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Sigma models in d=2

The (1,1) analysis by Gates Hull and Roček gives:

Susy (0,0) (1,1) (2,2) (2,2) (4,4) (4,4)
Bgd G,B G G,B G G,B
Geom Riem. Kähler biherm. hyperk. bihyperc.
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Bihermitean Geometry

(M,g, J(±),H)

J2
(±) = −11 , J t

(±)gJ(±) = g , ∇(±)J(±) = 0

Γ(±) = Γ0 ± 1
2g−1H , H = dB .

E := g + B
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Generalized Complex Geometry

Complex structure:

J ∈ End(TM ⊕ T ∗M), J 2 = −1

Π± := 1
2 (11± J )

“Nijenhuis”:

NC(J ) = 0 ⇐⇒ Π∓[Π±U,Π±V ]C = 0

where

U = (u, ξ) , V = (v , ρ)

[U,V ]C = [u, v ] + Luρ− Lvξ − 1
2d(ıuρ− ıvξ)

The automorphisms of this courant bracket are
diffeomorphisms and b-transforms:

eb(u, ξ) = (u, ξ + ıub) , db = 0 .
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Bihermitean=Generalized Kähler

Description on T ⊕ T ∗

J 2
(1,2) = −11 , [J(1),J(2)] = 0 , J t

(1,2)IJ(1,2) = I , G := −J(1)J(2)

J(1,2) = 1 0

B 1


 J(+) ± J(−) −(ω−1

(+) ∓ ω
−1
(−))

ω(+) ∓ ω(−) −(J t
(+) ± J t

(−))


 1 0

−B 1


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Collaboration
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Generalized Kähler Potential

Geometric data: (M,g,H, J(±)) or (M,g, J(±)) or (M,F(±), J(±)).
In each case, there is a complete description in terms of a
Generalized Kähler potential K . Unlike the Kähler case, the
expressions are non-linear in second derivatives of K . E.g.,

J(+) =

 J 0

(KLR)−1[J,KLL] (KLR)−1JKLR



g = Ω[J(+), J(−)]

F(+) = dλ(+) , λ(+)` = iKRJ(KLR)−1KL` , ...
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Generating function

There are two special sets of Darboux coordinates for the
symplectic form Ω. One set, (XL,YL), is also canonical
coordinates for J(+) and the other set, (XR,YR) is canonical
coordinates for J(−). The symplectomorphism that relates the
two sets of coordinates has thus a generating function. This
generating function is in fact the generalized Kähler-potential
K (XL,XR).

(XL,YL) ← K (XL,XR)→ (XR,YR)

J(+) =

(
i 0
0 −i

)
J(−) =

(
i 0
0 −i

)
dΩ = dX` ∧ dY` + c.c. dΩ = Xr ∧ Yr + c.c

This fact is a key ingredient in the proof that we have a
complete description or GKG.
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Superspace

d = 2 , N = (2,2)

S =

∫
D+D̄+D−D̄−K (φc , χt ,XL,XR)

Constrained superfields:

D̄±φa = 0 ,

D̄+χ
a′

= D−χa′
= 0 ,

D̄+X` = 0 ,

D̄−Xr = 0 .

Notation: c := a, ā , t := a′, ā′ , L := `, ¯̀ , R := r , r̄ .
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Superspace encodes and dictates
all the geometric formulations

of Generalized Kähler Geometry

Modulo Irregular Points!!!
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Some Results

A complete coordinatization of GKG away from irregular
points.
GKG has a Generalized Kähler potential K .
The non-linearities in the description of the geometry has
found an interpretation as a quotient construction from an
auxiliary higher dimensional space with Kac-Moody
symmetries.
We introduced and studied the notion of a biholomorphic
gerbe with connection.
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We studied the local conditions for a generalized Kähler
manifold to be a generalized Calabi-Yau manifold and we
derived a generalization of the complex Monge-Ampère
equation to describe this. Its solutions give solutions of
type II supergravity with metric, dilaton and H-field. This
result also relates the pure spinor formulation of GKG to
the generalized Kähler potential.

“ The Quantum geometry of N=(2,2) nonlinear sigma models”
Marcus T. Grisaru, M. Massar, A. Sevrin, J. Troost. Phys.Lett.
B412 (1997) 53-58.
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The appropriate connections for gauging sigma models
describing GKG have been constructed. Ingredients in
T-duality.
The various definitions of GKG corresponding sigma
model formulations. This is seen, e.g., in the (2,1)
formulation we presented.
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ALL THE BEST MARC!!
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