr′, in the free energy
involving the excess term then becomes

G =
∫

dr′C2(|r − r′|)n(r′)

=
∫

dr′
∫

dk Ĉ2(|k|)eik·r e−ik·r′
n(r′). (10)

Next, we take the Taylor series expansion of the correlation
function around k = 0, i.e., the infinite wavelength mode of the
correlation, to all orders.50 This expansion can be compactly
written as

Ĉ2(|k|) =
∞∑
l=0

1

l!
(k)l

∂ lĈ2

∂kl

∣∣∣∣
k=0

. (11)

This functional Taylor series expansion is formally exact, as it
goes to all orders. Substituting the density expansion (5) into
the convolution term of the free energy and employing the
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definition of the Fourier transform yields

G =
∫

dk
∞∑
l=0

ϑl(k)l n̂o(k)eik·r

+
∫

dk
∞∑
l=0

ϑl(k)l
4∑
j

Âj (k − kj )eik·r

+
∫

dk
∞∑
l=0

ϑl(k)l
2∑
m

B̂m(k − qm)eik·r + c.c. (12)

where we have made the following definition,

ϑl = 1

l!

∂lĈ2

∂kl

∣∣∣∣
k=0

, (13)

and n̂o, Âj , and B̂m are the corresponding Fourier components
of the average density and amplitudes, respectively. Next, we
resum the correlation function for the average density part
of the convolution term in Eq. (12), and make consecutive
changes of variables, i.e., k′ = k − kj and then k′ = k − qm,
for the second and third terms of Eq. (12), respectively.
Following these steps, we arrive at

G = [Ĉ2(|k|)n̂o(k)]r

+
4∑
j

∫
dk′

∞∑
l=0

ϑl(k′ + kj )l Âj (k′)eik′ ·reikj ·r

+
2∑
m

∫
dk′

∞∑
l=0

ϑl(k′ + qm)l B̂m(k′)eik′ ·reiqm·r

+ c.c. (14)

where []r represents an inverse Fourier transform. Applying
the definition of the Fourier transform to the second and third
terms on the right-hand side (RHS) of Eq. (14) yields

G = [Ĉ2(|k|)n̂o(k)]r +
4∑
j

eikj ·r[Ĉ2(|k + kj |)Âj (k)]r

+
2∑
m

eiqm·r[Ĉ2(|k + qm|)B̂m(k)]r + c.c. (15)

Equation (15) represents the total convolution term of the
excess free energy.

To complete the coarse graining of the excess term,
we multiply the convolution term in Eq. (15) by the
expansion of the density field, i.e., nG, and apply the
convolution operator in Eq. (6), to obtain the lowest-order
result:

F
cg
ex

kBTρoV
=

∫
dr

{
− no

2
[ξ̂V (k)Ĉ2(|k|)n̂o(k)]r

− 1

2

4∑
j

A∗
j [Ĉ2(|k + kj |)Âj (k)]r

− 1

2

2∑
m

B∗
m[Ĉ2(|k + qm|)B̂m(k)]r + c.c.

}
, (16)

where ξ̂V is the convolution operator in Fourier space, which
filters out Ĉ2 oscillations beyond its k = 0 peak with some
decay range in Fourier space. The explicit derivation of this
term is discussed in Sec. IV.

Several things are worth noting about Eq. (16). It becomes
evident that the rotational invariance nature of a system,
afforded through the covariant gradient operator in real space,
is manifested here in the correlation kernel, which has as
input a shifted wave number for the respective modes being
considered. This shifted wave-number samples low-k value
deviations (long-wavelength limit) around the peaks of the
original correlation function. This essentially treats each
reciprocal space peak of the original correlation kernel as a
corresponding effective “k = 0” mode. Like the microscopic
XPFC model, the full correlation kernel, in this ampli-
tude formalism, is the numerical envelope of all reciprocal
space peaks included to represent the crystal structure of
interest.

Combining Eqs. (8) and (16), we arrive at a complete
coarse-grained free energy for the structural PFC model of
the form

F cg =
∫

dr

{
n2

o

2
− η

n3
o

6
+ χ

n4
o

12
+ (

1 − η no + χ n2
o

)(
4∑
j

|Aj |2 +
2∑
m

|Bm|2
)

− (η − 2χno) [A1A2A3 + A∗
1A

∗
4B1

+A1A
∗
4B

∗
2 + c.c.] + χ

2

[
4∑
j

A2
j (A∗

j )2 +
2∑
m

B2
m(B∗

m)2

]
+ 2χ

[(
4∑
j

4∑
m>j

|Aj |2|Am|2

+
4∑
j

2∑
m

|Aj |2|Bm|2 + |B1|2|B2|2
)]

+ χ
[
2A∗

2A
∗
3A

∗
4B

∗
2 + 2A∗

2A
∗
3A4B

∗
1 + A2

1B
∗
1 B∗

2 + A2
4B

∗
1 B2 + c.c.

]

− no

2
[ξ̂V (k)Ĉ2(|k|)n̂o(k)]r − 1

2

4∑
j

A∗
j [Ĉ2(|k + kj |)Âj (k)]r − 1

2

4∑
j

Aj [Ĉ2(|k − kj |)Âj (−k)]r

− 1

2

2∑
m

B∗
m[Ĉ2(|k + qm|)B̂m(k)]r − 1

2

2∑
m

Bm[Ĉ2(|k − qm|)B̂m(−k)]r

}
. (17)
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E. Recovering the amplitude representations
of other PFC models

Our Fourier method from the above section can also be
used to recover the covariant description found in amplitude
expansions of other PFC models. Here, we consider an
expansion of the correlation around k = 0, in powers of k2,
similar to the standard PFC model of Elder and co-workers8,51

but generalized to all orders. This can be compactly written as

Ĉ2(|k|) =
∞∑
l=0

1

l!
(k2)l

∂ lĈ2

∂(k2)l

∣∣∣∣
k=0

. (18)

We note that this expansion can be generally valid provided
the correlation is some well-behaved function and expressible
to reasonable accuracy in even powers of k. This is true for
most correlations derived from experiments or first principle
calculations or those that can be fit to such techniques. An
appropriate example is the eighth-order fitting of Jaatinen and
Ala-Nissila,52 which was found to be an accurate and efficient
approximation to CDFT. Applying the same arguments leading
up to Eq. (12) gives

G =
∫

dk
∞∑
l=0

εl(k2)l n̂o(k)eik·r

+
∫

dk
∞∑
l=0

εl(k2)l
4∑
j

Âj (k − kj )eik·r

+
∫

dk
∞∑
l=0

εl(k2)l
2∑
m

B̂m(k − qm)eik·r + c.c., (19)

where we have made the following definition,

εl = 1

l!

∂lĈ2

∂(k2)l

∣∣∣∣
k=0

. (20)

Using the definition of the Fourier transform on the RHS of
Eq. (19) leads to

G =
∞∑
l=0

εl (−∇2)l no(r) +
∞∑
l=0

εl (−∇2)l
4∑
j

Aj (r)eikj ·r

+
∞∑
l=0

εl (−∇2)l
2∑
m

Bm(r)eiqm·r + c.c. (21)

Noting that ∇2 → ∇2 + 2ikj · ∇ − k2
j (the covariant gradient

operator), when Laplacian operators act on terms of the form
Aj (r)eikj ·r, Eq. (21) becomes

G =
∞∑
l=0

εl(−∇2)l no(r)

+
4∑
j

eikj ·r
∞∑
l=0

εl

[ − (∇2 + 2ikj · ∇ − k2
j

)]l
Aj (r)

+
2∑
m

eiqm·r
∞∑
l=0

εl

[ − (∇2 + 2iqm · ∇ − q2
m

)]l
Bm(r)

+ c.c. (22)

Equations (21) and (22) show that an infinite set of covariant
gradient operators (in the long-wavelength limit) is needed
to accurately capture the salient features, in real space, of
the XPFC correlation kernel constructed in Fourier space,
reflecting that the latter would require an infinite series of
square gradient terms to be represented in a traditional PFC
form. If we neglect all second-mode contributions and truncate
the series at l = 2 in Eq. (22), we recover the amplitude
expansion of the standard PFC model,31 after the usual
application of the coarse-graining operation. To make contact
with the generalized formalism of the previous section, the
amplitude terms are rewritten in terms of an inverse Fourier
transform via a change of variable, and in Fourier space the
resulting correlation kernel expansion is resummed, resulting
in the same coarse-grained free energy form as Eq. (16).

IV. PERIODIC INSTABILITY ARISING FROM THE
AVERAGE DENSITY

It turns out that the use of the “quick and dirty” or
multiple scale method to coarse grain the standard PFC model
leads to a term of the form no(1 + ∇2)2no,38,39 which can
become unstable to periodic oscillations in the average density,
essentially mimicking oscillations of the original density field,
n, particularly around sharp solid-liquid interfaces. Often, a
second long-wavelength approximation is made to suppress
the ∇2 terms responsible for the instability.39 In our approach,
this instability is self-consistently eliminated through the
convolution operator. We qualify this statement by showing
the explicit steps required to coarse grain the average density
term in Eq. (15).

We start with the form of the correlation contribution of
the average density term prior to introducing the volume-
averaging kernel of Eq. (7). From Eq. (15), we have

H = −1

2

∫
dr′ no(r′)[Ĉ2(|k|)n̂o(k)]r′ . (23)

After inserting the volume-averaging kernel, we have

Hcg = −1

2

∫
dr′

∫
dr

[ ∫
dq ξ̂V (q) eiq·re−iq·r′

]

× no(r′)
∫

dk Ĉ2(|k|) n̂o(k)eik·r′
. (24)

Here, ξ̂V is the averaging (or convolution) kernel in Fourier
space, which restricts the wave number q to small values, i.e.,
q < 1/L, approximately the same as the first Brillouin zone
or similarly the first peak of the correlation function. Note that
the average density variable, no(r′), is slowing varying, while
the multiplication of Ĉ2(|k|)n̂o(k) can lead to rapid oscillations
due to instabilities caused by the correlation kernel. On scales
of the rapidly oscillating term, it is reasonable to take an
expansion of no(r′), i.e., no(r′) → no(r), which allows us to
remove it from the integral over r′. Next, the noninvertible
procedure, described above, occurs by switching the order of
integration dr with dr′, after which we integrate the equation
with respect to r′ yielding

Hcg = −1

2

∫
dr no(r)

∫
dq ξ̂V (q)Ĉ2(|q|)n̂o(q)eiq·r

= −1

2

∫
dr no(r)[ξ̂V (k)Ĉ2(|k|)n̂o(k)]r, (25)
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where in the last line we have changed the wave-number
variable for convenience, i.e., q → k. Equation (25) clearly
demonstrates that all the small wavelength modes in the
original correlation function associated with the periodic
instability of no are suppressed by convolving with the
volume-averaging kernel. In other words, considering the
volume-averaging kernel as a filter (in this case, a low-pass
filter), it smooths or eliminates all the high-mode (small
wavelength) peaks resulting from the correlation function.
This effectively allows the system to only sample the long
wavelength information of the correlation function around
k = 0.

Equivalently, this can also be motivated from the mul-
tiple scale method of coarse graining. In that method, a
small parameter ε (see Refs. 13 and 38) is introduced in
a perturbation type expansion, which results in the wave
number being described by k → k + εK, where K repre-
sents the large wavelength modes. Considering the long-
wavelength behavior of the average density, this results in
the correlation function being evaluated at εK, i.e., Ĉ2(|εK|),
effectively shifting the modes sampled by the correlation
to only those around k = 0. It is worth noting that if one
simply applies the so-called “quick and dirty” approach,
of any of the coarse-graining methods when considering a

density jump, the average density term will not be coarse
grained, resulting in a term that still possesses the potential
for the small-scale oscillations of the original free-energy
functional.

V. DYNAMICS

Dynamics of the complex order-parameters comprising
the coarse-grained free energy follow the usual variational
principle of traditional phase-field models. Particularly, the av-
erage density no obeys conserved dissipative dynamics, while
the amplitudes Aj and Bm follow nonconserved dissipative
dynamics.53 Specifically, we have

∂no

∂t
= ∇ ·

(
Mno

∇ δF cg

δ no

)
+ ∇ · ζno

, (26)

∂Aj

∂t
= −MAj

δF cg

δ A∗
j

+ ζAj
, for all j (27)

and

∂Bm

∂t
= −MBm

δF cg

δ B∗
m

+ ζBm
, for all m. (28)

The reader is referred to Appendix A for the full set of explic-
itly written dynamic equations. The coefficients Mno

, MAj
, and

FIG. 4. (Color online) Solidification and coarsening images from a simulation run. The evolution of the system progresses in time from
left to right, i.e., t = 1 000, 5 000, 30 000, and 100 000. Top row corresponds to the average density of the grains. Large density values are
black and lower values in white. Second row represents the reconstructed atomic density of those areas marked in the top row. Probable atomic
regions are darker than less probable regions and uniform values represent liquid. Third row plots the magnitude of amplitude A1 and red
regions denote large magnitudes and blue low magnitudes.
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MBm
denote the mobility parameters of the average density and

each corresponding amplitude, respectively, and strictly speak-
ing can be functions of the various fields in the free-energy
functional. We have appended to these equations of motion,
the stochastic variables ζno

, ζAj
, and ζBm

, which model coarse-
grained thermal fluctuations acting on the average density and
amplitudes, respectively. Formally, they satisfy the fluctuation-
dissipation theorem, i.e., 〈ζν(r,t)〉 = 0 and 〈ζν(r,t)ζν(r′,t ′)〉 =
�νδ(r − r′)δ(t − t ′), where ν denotes the average density or
one of the amplitude fields, with �ν ∝ MνkBT . Huang et al.38

have formally shown how these coarse-grained stochastic
variables are derived, in an amplitude equation formalism from
dynamic density functional theory through multiple scale anal-
ysis. Next, we showcase the dynamics properties of the derived
XPFC amplitude model through three types of microstructure
simulations.

VI. APPLICATIONS

It is well known that most engineering materials contain
multiple phases and components. While the latter is not
explored in this work, we can explore a system possessing
multiple phases with the amplitude formalism developed
above. In this section, we demonstrate that the complex-
amplitude model is capable of describing two different
crystal symmetries by exploring solidification, coarsening, and
peritectic growth. We then look at the emergence of a second
phase, during grain growth, from the boundaries of a single
phase polycrystalline system.

The simulations presented in this section correspond to
the single-component 2D XPFC model, where the model
parameters are not mapped to any specific material system.
Even so, the following applications serve as prototypical
processes in several material systems. For example, the
exploration of solidification and, subsequent, coarsening of
triangular nuclei are akin to the solidification and coarsening
processes (in a 2D cross-section) in magnesium and other HCP
materials and alloys. In Ref. 20, an extension of the XPFC
methodology to two-component systems was successfully,
with choices in model parameters, mapped to the Fe-Ni system,
which exhibits a peritectic reaction at sufficiently high temper-
atures. The peritectic growth shown here can be considered
as a simpler 2D analog of similar systems. Likewise, the
emergence of secondary phases in systems like Fe-Ni system
below the peritectic temperature is generally captured here
in 2D.

In the sections to follow, simulations were performed using
Eqs. (A1)–(A7). A semi-implicit Fourier technique was used
to solve the system of equations. Unless stated otherwise,
numerical grid spacing of 	x = 0.5 and time step of 	t = 1
have been used. Furthermore, all thermal fluctuations have
been neglected, unless indicated otherwise. Following the
original XPFC derivation, here we take Ĉ2(|k = 0|) = 0. For
simplicity, we also take all mobility coefficients to be equal
to unity, i.e., Mν = 1, where ν is one of the corresponding
fields (no,{Aj }, or {Bm}) in the free-energy functional of
Eq. (17). Finally, all simulations were conducted in the
phase space determined by the equilibrium phase diagram in
Fig. 1.

A. Solidification and coarsening

As a first illustration of our amplitude model, we simulate
the solidification of a polycrystalline network of grains having
triangular symmetry. Our simulation domain was set to 4096 ×
4096 grid spacings, which is equivalent to approximately
512 × 512 lattice spacings. Initially, the system was seeded
with ∼100 triangular crystallites randomly distributed in a
uniform liquid. Each crystallite had a radius of 30 grid spacings
(∼4 lattice spacings) and a randomly chosen orientation. The
average density was chosen to be no = 0.115, which at a
temperature of σ = 0.16 in equilibrium would give a final
solid fraction of approximately 0.87 according to the lever
rule. The amplitudes of the initial triangular nuclei were
chosen to satisfy Aθ

j = Aje
iδkj (θ)·r (j = 1,2,3), where Aj

are the corresponding amplitudes of the original reference
basis, δkj (θ ) = Kj (θ ) − kj , with θ being the randomly chosen

FIG. 5. (Color online) Simulation snapshots, at t = 10 000, of
peritectic solidification. (a) Average density, where dark regions
represent high density areas, with lighter regions low density. (b)
Reconstructed atomic probability density of the marked area in (a).
Areas of largest probability are darker compared to areas of lower
probability. (c) Magnitude of amplitude A1, which is nonzero in both
solid structures; areas of larger magnitudes are depicted in red and
zero magnitudes are blue. (d) Magnitude of amplitude B1, which is
only nonzero in the square phase. Color scheme is the same as in (c).
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orientation between the interval [−π/6,π/6] and Kj (θ ) the
rotated triangular reciprocal lattice vectors.

In Fig. 4, we show some snapshots of the solidification
and coarsening process. In descending order of rows from
top to bottom, Fig. 4 displays the average density field,
the reconstructed atomic density (from a portion of the
simulation domain), and the magnitude of A1, respectively,
with simulation times t = 1 000, 5 000, 30 000, and 100 000,

increasing from left to right. As shown in the images of
the average density, i.e., top row, where darker areas denote
regions of high density and white regions of low, initial
crystallites once nucleated, grow, and partly coalesce leading
to grain boundaries (t = 5 000), defined by the dislocations
between boundaries. After the soft impingement of the grains,
once the system has approximately reached the equilibrium
solid fraction, we observe subsequent coarsening in frames

FIG. 6. (Color online) Time evolution of grain growth exhibiting emergence of a secondary phase (square) at the boundaries and triple
junctions of the primary solidified phase (triangular). System evolution progresses from left to right, i.e., t = 1 000, 2 000, and 9 000. Top row
plots the average density. Large density values are darker shades while low values are light shades. The reconstructed atomic density of the
areas marked in the top row are shown in the second row. Third and fourth rows display |A1| and |B1|, respectively. Red indicates areas of large
magnitudes while blue represents a magnitude of zero.
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t = 30 000 and 100 000, which occurs to minimize the total
interfacial energy of the system via curvature reduction. This
manifests itself in the standard process of coarsening with
larger grains growing at the expense of smaller ones.

B. Peritectic growth

Our second demonstration of the above amplitude model
exploits the multiphase nature of the XPFC modeling for-
malism. Here, we illustrate peritectic growth, where the
two solid structures have different crystalline symmetries.
The simulation cell was a rectangular domain of size
768 × 1024 grid spacings (∼96 × 128 lattice spacings), where
we initialized the system with alternating square and triangular
structures having length 200 and width 100 grid spacings,
respectively. The average density was set to no = 0.07, at
the approximate peritectic temperature, σ = 0.1256. Figure 5
shows a snapshot during the growth process at late time.
Displayed are a selection of the various fields that make up
the peritectic structure. We have in Fig. 5, the average density
field (top left), the reconstructed atomic density of the area
marked on the average density (top right), the magnitude of A1

(nonzero for both structures, bottom left), and the magnitude
of B1 (nonzero for the square phase, bottom right).

C. Grain growth and emergence of second phase structures

To further illustrate the robust capability of the amplitude
model derived in this work, here we examine the emergence
of a secondary phase (square), from the grain boundaries and
triple junctions of a polycrystalline network of grains having
triangular symmetry. The initial condition was taken from the
solidification simulation of our triangular system, in Sec. VI A,
at t = 5 000. This system was quenched into the single square-
phase region at a temperature of σ = 0.1. The system was left
for a thousand time steps to allow complete coalescence and
merger of the grains having triangular symmetry. After merger,
a nonzero noise amplitude of 0.001 for all stochastic variables
was introduced for all dynamic equations, thus activating
thermal fluctuations in the system for one thousand time steps.
Once nucleation of the square phase was apparent, the noise
amplitude was set back to zero.

Figure 6 shows several snapshots during the system
evolution, exhibiting the emergence of the secondary square
phase from the boundaries of the triangular polycrystalline
network. From top to bottom, the plots display the average
density, no, the reconstructed density, n, the magnitude of
amplitude A1 and the magnitude of B1 (which is only nonzero
for the square phase). Time increases from left to right in
Fig. 6. Clearly evident in the progression of the images in
Fig. 6 is onset and subsequent growth of the secondary phase.
This illustrates the further capability of our amplitude model in
describing the self-consistent nucleation and growth of phases,
a phenomena that cannot be captured self-consistently with
traditional phase-field and other mean-field-type formalisms.

VII. SUMMARY

In this paper, we reported on a Fourier technique for
deriving complex-amplitude models for PFC and PFC-type

free-energy functionals. Details of the method were discussed
in the context of the structural PFC (XPFC) formalism for
single component systems in 2D. Our approach was also
shown to recover forms of previous approaches, as well as
address the issue of the periodic instability of the average
density. The dynamics of the model were demonstrated
with simulations of solidification and coarsening, peritectic
solidification involving different crystal structures, and grain
growth exhibiting nucleation and growth of a secondary phase,
phenomena of relevance in materials engineering, where the
latter two cannot be captured with traditional phase-field
models.

Complex-amplitude models were introduced as a way to
provide a link between the standard phase-field approach
and the phase-field-crystal approach. Having developed a
complex-amplitude model capable of describing multiple crys-
tal structures and elastoplastic effects, this work has demon-
strated the nature of such a bridge between the methodologies
by directly incorporating the properties of the microscopic
correlation function. Operating on larger scales, the model was
shown to capture the salient atomistic scale features inherent
in several important phase transformations. Our method can
accept as input any derived or experimentally calculated
correlation function, which makes it applicable to a myriad
of systems. It is expected that such a method, when combined
with novel mesh algorithms, can truly represent a multiscale
modeling paradigm for investigating microstructural processes
governed by elasticity and defects operating on diffusional
time and length scales.
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APPENDIX A: DYNAMIC EQUATIONS

In Sec. V, we introduced the variational principles applied
to the coarse-grained free-energy functional F cg in arriving
at the set of dynamic equations. Here, we explicitly apply
the variational principles and write the resulting equations of
motion.

For the average density, we have

∂no

∂t
= ∇ ·

(
Mno

∇
{

no − η
n2

o

2
+ χ

n3
o

3
− [ξ̂V (k)Ĉ2(k)n̂o(k)]r

+ (2χ no − η)

(
4∑
j

|Aj |2 +
2∑
m

|Bm|2
)

+ 2χ [A1A2A3 + A∗
1A

∗
4B1 + A1A

∗
4B

∗
2 + c.c.]

})
.

(A1)
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Equations for the first mode of the amplitudes read

∂A1

∂t
= −MA1

{(
1 − η no + χ n2

o

)
A1

− (η − 2χno)[A∗
2A

∗
3 + A4B2 + A∗

4B1]

+χA1

(
|A1| + 2

[
4∑

j �=1

|Aj | +
2∑
m

|Bm|
])

+ 2χ2A∗
1B1B2 − [Ĉ2(|k + k1|)Â1(k)]r

}
, (A2)

∂A2

∂t
= −MA2

{(
1 − η no + χ n2

o

)
A2

− (η − 2χno)A∗
1A

∗
3 + 2χA∗

3[A4B
∗
1 + A∗

4B
∗
2 ]

+χA2

(
|A2| + 2

[
4∑

j �=2

|Aj | +
2∑
m

|Bm|
])

− [Ĉ2(|k + k2|)Â2(k)]r

}
, (A3)

∂A3

∂t
= −MA3

{(
1 − η no + χ n2

o

)
A3

− (η − 2χno)A∗
1A

∗
2 + 2χA∗

2[A4B
∗
1 + A∗

4B
∗
2 ]

+χA3

(
|A3| + 2

[
4∑

j �=3

|Aj | +
2∑
m

|Bm|
])

− [Ĉ2(|k + k3|)Â3(k)]r

}
, (A4)

∂A4

∂t
= −MA4

{(
1 − η no + χ n2

o

)
A4

− (η − 2χno)[A∗
1B1 + A1B

∗
2 ]

+χA4

(
|A4| + 2

[
4∑

j �=4

|Aj | +
2∑
m

|Bm|
])

+χ [2A2A3B1 + 2A∗
4B1B

∗
2 + 2A∗

2A
∗
3B

∗
2 ]

− [Ĉ2(|k + k4|)Â4(k)]r

}
. (A5)

Finally, for the second set of amplitudes, corresponding to
the second set of reciprocal lattice vectors, we have

∂B1

∂t
= −MB1

{(
1 − η no + χ n2

o

)
B1 − (η − 2χno)A1A4

+χB1

(
|B1| + 2

[
4∑
j

|Aj | + |B2|
])

+χ
[
2A4A

∗
2A

∗
3 + A2

4B2 + A2
1B

∗
2

]
− [Ĉ2(|k + q1|)B̂1(k)]r

}
, (A6)

∂B2

∂t
= −MB2

{(
1 − η no + χ n2

o

)
B2 − (η − 2χno)A1A

∗
4

+χB2

(
|B2| + 2

[
4∑
j

|Aj | + |B1|
])

+χ
[
2A∗

2A
∗
3A

∗
4 + (A∗

4)2B1 + A2
1B

∗
1

]
− [Ĉ2(|k + q2|)B̂2(k)]r

}
. (A7)

APPENDIX B: AMPLITUDE EQUATIONS FOR 12 VECTOR
DENSITY EXPANSION

In Sec. III A, where we considered a density mode ex-
pansion for our coarse-graining procedure, we arrived at two
expansions. While in the text we opted to work with the simpler
of the expansions, it was not motivated from any physical
arguments or considerations, but rather for convenience. In
this appendix, we present the coarse-grained free-energy func-
tional associated with the density mode expansion containing
12 complex amplitudes. Before proceeding, we recall the
density expansion of the form

n(r) = no(r) +
6∑
j

Aj (r)eikj ·r +
6∑
m

Bm(r)eiqm·r + c.c.

(B1)

The derivation of the amplitude equation for 12 amplitudes
is motivated and follows from the same arguments and
approximations that lead us to the coarse-grained free-energy
functional of the simpler six-complex-amplitude energy of
Eq. (17). The coarse-grained free-energy functional of the
twelve-complex-amplitude expansion reads

F
cg
12 =

∫
dr

{
n2

o

2
− η

n3
o

6
+ χ

n4
o

12
+ (

1 − η no + χ n2
o

) (
6∑
j

|Aj |2 +
6∑
m

|Bm|2
)

− (η − 2χno)[A1A2A3 + A4A5A6

+B1B2B3 + A2A
∗
5B5 + A4A

∗
1B4 + A3A6B

∗
3 + A3A

∗
6B6 + A2A5B

∗
2 + A1A4B

∗
1 + B5B6B

∗
4 + c.c.]

+ χ

2

[
6∑
j

A2
j (A∗

j )2 +
6∑
m

B2
m(B∗

m)2

]
+ 2χ

[
6∑
j

6∑
m>j

|Aj |2|Am|2 +
6∑
j

6∑
m

|Aj |2|Bm|2 +
6∑
j

6∑
m>j

|Bj |2|Bm|2
]

+χ
[
A2

1B
∗
1 B∗

4 + A2
2B5B

∗
2 + A2

3B6B
∗
3 + A2

4B4B
∗
1 + A2

5B
∗
2 B∗

5 + A2
6B

∗
3 B∗

6 + c.c.
] + 2χ [A2A3A4B4 + A2A4A6B5

+A3A4A5B6 + A1A2A6B
∗
6 + A1A3A5B

∗
5 + A1A5A6B

∗
4 + A1A3A

∗
5B2 + A1A2A

∗
6B3 + A2A3A

∗
4B1
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+A4A5A
∗
3B3 + A4A6A

∗
2B2 + A5A6A

∗
1B1 + A1A4B2B3 + A2A5B1B3 + A3A6B1B2 + A4A

∗
1B5B6 + A3A

∗
6B4B

∗
5

+A5A
∗
2B6B

∗
4 + c.c.] − no

2
[ξ̂V (k)Ĉ2(|k|)n̂o(k)]r − 1

2

6∑
j

A∗
j [Ĉ2(|k + kj |)Âj (k)]r − 1

2

6∑
j

Aj [Ĉ2(|k − kj |)Âj (−k)]r

− 1

2

6∑
m

B∗
m[Ĉ2(|k + qm|)B̂m(k)]r − 1

2

6∑
m

Bm[Ĉ2(|k − qm|)B̂m(−k)]r

}
. (B2)
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