Phys 514 - Assignment 6
Solutions

Prepared by Bryce Cyr
April 3, 2018

1. The metric for the three-sphere in coordinates (v, 6, ¢) is

ds® = dyp? + sin? (¥)(d6? + sin(0)dp?) (1)

a) Calculate the Christoffel symbols
b) Calculate the Riemann tensor, Ricci tensor, and Ricci scalar.

Solution
a) Recall that

1
I = 5901)(8”9”,) + 0uGpu — OpGprr)

And with our metric, the nonzero metric elements are

Gy = 1 goe = sin® ¢ 9o = sin? ¢ sin? 0

We will approach this systematically, by check the upper index of the connection coefficients first.

1
F:ﬁ)y = igww (a/Lgl/'l,ZJ + 8ug1/)u - a?bg/u/)

The first two terms are 0 since derivatives of gy, vanish. This gives us two choices for the last term,
puw=v=~0and u =v = ¢. These yield the coefficients

Fg’e = —siny cosy
1"$¢ = —sint cos v sin? 0

That’s it for the upper ¥ index. Lets move onto . We have

1
FZI/ = 5900(8M9V9 + 8Vg(9;t - a@.guu)

Lets start with the last term. This is only nonzero if u = v = ¢. This yields the symbol

ngaﬁ = —sinf cos6



This takes care of the ¢ indices. The only other way to get a nonzero symbol is by u =6 or v = 6. In the
first instance, we get

1
ry, = 5966(3(99”9 + 0,900 — 09 gov)

The first term and the final term are 0 by inspection. The middle term is nonzero if v = ¢. By the symmetry
of the symbols we get

sz == Ffbe == COt?/J

Finally, lets look at the last upper index. It is

1
Fﬁu = §g¢¢(8ugu¢ + 8Vg¢u - 8¢g;w)

The final term is always 0 since no part of the metric is ¢ dependent. Now, either p or ¥ must be ¢ to get
a nonzero symbol. The derivative will alternate between the symmetric indices, and so a straightforward
computation yields the final four symbols

¢ _ 1o _
Fw¢—r¢w—cot1/1
¢ _ 1o _
F9¢fF¢9fcot6’

To recap, the nonzero Christoffel symbols here are

F% = —siny cosy
Fi(b = —sine cos v sin® 0
FZM = —sinfcosf
Fz,w:].—‘z}ezcotw
Y, =r?, =cot
wp = Loy = coty
ngs = Fge = cot 6

b) The Riemann tensor is defined as

RY,, = 0,00, — 9,10, + 0 T}, —T0Th, (2)

(e gn%

The techniques to find the Riemann tensor were illustrated in one of the solutions for assignment 4, and
so we will compute as many as my energy will allow for these Christoffel symbols. We recall the useful
expression

_ A
Rpa;u/ - gApRopu

Which allows us to fully exploit the symmetries

Rpopv = —Rpovp Rpopy = —Ropuw Rpopy = Ruvpo RP[UIW] =0



With this in mind, lets start by computing the upper 1 index Riemann tensor indices. Since gy = 1, we
don’t have to do any conversion between the two forms. We get
— P oA P A
R"ﬁUU«V - 3ul“}fo - al’r;qfa + Fp)\FVU - FV}\FMU
Now, to keep the first term nonzero, we note that we have three options. First, we can set v = o0 = 6 and

@ =1 to find

Rygypo = Oy (—sintp cosp) — (%Fi‘g + F%\Fé\e - P"QZ}AF?ZJG
= sin? ¢ — cos? 1 + cos>

= sin” 1)

The middle two terms are 0 in the top line. By the symmetries, we can write a few more terms

Rd,gwg = sin2 1/) R9¢¢9 = Rweglp = — SiH2 1/) waeg =0

As our second check, we note that choosing v = 0 = ¢ and p = ¢ yield a nonzero first term as well. This
expression is

Rygypp = Op(—sintp cosypsin®0) — 9yTY , + T, T3, — T,
= sin? §(sin? ¢ — cos? ¢) + cos® 1psin? @

= sin? fsin? ¢

The symmetries then yield

qugwqg = sin2 0 sin2 w R¢¢w¢ = Rw¢¢¢ = — sin2 0 sin2 ¢ waqbqﬁ =0

Finally, the last option to keep the first term nonzero is v = ¢ = ¢ with p = 6 This yields

Ryg9p = Og(—sine) cos sin? 0) — 8¢sz¢ + F;Z’/\I‘g(z, — I‘Z:AF%
= —2sin 1 cos ¥ sin # cos  + sin 1) cos ¥ sin 6 cos 6 + sin 1 cos ¥ sin @ cos 6
=0

So this one vanishes, as well as all its forms related by symmetries.

Now we move to the second term, 3,1“%0. We have multiple choices again, so first, set y = ¢ = 6 and
v = 1. This means we would be computing Rygey. We already know what this is from above! Its simply
—sin? #sin? 1, thus no computation is necessary. Moving on, we can choose y = 0 = ¢ and v = p. This is
the computation of Rygey which is also done. Finally, the last thing that keeps the second term nonzero
is u = 0 = ¢ with v = 6. This computes Rygp9, which is 0 by an antisymmetric transformation of our
previous result. Thus, we didn’t have to perform any explicit calculation for this term!

Moving now to the third term,

L P N el P o P _ Y o P
LT = Doy Tl + T, + T L0, = 0+ T, + T,



We have options here, first, we can set u = 0 and v = ¢ = ¢. This will mean we compute Ryg94 We have
computed this already, and its 0. Next option, set i =6, v = 0, and o = 9. This computation is of Ryygg,
also 0. Our next choice is 4 = ¢, v =9, 0 = ¢. This is computing Ryppy = — sin? @ sin” ¢ from symmetry.
Finally, we can also make the choice p = ¢, v = 0, 0 = ¢. This yields Rygp9, which is 0 once again by
symmetry.

Lets move onto the final term, expanded it is

A 0 0
Fz)}\rua = Fyd)r:ﬁ)o + FZ}OFMU + Fg}(ﬁrﬁa =0+ FZ)@FW + Fi}qﬁrﬁa
We have four choices again, so lets speed through them. First, choose v = 6, y = 0 = ¢. This corresponds
to computing Rygee, again 0. Next choose v = 0, u = 0, 0 = . This computes Ryyp99 = 0. Next choice
would be u = ¢, v = 1), 0 = ¢. This computes Ryeey, already computed above. Finally, choose v = ¢,
w =0, 0= ¢. This computes Ryg94 = 0.

This concludes the computation of the Riemann symbols for the upper index of 1. As you can see, (and
I'm sure you know after doing it yourself) it is a bit of a slow process. I will quote the results of the other
nonzero Riemann tensor elements here, but rest assured they come from the exact same process as above
but for upper indices # and ¢ instead. Our nonzero elements are

Ryopo = Royoy = sin’ (0 Royypo = Rygoy = — sin? P
R¢¢¢¢ = Rd)wd)w = Sin2 0 Sin2 ’l/} Rd)wwd) = Rw¢¢w = — Sin2 0 Sin2 ’l/)
Rogos = Roose = sin® Osin’ ¢ Rgo66 = Roggo = — sin fsin ¢
To get back to the proper form, we take the transformation R/, = gpAR,\aW, where we have
1 1
Y —q 06 _ oo _ L
g sin? 1) g sin? ) sin? 0

With these transforms, we get our final Riemann tensor elements.

Rg}wa = sin’¢ Rggw = —sin®¢ RZ:W) = sin? fsin® ¢ Ri@ﬁ = —sin?@sin® ¢
szew =1 RZ,W =-1 RZ% = sin® fsin? ¢ R2>¢9 = —sin?@sin®
Rimp =1 R, =—1 R?cﬁe = sin® ¢ R?(w = —sin® ¢

The Ricci tensor is determined by a contraction of the Riemann tensor, R, = Rz \ Since we know this

is a symmetric tensor in three dimensions, we can calculate the six independent components individually
without much work.

_ o 0 p
Ryy = Ry + Ryoy + Ry

—0+1+1

—2

Rgg = Rg)we + Rgeg + R?d)&
= sin? ) + 0 + sin®
= 2sin% 1)



_ v o $
Rog = Ry + Rogp + Rypp
= sin? ¢ sin? 0 + sin® ¥ sin® 0

= 2sin? ¢ sin? 6

Ryo = R o+ Riygg + RS g
=0+0+0
=0

Ryg = RYy + Ry + Ry
=04+040
-0

Rog = Ry + Rigy + Ry
=04+0+0
=0

So the independent components of our Ricci tensor are

Ryy =1

Rgg = 2sin? 1

Ryp =2 sin? ¢ sin? 6
Ryg = Ryp = Rog = 0

Our Ricci scalar is defined as R = gV R,,,. Using the inverse metric written above, this yields
R = gwwRW/, + geaRge + g¢¢R¢¢

=24+2+2
=6



2. Do the same calculation using the tetrad basis.
Solution
Recall our line element from the previous problem
ds? = dip® + sin? d0 + sin® 1 sin? 0d¢?

To make use of the tetrad formalism, we would like to have a line element that looks like

ds®e®ebs,,

Where a,b run from 1 to 3. This allows us to define our tetrad basis. It will be

eV =dy e’ = sinydo e® = sin sin Odg

Note that we are now in a noncoordinate basis. The appendix J of the book provides a good background on
the application of the tetrad formalism, so refer to it if you are having any confusion. We wish to compute
the Riemann tensor, which by equation J.29 is

Ry = dwi + wi A wy (3)

If we expect to find this, we had better start by first computing the spin connection, w. Note that the

Riemann tensor in the above expression has been expressed in a basis of one forms, so R = Ry dx*dx”.

buv
We can determine the spin connection by the expression
de® = e” A wi
Note that the spin connections are antisymmetric (see appendix J), so w?® = 0. Clearly we need the

differential of our basis to compute the spin connections, but at least that we can do! This basis is

de¥ =0
de? = cosydy A df
de? = costpsin Odi) A dé + sin 1) cos 0dO A d

Lets write down our three equations now, and deduce the elements of the spin connection.

0 = sindf A o.)g + sin v sin Od¢p A w$
cosdy N\ db = dip A wz, + sin ¢ sin Od¢ A wz,
cos P sinOdy N d¢p + siny cos0dO A dg = dy A wi + sinydf N wg

From the third line, comparing the left and right hand sides, we can see that wg) = cosfd¢ and wfz =
cos 1 sin fd¢. Now from the second line we can see that wfﬁ = cosdf. Since the spin connection is a 3 x 3
antisymmetric object, there are only three independent components, which we have found. For clarity, they
are



w(‘f = cos0do
w;’z = cos Y sin Odo
W?p = cos db

In order to compute the Riemann tensor, we must take the differential of these objects as well. They are

dw§ = —sin 0d6 A dg
dwi = —siny sin dy A d¢ + cosp cos 0dO A do
dwf, = —sinepdip A df

From here, we can finally compute the Riemann tensor, Rjf = dwj: + wZ A wy. We note this object is also
antisymmetric in @ and b, so we only need to compute the three independent components once again.

Rg’ :dw}f +w$ /\wg’
= sinydy A df — cos sin 6 cospdo A do
= sinydy A db

RY = dw$+ngwg
= sin ¢ sin 8dy A d¢p — cos ) cos dO N do + cos 6 cos pdf A dp
= sin ¢ sin 8dy A dop

RY :dwngwﬁ, /\w:f
= sin6df A d¢ — cos? 1 sin 0dO A do
= sinf(1 — cos® ¥)db A d¢
= sin #sin® df A do

Our Riemann tensor is thus

RY = sinepdy A d6
RY, = sindsin6dy) A dg
RY, = sin@sin® df A do
Where I have introduced the prime notation to specify that these are in the noncoordinate basis. We wish

to switch back to the coordinate basis now, since the difficult part of finding the tensor is taken care of.
The expression to do so is (equation J.49 in the book)

RP

_ _p.b pa
ouv eaeaRb,uV

Recall that we had expressed everything on a basis of one-forms, so we had e = ej,dz". This means that
the e¥ is the coefficient attached to the differential in our tetrad coordinates, and e the reciprocal (since



the metric is diagonal). Note also that the differentials in the wedge product are our basis one-forms, p and
v, so for example, RZ’, po = Sin wdy A df. Lets compute the upper v Riemann metric elements now.

RY, = ei/eng

opY buv
_ by v 0 py’ Y ¢’ py’
=eyeqy Ry, tepes Ry, e el Ry,

We note that since the tetrad basis is diagonal in the coordinate basis (no cross-terms), we only have three

nonzero, diagonal e terms. Since Ri: = 0, this yields the two Riemann tensor symbols from the last two
terms above as

R;p,uu = elwp’ez/Rg}’pu
= (1)(sinv)(sinpde) A dO)
RZ’W =siny

For one of them. The other given by the ¢ term

v _ Y 9 Y
Ry, =epey Ry
= (1)(sin sin 0)(sin e sin Odp A do)
sin? ¢ sin? @

b
R¢w¢>

Moving onto upper 6 terms yields

0 _ 0 ¢ po
Rwl“, = ee/ew Rd}’,u.u

:( L )(1)(—sin¢dz/}/\d9)

sin v
Riy = —1

and

6 _ 0 ¢ po
Ry, = egey Ry

_ 1 : . .9
= (SiIlQ/}) (sin ¢ sin 6) (sin O sin” dO A do)

RZ% = sin? ¢ sin? 0

Lastly, we compute the upper ¢ components

b _ 0 pd
Ry, =eypey Ry,

_ (1> (1)(= sin ¢ sin 6dep A dgb)

sin ¢ sin 6
6 _
Rypy=—1

and finally



0 ¢’
R(g;u/ = ei’ €p Rg)’;u/

= <1) (sin¢))(— sin O sin® vdf A do)

sin v sin 0
Ry, = —sin®1)

Putting all these symbols together, and exploiting the antisymmetry of the final two indices yields a full
Riemann tensor of

Rg}we = sin® P RZ)M = —sin? P R;{’Wb = sin? 6 sin? P Riw = —sin2 @ sin? v
be&zp =1 Rz,wo =-1 RZG¢ = sin? fsin? ¢ RZW‘) = —sin?@sin?
Rjy =1 Rjy=-1 Rfye =sin®y Rfyy = —sin’ ¥

Exactly as we had in the previous problem, thus the Ricci tensor and scalar are obviously the same as
before.



3. Consider 3-dimensional (i.e. 2+ 1) gravity.
a) How many degrees of freedom are in the Riemann tensor?
b) How many degrees of freedom are in the Ricci tensor?
¢) The Riemann tensor can be decomposed into the Ricci tensor and the Weyl tensor (see textbook, Page
130). Using this fact, how many degrees of freedom are in the Weyl tensor?
d) Are there gravity waves (gravity waves are fluctuations of space-time without associated matter pertur-
bations)?

Solution

a) The first the realize when approaching this problem, is that the number of degrees of freedom (or analo-

gously, the number of independent components) is the same in either R” v and Rps,. The latter expression

has its symmetries manifest, so lets consider how many degrees of freedom are in that object.

Please refer to pg 128 of the textbook for a great derivation on the number of independent degrees of freedom
for the Riemann tensor in n dimensional spacetime. The end result is

1
D.O.F. = Enz(n2 -1)
For 3 dimensional spacetime, we get that the Riemann tensor has 6 degrees of freedom.

b) The Ricci tensor is a symmetric 2 tensor. In three dimensional spacetime, the Ricci tensor has 9 elements,
and since the tensor is symmetric, this leaves 6 independent degrees of freedom.

¢) The Weyl tensor in n dimensions is defined as

2 2
Cpa,ul/ = Rpa;w - nf(gp[uRu]a - ga[uRy]p) + ( gp[ugu]oR

2 n—1)(n—2)

The easiest way to see the number of degrees of freedom in the Weyl tensor is to note the decomposition.
The question states that you can decompose the Riemann tensor into the Weyl tensor and the Ricci tensor.
Since we know from above that the Riemann tensor has 6 degrees of freedom, and the Ricci tensor also has
6 degrees of freedom, this leaves 0 degrees of freedom for the Weyl tensor to possess. Thus, the Weyl tensor
has no degrees of freedom and must vanish in 2 4+ 1 dimensions.

Cropr =0

d) Since the Weyl tensor is 0, let us rewrite the Riemann tensor in terms of the Ricci tensor and scalar. We
get (in n = 3 dimensions)

Roopw = 2(9pulie — olulllp) = Gpludvio Rt

Now, in vacuum we know that Einstein’s equations reduce down to

1
G = Ry — 39w R =0

1
RHV = §gHVR

Now we recall that the Ricci scalar is defined as R = g"” R,,,. Multiply both sides of the above equation by
g"¥ to find

10



17 1 14
9" Ry = 59“ g R

3
R—§R

Where we have used the fact g*”g,, = 3 in three dimensions, by definition. This is clearly only satisfied if
R = 0. This implies that R,, = 0 as well. Now, since the Riemann tensor is defined by the Ricci tensor
and scalar, it too must vanish.

The Riemann tensor is a measure of curvature. Having it vanish implies that there is no curvature, so
9uv = M where 7,, is the Minkowski metric. Recall that gravitational waves can be investigated by
perturbing a Minkowski metric, such that

uv — Nuv + h,ul/
Where h,, are small perturbations ontop of a Minkowski background. Since we have just shown that the

metric goes exactly to a Minkowski one, there can be no extra perturbations, and so it is impossible to get
gravitational waves within this theory.

11



4. Find the solution to Einstein’s field equations for a massive point particle (at rest) in 2 + 1 dimensional
gravity. Hint: Write the stress-tensor for a point particle, make an ansatz for the metric making use of the
symmetries of the problem (diagonal, static, polar symmetry), and then find the resulting Riemann tensor.
Then solve for the metric.

Solution

The stress energy tensor for a point particle is T°° = mdé?(Z) in 2 + 1 dimensions.

As an ansatz, we take our metric to be

d82 _ eQA(T)dtQ o dr2 o CQB(T)d¢)2

Where we have eliminated the parameter attached to the r variable in the same method as used in Carroll,
page 194. A, B are arbitrary functions of r, and we will drop the r brackets in what follows. To find the
Riemann tensor, we make use of the tetrad formalism. Our tetrad basis is defined as

0t = edt 0" = dr 0¢ = ePdg

Their differentials are

det = Aleldr A dt dom =0 d8? = B'ePdr A do

Where A’ = dA/dr. To deduce the spin connections, we must solve df® = ° Awyp. Noting the antisymmetry
of w, we can write down our three equations

do' = Aletdr Adt = dr Aw! + ePdg AW,
A9 =0 = etdt Awf + ePdp AW
d0? = B'ePdr Adp = e?dt Aw? + dr Aw?

From these three equations, we can deduce the elements of the spin connection and its exterior derivative

Aleldt dw! =

wt = e A" + A)dr A dt
t t
wy = —B'ePdg dw} = —e®(B" + B?)dr A dg¢

To find the elements of the Riemann tensor, we use R} = dwj + wd A wy. Doing so yields

RY, = eMA" + A?)dr A dt
R, = —A'B'e*Bdt A do

i = —e’(B" + B?)dr A dg
Now we can find the nonzero components of the Riemann tensor in a coordinate basis, using the expression
R, = 076° buv» Where we make note that
¢ = diag(e=*,1,e75) 0° = diag(e?, 1, eP)

12



So lets compute each element.

t __pt g’ pt’
RL,, =0.00 R

(nz
= (e (1)(A” + A%)eldr A dt)
R:tr — —A" — A/Q

_ @' pt’
= (e~ ) (eB)(—A'B" e Bdt A do

Rlyy = —e*PA'B’

puv
= (1)(eB)(—(B" + B"*)eBdr A dg)
gr(b — —€2B(BH + B/2>

b = 0000 RL,

Where the other symbols are related by symmetries and the metric. Lets compute the Ricci tensor. The
metric and inverse metric are

Juv = diag(ezA, -1, 7623) gt = diag(e*QA, -1, 76723)
So our Ricei tensor is

Ry = Ritt + Ry + qubt

=0+ gug "Rl + gttg¢¢bet¢
_ e2A(A// + A'B' + A/Q)

RTT = Ritr + R:'rr + Rf(br
= Rf‘tr + 0 + gTTg¢¢R2>r¢
_ 7(A//+A/2 +B/I+B/2)

_ pt r [
Rop = Rgrg + Ryrp + Ryyy
— _eQB(A/B/ +B// + B/Q)

And our Ricci scalar

R = g“VR,u,l/ = gttht + gTTRTr + g¢¢R¢¢
_ Q(AN + A/Q + B" + B/2 + A/B/)

13



Calculate Einstein tensor G, = Ry, — %g,wR

Gtt =€2A(A”+A/B/+A/2) —€2A(AN+A/2+BH—|-B/2—I—A/B/)
_ *GQA(B//+B/2)

Gr'r — _(A//+A/2+B//+B/2) _ (—1)(A//+Al2+B”+Bl2+AIB/)
=A'DB

G¢¢ _ —GQB(A/BI-FB” —‘rBlQ) _ (_eQB)(A// +AI2 +B//+B/2 +A1B/)

_ GQB(AN—FA/Z)

From the stress tensor, we know that the G, and G4, components must be zero, for 7 nonzero, this implies
that A’ = 0. We can also set A to 0. This satisfies the two lower equations. Now, the first equation is

Gtt = 87TGTtt = SWthtgttTtt

With A = 0 we have g;; = ¢ = 1, so we must solve

—B" — B"” = 8tmG§*(7)

We note that the elemental area in polar coordinates is e®drd$, and so we can write the normalization of
the delta function as

[e’s) 27
/ 62(F)eBdrdp = 1
0 0

Now, define a new variable A = e so that A” = (B” + B'?)eP. The temporal part of the Einstein tensor
becomes

N'e B = —8rmG&*(7)

Clearly from this, 6%(7)e? = —A”/87mG so from the normalization we have

27 A
/ / 8mmG drd¢

T (A (00) = A'(0))

4mG

So

N (00) = A'(0) — 4mG

Since A’ is constant, we can say that A = Dr. Integrating not to infinity but to r yields

14



AN (r) — A'(0) = —4mG
So A’ will be discontinuous across the origin. so we can take A(r) = dr for r # 0 and A’(0) = 1 to find

A(r) = (1 — 4mG)r. With this, we have solved the metric. It is

ds* = dt* — dr* — (1 — 4mG)?r?d¢?

15



5. In class I sketched the derivation of the Einstein tensor for the spherically symmetric metric

ds? = > qt? — [ezb(r)dr2 + 72d0?) (4)

using the tetrad formalism. Complete the derivation.

Solution

This will follow the same structure as problem 2. The full metric is (for clarity)

ds? = 29 qt? — [ dr? + 12de* + r? sin? 0dp?]

Our tetrad basis here is

ot = Mgt o = ey 0% =rdo o? = rsinfde

The differentials of this basis are thus

do® = a/(r)e®™dr A dt

do™ = ' (r)e?Mdr Adr =0

do® = dr A df

do? = sin0dr A dé + r cos 0dO A do

Where we note that a'(r) = da(r)/dr. Now as before, we need to find the spin connections, w. The
expression is do® = o A w?. Writing the four equations that we get yields

do' = d'e®dr Ndt = e’ dr A wl + rdf A wh + 7 sin 0dp A w,

do” =0 = e"dt Nwi +rdf Awy + rsinfde A wg

do? = dr Adf = e®dt Aw! + ePdr A WP +7‘Sin0d¢>/\wz

do? = sin@dr/\d(b—i—rcos@d@/\dgf):e“dt/\(,ufs—4—ebdr/\wf—|—7’cl0/\(,u§s

Now from these equations, and the fact that w® = —w?, we can deduce the six independent elements of the
spin connection. From the last equation, we can easily deduce w? = e~’sinfd¢ and wg) = cosfd¢. From
the third equation we find that w? = e~°df. Now, from the first equation we can deduce w! = a’e?~dt.
That’s it for the easy to compute elements of the spin connection. We currently have

w? = e bsinfde
wg = cos Od¢
Y =e7dh

w
wl =d'e*dt

We are still missing wy and wj,. From the first line, wj is either 0 or proportional to df. From the third
line, wf is either 0 or proportional to dt. To satisfy both constraints, we must have w) = 0. By the same
reasoning, we find that w; = 0, so our full spin connection is characterized by

16



w! =e7ap
wh =d'e*bdt
wh = wg =0

To find the Riemann tensor, we have to now find the differentials of this. They are

dw? = —b'e b sindr A dp + e~ cos 0df A do

dwj = —sin 0d6 A do

dw? = —b'edr A db

dw! = a”ePdr Adt 4 d/(a/ — b)e?Pdr Adt = (0" + (a')? — a'b)e* Cdr A dt
dw)) = dw; =0

The Riemann tensor is defined by

Ry = dwi + wi A wy

and is antisymmetric, meaning we must compute only the six independent elements once again. Let us
begin

Rl = dw! + W} /\wf—i—w;/\wf
=(a"+ () = d'b)e* bdr Adt + 040
= (a" + (a')* — d'V)e* bdr A dt

R} :dwg—l—wﬁ/\wg—&—w;/\wg
=0+4de* bdt A (—ebdf) + 0

=a'e®2dh A dt

R! :dwfb—l—wf,/\w;—kwé/\wz
=0+4d' e bdt A (—e Psinfdp) + 0
= asin e 2dg A dt

R = dwj + w) A wh +w£/\w3
= be ldr Adf + 04 (—esinfdg) A (cos Odep)

=be bdr A db

17



6= dw@%—w{/\wé—kw@ /\w(‘?s
=be lsinfdr Adp — e b cosfdf A dp + 0 + (—e~bdh) A (— cos Bdo)
=be lsinfdr A do

RY = dwg—i—wf /\w;—&—wf/\w;;
= sin@df A dp+ 0+ e=°df A (—e " sin Odp)
=sinf(1 — e 2*)dl A do

Ok, let us list our Riemann tensor elements once more for clarity (in the tetrad basis).

RL, = (a" + (a')? — a'b)e® bdr A dt
RY, = d'e* 20 d0 A dt
RY, = o/ sin e 20de A dt
Ry, =be bdr A df
n=be Psinfdr A do
Rg, =sinf(1 — e 2*)dO A do
We have primed the variables to distinguish between coordinate and tetrad basis now. We now want to

switch back to the coordinate basis to compute the rest of our objects. We switch back with the usual
expression

’
R!  =eleb R!

ouv buv
_ Ut t’Rt' + t r’Rt’ + t Q’Rt’ + t ¢>’Rt’
— et/eo. t,,ul/ et/ea. ,rll_“/ etleo. /,UJ/ et/ea' //»“/

Where we have illustrated the formula to solve for an upper t, for clarity. Recall that in our tetrad basis,
all the e’s are diagonal, explicitly they are

’ ’ ’
el = eaM el = ebr) eh =r ef; =rsinf
t _ _—a(r) r _ ,—=b(r) 0 __ 1 ¢ _ 1
ey =e¢ e =€ egr = — el = —
k " "y ¥ rsinf

In coordinate basis, our Riemann tensor becomes

Rt — et r’Rt’
TUY T t'Cr (N

= (e7 ) (") (a" + (a')* — b )e?bdr A dt
Ri’,«t — GH + (al)Q _ alb/

Réf“’ = 65/ ez/Rtlle
= (e ) (r)(a’e®2*dh A dt)
Rbg, =rad'e™?
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Rfi)uv =el, 6$,Rt//w
= (e=%)(rsin@)(a’ sin #e® =2 dep A dt)

Ré&q&t = ra’ sin® ge2°

Raw = e:’ei/R:’/uu
= (e7")(e)(—(a" + (a')? — 'V )e dr A dt)
R:rt — _eQ(a—b) (a// + (a/)Q _ a/b/)

Ry, =ele) Ry,
= (e ") (r) (Ve dr A d)
Ry, =rble 2

r o ¢ pr
puv = Er'€p Ll

= (e ®)(rsin0)(b'e~b sin Odr A do)

R}, = rb sin®fe”?
0 _ 0 t' po
Rtul/ = €y €y Rt/uu

= <1> (e®)(—a'e*=20dh A dt)

r
Rf&t _ a/eQ(a—b)
Rﬁl“’ = egle: R,,Gn/l“,
1
= () (e®)(=b'e~bdr A df)
T
1
Rfr@ = _7b/

0  _ 0 ¢ po
Ry, = egey Ry

1
— (T> (rsin@)(sinf(1 — e_Qb)dH A de)
Ri% =sin?4(1 — e~ )
Rf}tl/ = eg'eil R?uu

= ( ! ) (e®)(—a’ sin B2 d¢ A dt)

rsinf

1
Rf¢t — _;a/€2(a—b)
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R, =chel RY,

Uy r’ uv
1
= <Tsin9> (e®)(—=b'e~bsin Odr A do)
1
Rfrqb = 7;b/
0 o’
Rgul/ = 6?;’69 RO/;,W

R?@d) =—(1-e?)

So our full coordinate Riemann tensor is thus

R, = —(a" +(d)? —d'b) Rb,y = —ra'e”? RY,, = —ra’sin® fe ="
anm = (a” + (a')2 — a’b/) Rggt =ra'e? R;w = ra’ sin® fe2°
R, =2 9" + (a')? — d'l) Ry, =rbe 2 Ry, =10 sin? g2
Ry, = =2V (d" + (a')? — a'V) bor = —rble” Rjys = —rb'sin® ge ="
1 1
RO — — g e2(a—b) R, — —p RO, —sin20(1 —e 20
tOt 'I’a € ror r b0p sSin ( e )
1 1
Ry = —a'e*™?) Riyg =~V R4y =—sin®0(1 — e )
1 1
Rpy, = *;a/eg(%b) R}, = v Ry, =(1—¢)
1 o 1 _
Rf;d) = ;a/ez( 2 wa = —;b/ R‘;’% =—(1-e?)

The Einstein tensor is G, = R, — %gWR so we need to compute the Ricci tensor and scalar. The Ricci
tensor is R, = Rﬁ)\u' Lets do so

Ry = Ritt + Ry + Rteet + Rfm

=04 e2(a7b) (a// + (0/)2 . a/b/) o lale2(a7b) _ la/62(a7b)
r r

— 62((171)) <a// + (a/)2 — b + 2:/>

Ry = Rf"t?“ + R:rr + Rﬁer + quﬁr
1 1
_ _(a// + (a/)Q _ a/b/) L0+ iy + .y
r r

20
=—a" —(d)?+dV + =
,

Rgp = Rfyp + Rpg + Rogy + Rg(zze
= —rde®trbfe ™ 40+1—e2

=14+e 200 —d)-1)
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0
Ros = Ry + Ripg + Rigs + Rigy
= —ra’sin® fe ™% + b sin? e ?° 4 sin? (1 — e~ %)

=sin®0(1 + e 22(r(b) —a’) — 1) = sin® ORyg

Finally, the Ricci scalar is R = ¢g""R,,,,

R=g"Ri + 9" Ryr + g Roo + g°° Ry

— e—QaeQ(a—b) (a// + (a/)Q — b + 2:'/) _ €_2b (_a// _ (a/)Q +adt + 2rb/>

1 1
- r—z(l +e 20l —d)—-1)) - Ty Q(Sinz O(1+e2(r(t —a') — 1))
I _.2b
226_2b <a”—|—(al)2—a/b/+2(ar b)+1 7,26 )

Since R, = 0 outside the spherically symmetric object, we can solve for the coefficients in the same way
as page 196 of Carroll. This yields

-1
621121—& e%:(l—&)

r

Where R; comes from an undetermined constant of integration, and is interpreted as the Schwarzschild
radius.

The Einstein tensor is G, = Ry, — %ng. Since we know (and used) the fact that R, = 0, a straightfor-
ward computation in mathematica shows that R = 0 as well. The Einstein tensor is thus

G =0

As expected for the vacuum outside a spherically symmetric source.
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6. Derive the Einstein tensor for the metric of the above problem, this time using the coordinate approach.
After solving this problem you should be convinced that it is easier to use the tetrad formalism.

Solution

For this problem, we will just compute the Christoffel symbols, showing that they match those given in
equation (5.12) of Carroll, and leave the rest as an exercise, as we have gone from symbols to Riemann
tensor elements many times in previous problems during the course. The line elements is

ds? = e2Adt? — 2Bdr? — r2dh? — 12 sin? 0d¢?
g = >4 grr = —€°P goo = —1° Jodp = —r%sin® 6
The Christoffel symbols are defined by

o 1 o
L = 99 P(0u9vp + OvGpu — Opgur)

As usual, lets start with an upper ¢ index.

1
Ffw = 59“ (a,ugl/t + augt,u - atg,uz/)

The final term is 0 since there is no time dependence on the metric. In this cas we can take py =r and v =t
(or vice versa) to find

1
[, =Tf, = ge 224%™
That’s all for this upper index. Next lets look at upper r
T 1 rr
F;,u/ = 59 (augur + augrp, - arguu)

There are many options here. For the first two terms, to be nonzero we can set p = v = r to find
Is 1 T 1 —2B !/ 2B /
I, = ig rrr = 5(_6 )(=2B'e*”) =B

Now we get a term for each p = v =1t,0, ¢ (we already did the case where it was 7). In each case, only the
last term contributes and the symbols are I'), | = —%g” - Gup = ¥8Tgw

r _ 7' .2(A-B)
r7, = A'eX
bo = —re "

o6 = T sin? fe 25
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Now lets consider an upper 6. This gives us the equation

1
FZU = 5999<6Mgw9 + augéu - 899;u/)

The first two terms are symmetric, and require either = r, v = 6, or vice versa. This yields

1 1 _
1“29 = FZT = 5990@960 = —57" 2(—27“)
1
r

For the last term, we require that © = v = ¢ to be nonzero, and so we find

—r72(—=2r?sinfcosf) = —sinf cos

0 __
L'oo = 3

Now lets move onto the last terms, with upper index ¢

1
Fﬁu = ing(auquﬁ + 81/9(15;4 - 8¢g/w)

The last term is always 0. The first two terms are nonzero for u =r, v = ¢ AND p =60, v = ¢ (and vice
versa). This leads to the symbols

1 1
§g¢¢3rg¢¢ = 5(—7“_2 sin™2 ) (—2rsin? 0)
1

r
1 1
F&s = Fge = §g¢&gg¢¢ = 5(—7“_2 sin™26)(—2r%sin 6 cos 0)

= cot

¢ _1¢
ré, =19,

To recap, our symbols were

Ff‘t = thfr = A/

I, =B
Iy, = Ale?A=P)
bo = —re P
Iy =—1 sin? fe—28
=T} =

FZ¢ = —sinf cos 6

1
¢ _ 1o _
I‘W—Pm—;
F$¢:F$9:cot9

These 9 independent symbols match (5.12) of Carroll. From here it is straightforward (and very tedious) to
go to the Riemann tensor, and eventually to the Ricci tensor and scalar. If you have any specific questions
on those steps, feel free to email me at bryce.cyr@mail.mcgill.ca and I can help you out, but I won’t be
continuing the full derivation here.
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