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1. In class I defined the covariant derivative of a vector field. Prove that the coefficients of the covariant
derivative transform as a tensor of type (1,1) under a coordinate transformation. Show that the partial
derivatives of such a vector field do not transform as a tensor

Solution

We are looking to determine how the covariant derivative of a vector field transforms. Recall that

∇µV ν = ∂µV
ν + ΓνµλV

λ (1)

We start by nothing that the partial derivative operator transforms like a dual vector, and the vector field
transforms as a contravariant vector. The transformation can thus be written

∇µV ν → ∇µ′V ν
′

=
∂xµ

∂xµ′

∂

∂xµ

(
∂xν

′

∂xν
V ν

)
+ Γν

′

µ′λ′

(
∂xλ

′

∂xλ
V λ

)

=
∂xµ

∂xµ′

∂2xν
′

∂xµ∂xν
V ν +

∂xµ

∂xµ′

∂xν
′

∂xν
∂V ν

∂xµ
+ Γν

′

µ′λ′

(
∂xλ

′

∂xλ
V λ

)

Now, to check that ∇µV ν transforms as a (1,1) tensor under coordinate transformations, we need to figure

out how the connection, Γν
′

µ′λ′ transforms. Note that in Carroll, they DEMAND that the covariant derivative
of a vector field transforms like a (1,1) tensor, whereas we are trying to show it. Thus, we cannot use the
transformations result in equation (3.10) of Carroll for the connection, and must show it ourselves. Consider
now the expression for the transformation of the connection

Γνµλ → Γν
′

µ′λ′ =
1

2
gν

′σ′
(∂µ′gλ′σ′ + ∂λ′gσ′µ′ − ∂σ′gµ′λ′)

=
1

2

(
∂xν

′

∂xτ
∂xρ

′

∂xσ
gτσ

)(
∂

∂xµ′

(
∂xα

∂xλ′

∂xβ

∂xρ′
gαβ

)
+

∂

∂xλ′

(
∂xα

∂xρ′
∂xβ

∂xµ′ gαβ

)
− ∂

∂xρ′

(
∂xα

∂xµ′

∂xβ

∂xλ′

))

Now the this is quite clearly becoming an ordeal to expand, but we must press on. Using some shorthand,
Λαβ = ∂xα

∂xβ
, we can carry on with our expansion

Γν
′

µ′λ′ =
1

2
Λν

′

τ Λρ
′

σ g
τσ(

∂2xα

∂xµ′∂xλ′ Λβρ′gαβ + Λαλ′
∂2xβ

∂xµ′∂xρ′
gαβ + Λαλ′Λ

β
ρ′
∂gαβ
∂xµ′

+
∂2xα

∂xλ′∂xρ′
Λβµ′gαβ + Λαρ′

∂xβ

∂xλ′∂xµ′ gαβ + Λαρ′Λ
β
µ′
∂gαβ
∂xλ′

− ∂2xα

∂xρ′∂xµ′ Λβλ′gαβ − Λαµ′
∂2xβ

∂xρ′∂xλ′ gαβ − Λαµ′Λ
β
λ′
∂gαβ
∂xρ′

)
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Now recall the two useful identities, gµνg
νσ = δµσ , and ΛµνΛνσ = ∂xµ

∂xν
∂xν

∂xσ = δµσ . Expanding the brackets and
using these identities a few times yields

Γν
′

µ′λ′ =
1

2
(Λν

′

α

∂2xα

∂xµ′∂xλ′ + Λν
′

τ g
τσΛαλ′

∂2xβ

∂xµ′∂xσ
gαβ + Λν

′

τ g
τσΛβµ′

∂2xα

∂xλ′∂xσ
gαβ

+ Λν
′

β

∂2xβ

∂xλ′∂xµ′ − Λν
′

τ g
τσΛβλ′

∂2xα

∂xσ∂xµ′ gαβ − Λν
′

τ g
τσΛαµ′

∂2xβ

∂xσ∂xλ′ gαβ)

+
1

2
Λν

′

τ g
τσ(Λαλ′

∂gασ
∂xµ′ + Λβµ′

∂gσβ
∂xλ′ − Λαµ′Λ

β
λ′
∂gαβ
∂xσ

)

Reordering the terms gives us

Γν
′

µ′λ′ =
1

2

(
Λν

′

α

∂2xα

∂xµ′∂xλ′ + Λν
′

β

∂2xβ

∂xλ′∂xµ′

)
+ Λν

′

τ g
τσgαβ

(
Λαλ′

∂2xβ

∂xµ′∂xσ
+ Λβµ′

∂2xα

∂xλ′∂xσ
− Λβλ′

∂2xα

∂xσ∂xµ′ − Λαµ′
∂2xβ

∂xσ∂xλ′

)
+

1

2
Λν

′

τ g
τσ

(
Λαλ′Λ

β
µ′
∂gασ
∂xβ

+ Λβµ′Λ
α
λ′
∂gσβ
∂xα

− Λαµ′Λ
β
λ′
∂gαβ
∂xσ

)
Using the fact that gαβ = gβα (symmetric metric), and the fact that we can rename and exchange α and β
since they are dummy indices, lets examine this line by line.

In the first line, calling β → α for the second term shows that the two terms are equal.

For the second line, note that

gαβΛαλ′
∂2xβ

∂xµ′∂xσ
= gβαΛβλ′

∂2xα

∂xµ′∂xσ

= gαβΛβλ′
∂2xα

∂xµ′∂xσ

Which cancels with the third term in the second line. The second and fourth terms cancel in the same way,
so this second term disappears.

The third line can be rearranged as thus

Λαλ′Λ
β
µ′
∂gασ
∂xβ

+ Λβµ′Λ
α
λ′
∂gσβ
∂xα

− Λαµ′Λ
β
λ′
∂gαβ
∂xσ

= Λβλ′Λ
α
µ′
∂gβσ
∂xα

+ Λαµ′Λ
β
λ′
∂gσα
∂xβ

− Λαµ′Λ
β
λ′
∂gαβ
∂xσ

= Λαµ′Λ
β
λ′

(
∂gβσ
∂xα

+
∂gσα
∂xβ

− ∂gαβ
∂xσ

)
Thus we can write our whole transformation as

Γν
′

µ′λ′ = Λν
′

α

∂2xα

∂xµ′∂xλ′ + Λν
′

τ Λαµ′Λ
β
λ′

1

2
gτσ

(
∂gβσ
∂xα

+
∂gσα
∂xβ

− ∂gαβ
∂xσ

)
Where we recognize part of the last term as

1

2
gτσ

(
∂gβσ
∂xα

+
∂gσα
∂xβ

− ∂gαβ
∂xσ

)
= Γταβ
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Consider now the two forms of the expression

∂

∂xµ′

(
∂xν

′

∂xα
∂xα

∂xλ′

)
=

∂2xν
′

∂xµ′∂xα
∂xα

∂xλ′ +
∂xν

′

∂xα
∂2xα

∂xµ′∂xλ′

But also

∂

∂xµ′

(
∂xν

′

∂xα
∂xα

∂xλ′

)
=

∂

∂xµ′ δ
ν′

λ′ = 0

So we can rearrange our first expression as

Λν
′

α

∂2xα

∂xµ′∂xλ′ = −Λαλ′
∂2xν

′

∂xµ′∂xα

Thus we can write our transformation as

Γν
′

µ′λ′ = Λν
′

τ Λαµ′Λ
β
λ′Γ

τ
αβ − Λαλ′Λ

β
µ′

∂2xν
′

∂xβ∂xα

Since τ, α, β are dummy indices, we can finally write our transformation rule for the connection coefficients
as

Γνµλ → Γν
′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν
′

∂xν
Γνµλ −

∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν
′

∂xµ∂xλ

Which verifies Carroll’s assumed transformation rule for the coefficients. note that they don’t transform as
a proper tensor, which we didn’t expect in the first place.

Now we can continue with our transformation of the covariant derivative. It is

∇µV ν → ∇µ′V ν
′

=
∂xµ

∂xµ′

∂2xν
′

∂xµ∂xν
V ν +

∂xµ

∂xµ′

∂xν
′

∂xν
∂V ν

∂xµ
+ Γν

′

µ′λ′

(
∂xλ

′

∂xλ
V λ

)

=
∂xµ

∂xµ′

∂2xν
′

∂xµ∂xν
V ν +

∂xµ

∂xµ′

∂xν
′

∂xν
∂V ν

∂xµ
+

(
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν
′

∂xν
Γνµλ −

∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν
′

∂xµ∂xλ

)(
∂xλ

′

∂xλ
V λ

)

=
∂xµ

∂xµ′

∂2xν
′

∂xµ∂xν
V ν +

∂xµ

∂xµ′

∂xν
′

∂xν
∂V ν

∂xµ
+
∂xµ

∂xµ′

∂xν
′

∂xν
ΓνµλV

λ − ∂xµ

∂xµ′

∂2xν
′

∂xµ∂xλ
V λ

=
∂xµ

∂xµ′

∂xν
′

∂xν

(
∂V ν

∂xµ
+ ΓνµλV

λ

)
=

∂xµ

∂xµ′

∂xν
′

∂xν
∇µV ν

So it transforms like a (1, 1) tensor, as we had hoped. Note in going from line 3 to 4 we swapped λ→ ν as
it was a dummy index.

The partial derivatives do not transform like a proper tensor, since
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∂µV
ν → ∂µ′V ν

′
=

∂xµ

∂xµ′

∂

∂xµ

(
∂xν

′

∂xν
V ν

)

=
∂xµ

∂xµ′

∂2xν
′

∂xµ∂xν
V ν +

∂xµ

∂xµ′

∂xν
′

∂xν
∂V ν

∂xµ

6= ∂xµ

∂xµ′

∂xν
′

∂xν
∂µV

ν

Due to the presence of the first term in line 2.
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2. In class I showed that the parallel transport along a closed curve spanned by two coordinate vector fields
X and Y is given by the operator

R(X,Y ) = ∇X∇Y −∇Y∇X (2)

Show that this leads to, for general vector fields X and Y , the result

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] (3)

Solution

Lets take our coordinate vector fields to be untilded quantities, and our generalized vector fields to be tilded
quantities, where

X = fX̃ Y = gỸ

Here, f and g are non-trivial functions with respect to the coordinates. Now, we can write

R(X,Y ) = ∇X∇Y −∇Y∇X = ∇fX̃∇gỸ −∇gỸ∇fX̃
= f∇X̃(g∇Ỹ )− g∇Ỹ (f∇X̃)

= f∇X̃(g)∇Ỹ + fg∇X̃∇Ỹ − g∇Ỹ (f)∇X̃ − gf∇Ỹ∇X̃
= fg(∇X̃∇Ỹ −∇Ỹ∇X̃) + f∇X̃(g)∇Ỹ − g∇Ỹ (f)∇X̃
= fg(∇X̃∇Ỹ −∇Ỹ∇X̃) + fX̃(g)∇Ỹ − gỸ (f)∇X̃

Where from line 1 to 2 we have used that ∇fX̃ = f∇X̃ , and in getting to the final line we have used that
∇X(g) = Xµ∇µg = Xµ∂µg = X(g) since the covariant derivative reduces to a partial derivative on scalar
functions. Now lets compute the commutator of the generalized vector fields

[X̃, Ỹ ] = [
1

f
X,

1

g
Y ] =

1

f
X

(
1

g
Y

)
− 1

g
Y

(
1

f
X

)
= f−1X(g−1)Y + f−1g−1X(Y )− g−1Y (f−1)X − f−1g−1Y (X)

=
−1

fg2
X(g)Y +

1

f2g
Y (f)X +

1

fg
(X(Y )− Y (X))

=
1

f
Ỹ (f)X̃ − 1

g
X̃(g)Ỹ

Where in going from line 2 to 3 we have used X(g−1) = Xµ∂µ(g−1) = −1
g2 X(g), and in going to the last

line the fact that for coordinate vector fields, the commutator vanishes. Now lets see what the covariant
derivative would look like

∇[X̃,Ỹ ] = ∇ 1
f Ỹ (f)X̃− 1

g X̃(g)Ỹ =
1

f
Ỹ (f)∇X̃ −

1

g
X̃(g)∇Ỹ

Rearranging our last term in the R(X,Y ) equation gives us

R(X,Y ) = fg

(
∇X̃∇Ỹ −∇Ỹ∇X̃ −

(
−1

g
X̃(g)∇Ỹ +

1

f
Ỹ (f)∇X̃

))
= fg

(
∇X̃∇Ỹ −∇Ỹ∇X̃ −∇[X̃,Ỹ ]

)
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Since we also know that R(X,Y ) = fgR(X̃, Ỹ ), we can note that

R(X̃, Ỹ ) = ∇X̃∇Ỹ −∇Ỹ∇X̃ −∇[X̃,Ỹ ]
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3. Consider a two dimensional cone. Use polar coordinates with the origin taken to be the top of the cone
(the singular point of this ’manifold’ - it has manifold structure everywhere except at the tip of the cone).
Write down the metric on the surface of the cone induced by the Euclidean metric of the three-dimensional
space in which the cone lives. Find the geodesics between two points an angle δφ apart at the same radius.

Solution

The surface of a cone with apex at the origin (opening upwards) is

z = c
√
x2 + y2 (4)

Where c is a positive real constant. Since we are embedding this two dimensional surface in three dimensions,
it is prudent to convert to spherical coordinates.

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ (5)

For this construction, the polar angle φ ranges from 0 to 2π, and θ will remain fixed, at some value called
θ0, which will control the steepness of the cone in 3 dimensions. Indeed, in spherical coordinates a cone is
defined by fixing θ to be constant. This angle is related to c by θ0 = cot−1(c). Holding θ constant, our
differentials become

dx = sin θ0 cosφdr − r sin θ0 sinφdφ

dy = sin θ0 sinφdr + r sin θ0 cosφdφ

dz = cos θ0dr

Since the surface of a cone can be defined by identifying two edges of a partial circle together, say at φ = 0
and φ = β (so that φ = φ+ β), we will look at the flat space metric. The two dimensional metric induced
by the three dimensional flat space it lives in is simply

ds2 = dx2 + dy2 + dz2 = dr2 + r2 sin2 θ0dφ
2 (6)

by substitution of our computed differentials. For clarity, it can be useful to visualize the situation by
considering an upward opening cone with θ0 being the angle from the z axis to an edge of the cone in 3
dimensional space. We now wish to determine geodesics in this geometry, so we must first determine the
nonzero Christoffel symbols. The nonzero elements of our induced metric are

grr = 1 gφφ = r2 sin2 θ0 (7)

Now, if we had chosen cylindrical coordinates to represent our cone (x = ρ cosφ, y = ρ sinφ, z = z), we
would get a slightly different metric (note now that ρ is the radius vector in the xy plane, rho2 = x2 + y2).
Using the equation for a cone, we note that we still have z = cρ = ρ cot θ0, and so our differentials become

dx = cosφdρ− ρ sinφdφ

dy = sinφdρ+ ρ cosφdφ

dz = cot θ0dρ

Combining these gives the line element

ds2 = (1 + cot2 θ0)dρ2 + ρ2dφ2 = csc2 θ0dρ
2 + ρ2dφ2 (8)

Thereby inducing metric elements as

gρρ = csc2 θ0 gφφ = ρ2 (9)
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We will continue working in our originally chosen spherical system, but the two coordinates are simply
related by sin θ0 = ρ/r

Recall the connection coefficient equation is

Γijk =
1

2
gil(∂jgkl + ∂kgjl − ∂lgjk) (10)

A quick computation gives the nonzero connection coefficients as

Γrφφ = −r sin2 θ0 Γφrφ = Γφφr =
1

r

Recall now the geodesic equation

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0 (11)

So we have the equations

d2r

dλ2
− r sin2 θ0

(
dφ

dλ

)2

= 0

d2φ

dλ2
+

2

r

dr

dλ

dφ

dλ
= 0

We are interested in determining the orbit r(φ), since we are interested in a geodesic at constant r separated
by δφ. For this, we go to the geodesic equations and eliminate the λ variable. Looking at the first equation,

we can write r̈ = d
dλ

(
dr
dφ

dφ
dλ

)
to find a new form

φ̇2 d
2r

dφ2
+ φ̈

dr

dφ
− r sin2 θ0φ̇

2 = 0 (12)

Where the overdots represent derivatives with respect to λ.

Now recall the other geodesic equation for φ

φ̈+
2

r
ṙφ̇ = 0

Rewriting ṙ = dr
dφ

dφ
dλ , we can rearrange this to be

φ̈ = −2

r

dr

dφ
φ̇2

Substituting this form into the first geodesic equation yields

φ̇

(
d2r

dφ2
− 2

r

(
dr

dφ

)2

− r sin2 θ0

)
= 0 (13)

Since we are interested in geodesics which will vary in φ (φ̇ 6= 0), we merely need to solve the internal
equation,

d2r

dφ2
− 2

r

(
dr

dφ

)2

− r sin2 θ0 = 0 (14)
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The solution is

r(φ) = D sec((φ+ E) sin θ0)

Where D and E are integration constants as usual, which we will set by consider a specific geodesic. The
geodesic to consider is one which starts and ends at the same radial distance, shifted by an angle δφ. This
condition is

r(φ0) = r(φ0 + δφ) = r0 (15)

In order for this to occur, there must be a critical point in the interval between φ0 and φ0 + δφ so the
geodesic can loop back to the same distance, r0. We can find

d

dφ
r(φ) = D sin θ0(sec((φ+ E) sin θ0) tan((φ+ E) sin θ0))

This hits a minimum when (φc + E) sin θ0 = 0, or E = −φc (assuming sin θ0 6= 0). We can now use the
symmetry of our geodesic (must take half the distance to go out, and half the distance to come back into
the original r0 to state that φc = φ0 + δφ/2, so we can find E = −φ0 − δφ/2. Using our initial condition,
we can also set D by

r(φ0) = D sec

((
φ0 − φ0 −

δφ

2

)
sin θ0

)
= r0

D = r0 cos

(
δφ sin θ0

2

)
So the geodesics beginning and ending at a radius r0 are of the form

r(φ) = r0 cos

(
δφ sin θ0

2

)
sec

((
φ− φ0 −

δφ

2

)
sin θ0

)
= r0

cos((δφ/2) sin θ0)

cos((φ− φ0 − δφ/2) sin θ0

9



4. Consider the metric

ds2 = dt2 − a(t)2[dx2 + dy2 + dz2] (16)

where a(t) is an increasing function of time (and x, y, z are Euclidean spatial coordinates), which describes
a homogenous and isotropic expanding universe.

a) Compute the Christoffel symbols (check your answers with those in the text).

b) Write down the equation of motion of a point particle in this metric in the absence of external forces and
derive the time dependence of the physical velocity. Comment on the result.

Solution

a) The nonzero elements of the metric are given by

gtt = 1 gxx = gyy = gzz = −(a(t))2 (17)

The connection symbols are computed in the usual way, using

Γσµν =
1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) (18)

Thus you can show that the only nonzero connection coefficients are given by

Γ0
ij = ȧaδij Γi0j = Γij0 =

ȧ

a
δij (19)

b) To get the equation of motion for a point particle we must consider the geodesic equation. This is

d2xµ

dτ2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 (20)

Where τ is the proper time. Expanding this we find

d2t

dτ2
+ ȧaδij

dxi

dτ

dx

dτ
= 0

d2xi

dτ2
+ 2

ȧ

a

dt

dτ

dxi

dτ
= 0

Recall the four velocity is uµ = dxµ/dτ , so we can write this in a slightly simpler form

du0

dτ
+ ȧa

3∑
i=1

(ui)2 = 0

dui

dτ
+ 2

ȧ

a
u0ui = 0

The total physical velocity is thus

u =
√
−uiui =

√
−gijuiuj = a(t)

√
δijuiuj (21)

So we can write

u2 = (a(t))2
3∑
i=1

(ui)2 (22)
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Which we will use momentarily. Also recall that uµuµ = 1, so we have

1 = uµu
µ = u0u

0 + uiu
i = (u0)2 − u2 = 1 (23)

Differentiation yields the relationship

u0du0 = udu (24)

Substituting our expression for u2 into the geodesic equations yields

du0

dτ
+
ȧ

a
u2 = 0

dui

dτ
+ 2

ȧ

a
u0ui = 0

Now realize the useful substitution

du0

dτ
=
du0

dt

dt

dτ
= u0 du

0

dt
= uu̇ (25)

We are now in a position to solve our first differential equation. With this substitution, we have

u̇+
ȧ

a
u = 0 (u 6= 0) (26)

This expression is easily solved

du

dt

1

u
= −da

dt

1

a∫
du

u
= −

∫
da′

a′

ln(u) = − ln(a/a0)

u(t) =
a0

a(t)

Where a0 is a real and positive constant of integration. We note that this implies the physical velocity of a
particle on a manifold specified by the above metric will be decreasing with time, since a(t) > a0.
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5. Compute the Riemann tensor elements of the metric in the previous problem

Solution

The Riemann tensor is defined as

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (27)

and so our first step should be to look at the nonzero connection coefficients defined in the previous solution.
They were

Γ0
ij = ȧaδij Γi0j = Γij0 =

ȧ

a
δij (28)

Where a is a function of time. We are going to want to make use of some symmetries of the Riemann tensor,
but these are most manifest in the following ’all lower’ form, so we will actually look to compute

Rασµν = gραR
ρ
σµν = gρα(∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ) (29)

We note that since our metric is diagonal (g00 = 1, gii = −a2 where i = 1, 2, 3), nonzero components will
be restricted to ρ = α. The symmetries we will use to exploit elements of the tensor will be

Rασµν = Rµνασ (i)

Rασµν = −Rασνµ (ii)

Rασµν = −Rσαµν (iii)

Rρσµν +Rρµνσ +Rρνσµ = 0 (iv)

These are derived and discussed in Carroll. Now with this in mind, it can be nice to consider two sets of
lower indexed tensors because of the symmetry of our metric. We will consider finding the nonzero elements
corresponding to R0σµν and Riσµν in a systematic way, since determining the nonzero elements of both will
give us all the nonzero elements of the full Riemann tensor. Lets start with R0σµν . This can be written as

R0σµν = ∂µΓ0
νσ − ∂νΓ0

µσ + Γ0
µλΓλνσ − Γ0

νλΓλµσ

The most straightforward way to check if the tensor components are nonzero is to consider when each term
individually is nonzero. Lets start with the first term, ∂µΓ0

νσ. This term is nonzero when µ = 0 (since our
connection coefficients depend on time only) and when ν = i and σ = j. This gives us a tensor element of

R0j0i = ∂0Γ0
ij − ∂iΓ0

0j + Γ0
0λΓλij − Γ0

iλΓλ0j

=
d

dt
(aȧδij)− 0 + 0− Γ0

ikΓk0j

= aäδij + ȧ2δij − (aȧδik)

(
ȧ

a
δkj

)
= aäδij

So we have determined the components for R0j0i! We can now utilize symmetry arguments to get a few
other components, lets make up a short list of what we have now found

R0j0i = aäδij Rj00i = −aäδij
R0ji0 = −aäδij R00ij = 0
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Where the bottom right expression comes from identity (iv), like

R0j0i +R00ij +R0ij0 = 0 (30)

Now lets move on to what it takes to keep the second term nonzero. We have ∂νΓ0
µσ, which means we need

ν = 0, µ = i, and σ = j. This means we are looking to compute R0ji0, but wait, we have already determined
what the answer is for this component! Its simply R0ji0 = −aäδij from our symmetry arguments above. So
we don’t have to explicitly compute it.

Lets move onto the third term. This is Γ0
µλΓλνσ = Γ0

µ0Γ0
νσ + Γ0

µkΓkνσ. The first term here is always 0 be-
cause of the connection coefficients, and the second term is nonzero for µ = i, ν = 0 OR j, σ = j OR 0
(respectively). We have a couple options to check here. For our first scenario, we are looking to compute
R0σµν → R0ji0, which we just determined from above to be equal to −aäδij , so no explicit calculation
is necessary. The second set of options puts us in R0σµν → R00ij , and we have this from our symmetry
arguments already, as simply being 0.

Next we check the fourth and last term in our expression. This is Γ0
νλΓλµσ = Γ0

ν0Γ0
µσ + Γ0

νkΓkµσ. Like before,
the first term here is always 0, so we needn’t worry about it. The second term is nonzero when ν = i, µ = 0
OR j, and σ = j OR 0 respectively. This means we are computing first R0σµν → R0j0i, which we know from
above is aäδij . The second case puts us at R0σµν → R00ji which has been determined to be 0. Somewhat
miraculously, we only had to perform one explicit calculation to get all the Riemann tensor coefficients for
R0σµν . Now we must move onto the other case.

We are now cast with the duty of checking for nonzero components of the expression

Rkσµν = −a2(∂µΓkνσ − ∂νΓkµσ + ΓkµλΓλνσ − ΓkνλΓλµσ)

We will do this in the same way as before, by checking each term individually. Start again with the first
term, ∂µΓkνσ. This is nonzero for µ = 0, ν = 0 OR i, and σ = j OR 0. We are left with two possible cases,
first Rkj00 which is clearly the same as Rij00, and we know this is 0 from above. Second, check Rk00i which
is just −aäδik from above.

Now lets check the second term, ∂νΓkµσ. This is nonzero for ν = 0, µ = 0 OR i, and σ = j OR 0 respectively.
This yields the terms Rkσµν → Rkj00 which is 0, and Rkσµν → Rk0i0 which is once again aäδik.

Next term is ΓkµλΓλνσ = Γkµ0Γ0
νσ + ΓkµmΓmνσ where m is another index running from 1− 3. Things are a little

more interesting here, as we now have three possible options. If µ = 0, ν = 0 OR i, σ = j OR 0 respectively,
the first term is 0 but the second term is nonzero. These two choices will yield Rkσµν → Rkj00 = 0 and
Rkσµν → Rk00i = −aäδik. The other case is the interesting one, where if µ = i, ν = j, and σ = n the first
term is nonzero. This yields

Rknij = −a2(∂iΓ
k
jn − ∂jΓkin + ΓkiλΓλjn − ΓkjλΓλin)

= −a2(0− 0 + Γki0Γ0
jn + ΓkimΓmjn − Γkj0Γ0

in − ΓkjmΓmin)

= −a2(

(
ȧ

a
δik

)
(aȧδjn) + 0−

(
ȧ

a
δjk

)
(aȧδin)− 0)

= a2ȧ2(δjkδin − δikδjn)

So Rjiij = a2ȧ2 and Rijij = −a2ȧ2, so the antisymmetric and symmetric properties of this one are manifest.

Finally, the last term is ΓkνλΓλµσ = Γkν0Γ0
µσ + ΓkνmΓmµσ. We have three options once again, as before. Keeping

the second term alive requires ν = 0, µ = 0 OR i, and σ = j OR 0. This means we are computing
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Rkσµν → Rkj00 = 0 and Rkσµν → Rk0i0 = aäδik. To keep the first term alive requires ν = i, µ = j, and
σ = n. This boils down to computing Rknji, which we know from above to be Rknji = −a2ȧ2(δjkδin−δikδjn).
So Rjiji = −a2ȧ2 and Rijji = a2ȧ2 which is consistent with what we saw prior. Our new updated list of
Riemann lower tensor coefficients is then

R0j0i = aäδij Rj00i = −aäδij
R0ji0 = −aäδij R00ij = 0

Rknij = a2ȧ2(δjkδin − δikδjn)

Rknji = −a2ȧ2(δjkδin − δikδjn)

Rnkij = −a2ȧ2(δjkδin − δikδjn)

Now lets get it back into the proper form for the Riemann tensor. Recall that Rασµν = gραR
ρ
σµν , so

Rρσµν = gραRασµν . So the 0 components we calculated wont change, as g00 = 1, and the k components will

pick up a factor of gkk = −a−2. The nonzero components of the Riemann tensor are thus

R0
j0i = aäδij

Rj00i =
ä

a
δji

R0
ji0 = −aäδij

Rj0i0 = − ä
a
δji

Rknij = −ȧ2(δkj δin − δki δjn)

Rknji = ȧ2(δkj δin − δki δjn)
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