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1609-2009 – four centuries of telescopes
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Conclusions

• Optical astronomy has made dramatic progress 
in 400 years since Galileo’s Siderius Nuncius; 
non-optical wavelengths are more recent and give 
complementary information

• Other messengers can be studied – their 
information too is complementary 

• “Telescopes” for these other messengers lead to 
“astronomy” on isolated prairies, in Antarctic ice, 
in the deep sea, deep underground… and at 
particle accelerators! 
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How do we know about the Universe? 

Historically, until recently all observational information 
about the cosmos comes to us carried by light -
electromagnetic radiation. 

The EM spectrum is broad – from radio waves (very long 
wavelengths) to gamma-rays (very short wavelengths).

where we see!
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The atmosphere doesn’t make it easy!
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Our local neighborhood:

we are here!

Our Galaxy – The Milky Way
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The view is different at different 
wavelengths!
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Our Galaxy – The Milky Way



Different wavelengths give different 
information:

ex
pa

nd
in

g 
un

iv
er

se

ra
di

o 
ga

la
xi

es
, p

ul
sa

rs

Revolutionary discoveries have occurred at each
new wavelength !

CM
B

x-
ra

y 
bi

na
rie

s,
 b

la
ck

 h
ol

es

cosmic ray flux

Diffuse photon
flux

McGill STARS Feb. '10 7



If different wavelengths give different views, 
what about other messengers?

• charged cosmic rays
• neutrinos
• gravity waves
• dark matter particles

All of these are (potentially) detectable, and give 
us complementary information about the cosmos: 
new ‘starry messengers’.
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Charged cosmic rays

• discovered in 1911 by Viktor 
Hess (from balloon)
• initially studied at mountain 
observatories and from balloons

• now known to be charged 
particles (protons, He nuclei, 
electrons)
• collectively contain as much 
energy as starlight
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Cosmic ray spectrum
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• distribution of fluxes and energies 
(spectrum) extends over 30 orders of 
magnitude (powers of 10) !

• energies of individual particles 
extend to 1020 eV – ten billion times 
the energy of a starlight photon, or 
about the energy of a hard pitched 
baseball!



Cosmic ray origins

• Up to ~ 1016 eV, believed to come from 
supernova remnants – galactic leftovers of 
exploding (high-mass) stars

• most intriguing are rare high-energy 
events: ~ 1019 - 1020 eV

• at high energies, CR directions should 
point back towards sources

• interaction with low-energy CMB photons 
makes universe opaque at cosmological
distances

If you see very high energy CR, 
then sources must be local – in our 
galaxy (but such sources are 
unknown)!

SN 1006, composite image
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Cosmic ray interactions
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• Cosmic ray interactions in atmosphere 
create extensive air showers




Highest energy cosmic rays

• To study fluxes of 1 particle/km2/yr 
requires: 

• many years or 
• many km2 !

• Largest experiments cover an area 
approximately as large as island of 
Montreal !

measure particles or 
fluorescence light that gets 
to ground level
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Pierre Auger Observatory – the largest 
cosmic ray detector

• uses charged particle interactions in 
water tanks to study high energy cosmic 
ray showers
• second part of detector images 
fluorescence light from upper atmosphere 
(like a 4W blue light bulb moving at the 
speed of light!)
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One of 1600 
Auger water 
tanks ~50 km



Auger events
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Auger highest energy events

• cutoff in spectrum (ie, missing very very high energy events) 
seems to be confirmed
• tantalizing evidence that highest energy events might be 
coming from a special class of course: active galactic nuclei
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O – highest energy Auger events
X – AGN 



Active Galactic Nuclei
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• Galaxies (ie, at cosmological 
distances) that are ‘driven’ by 
massive central black holes

• Believed to be accompanied by 
energetic outflows (“jets”) 

• Nature and acceleration 
mechanism of jets uncertain

• If protons are being accelerated 
there, then we expect neutrinos
too



Neutrinos

• Neutrinos (“little neutrons”) first proposed in 
1930 by Pauli

• now known to be neutral, weakly 
interacting, with very small mass

• like light and charged cosmic rays, their 
detection would give us more 
complementary information on the 
processes occurring in the cosmos

• small interaction probability means large
(massive) detectors are necessary –
megatons!

• Cheapest bulk materials: water and ice!

more later!
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Neutrino detection

• Neutrino interactions with matter result in 
energetic charged particles – moving faster 
than the (local) speed of light!

• Charged particle emits Cherenkov light –
the analog of a sonic boom

• In clear ice and water, Cherenkov photons 
propogate and can be detected

• Need to instrument large volumes, shielded 
from cosmic ray interactions: use ice caps 
and the deep ocean

• For added background rejection, use 
upward-going neutrinos

neutrino

interaction

penetrating charged 
particle

Cherenkov 
photons
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Neutrino detectors – ANTARES

• 2500 m deep off the French 
Mediterranean coast

• composed of “strings” of 
photomultiplier tubes (ultrasensitive 
light detectors)

• detection of Cherenkov light allows 
energy and arrival direction of 
neutrino to be reconstructed

• unusual experimental challenges 
include bioluminesence (remember 
‘Finding Nemo’?)
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Ice works too! IceCube:

• 2500 m under the surface of the 
Antarctic icesheet, at the South Pole!

• Strings of phototubes drilled (and 
then frozen) into ice

• Detection method same as for 
undersea detectors
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Neutrino ‘sky map’
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• Location at the South Pole gives a 
northern hemisphere map

• No obvious concentrations of 
events (yet!) that would indicate 
strong high-energy neutrino sources 



Neutrinos closer to home 

• Solar neutrinos (much lower 
energy) have been detected and 
studied for decades

• Requires low-background facility 
– in practice, deep underground

• Pre-eminent detector in 2000’s 
was SNO – the Sudbury Neutrino 
Observatory

• 2000 m underground in Vale 
Inco’s Creighton mine 
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SNO 
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• Like Icecube and Antares, used 
the Cherenkov light from neutrino-
water interactions 

• Used heavy water (D2O) from 
CANDU program to enhance 
neutrino interactions

• Definitively proved that neutrinos 
oscillate (change their type) on 
their way from the Sun to us – and 
thus, have mass!



SNOLab

• SNO is now dismantled, but new (general purpose) lab has 
been constructed to take advantage of deep, clean conditions

• Will be equipped with major new dark matter detectors
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Why dark matter?

we are here!

• Come back to our galaxy, and study its motion to measure its 
mass

• We find that there is more mass than we’d expect from 
observed light – way more! 

McGill STARS Feb. '10 26



The big (ie, small) picture:

“billions and billions of galaxies…”

• Galaxies, galaxy cluster, 
superclusters: The bigger 
the scale, the worse the 
problem !

Hubble Deep Field: angular size: 2.5’’ (a dime at 10 km)
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The even bigger picture:

The stuff we see is only ~5% of the energy content of the Universe!
“Dark matter” is another 30%
“Dark energy” is nearly 70%
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SNOLab and accelerators will do dark-
matter astronomy

• SNOLab and other underground labs may detect dark matter 
particles in the next decade

• CERN’s Large Hadron Collider could produce it in the lab on 
the same time scale
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Conclusions

• Optical astronomy has made dramatic progress 
in 400 years since Galileo’s Siderius Nuncius; 
non-optical wavelengths are more recent and give 
complementary information

• Other messengers can be studied – their 
information too is complementary 

• “Telescopes” for these other messengers lead to 
“astronomy” on isolated prairies, in Antarctic ice, 
in the deep sea, deep underground… and at 
particle accelerators! 
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