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1. Consider two inspiraling black holes with mass 10M, where Mj is the mass of the sun. Assume the system
is located at a distance from us which is equal to our distance from the centre of our galaxy. Assume
that the initial seperation is 1007, where r, is the Schwarzschild radius. In the weak field approximation,
compute the gravitational wave amplitude h(t) at the LIGO site as a function of time, making use of the
quadrupole radiation formula. Then, using the formula for the radiated power derived in class, compute
the gradual decay of the orbital radius r(¢) (using Newtonian physics to relate the energy density radiated
to the change in the orbital radius). The approximations cease to be valid once r(t) approaches rg, so stop
the calculation before that point.

Out of 20

Solution

The weak field limit is g, ~ 74 + huw, where by, corresponds to a small perturbation about Minkowski
space (such as those sourced by distant binary black holes. The derivation of the quadrupole moment is
presented in section 7.5 of Carroll, and so won’t be rederived here. The final statement is that the trace
reversed perturbation is

- 2G d1;,
hij(t,x) = — dt;( r)

Where ¢, = t — |x — y| is the retarded time, r is the distance from the source to the observer, h,, =
Py — %hnw, and I;;(t) is the quadrupole moment tensor

L (t) = /yiijOO(t,Y)dBy

This is very similar to the example of the binary star system starting on page 305, so we follow closely. The
velocity of each black hole is given by equating the centripedal force to the gravitational one

100GM02 _ 10M0U2 _ GMQ
(100r)2 507, "=V 200,

A single orbit takes T' = 27(507;)/v and has an angular frequency

o, 1 [GM,

T ~ 100 5r3

The paths of the black holes (labelled by a and b) then follow
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Figure 1: An over-simplified Microsoft paint illustration of the problem

The energy density is localized in space to each of the black holes, and so we get some convenient delta
functions
T%(t, &) = 10M6(2®)[6(z" — 507, cos Q)6 (2* — 507 sin Qt) + 6(x' + 507, cos Q)5 (22 + 507, sin Qt)]

The quadrupole moment is then easy to find

I11 = 50000 M7 cos® Qt = 25000Mqr2(1 + cos 20t)

I35 = 50000Mor? cos? Qt = 25000Myr2(1 — cos 20t)
Iy = Iy = 50000Mqr? sin Qt - cos Qt = 25000Mqr? sin 20t
Iiz=13;=0

From this, we see that the trace-reversed perturbations are given by

B °G —cos20t, —sin2Qt,. 0
hij(t, @) = = - 100000Mr2Q* | —sin2Qt,  cos2Qt, 0
" 0 0 0

Which of course is just the same as equation 7.149 in the text

~ e —cos20t, —sin2Qt,. 0
hi;(t, &) = - MR20? | —sin2Qt,  cos2Qt, 0
0 0 0



with M — 10My and R — 50r,.

Since we have separated the constant and oscillatory parts of ﬁij, the amplitude will just be the prefactor.

_ 8GMR(1)2Q*  2G2M?

ht) r ~ rR(t)

Or, for our specific case at the beginning of the inspiral
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This amplitude grows with time, as the radius of orbit of the black holes (R()) shrinks.

The power radiated for a binary orbit is given by equation 7.193 in the textbook

o 2G*MP
5 R5(1)
The total energy for an object in a binary orbit is
1 M?
Pty
2 2R

In the Newtonian limit, the velocity is given by v? = GM /2R so our expression becomes

GM? p_dE _ GM?dR

E= = = -
4R dt 4R? dt

Equating the two power equations yields

GM? dR 2 G*M>
4R? dt 5 RS
dR __SGM
d 5 R?
Integration yields

2 ,
R*= —%GSM% +C

Our initial condition is that R(t = 0) = 507, so C' = 6.25 - 10572

So our orbit decays as

32 1/4
R(t) = <6.25 10074 — 5G3M3t>

Where M = 10Mj.



2. In class I justified the ansatz for a cosmological metric of the form

ds® = dt? — a(t)*(dy? + f2(v)[d6* + sin® Odp?])
and sketched the derivation of the Einstein tensor in the tetrad basis. Perform the explicit calculation.

Solution

We will write the line element in a slightly more compact form

ds* = dt* — a*(dy® + f*[d6? sin® §d¢?))

As a matter of notation, overdots represent time derivatives, and primes represent derivatives with respect
to 9. Now, to start, our tetrad basis and exterior derivatives are

et =dt det =0
eV = ady de¥ = adt A dip
e? =afdb de? = afdt AdO+ af'dip A do

e® = af sinfdo de® = af sinOdt A dp + af’ sin@dp A do + af cos0dO A de
Now we use de! = e A wy to deduce the spin connection

det =0 = adz/)/\wfb +afdd A w +afsin9d¢/\w;
de? = adt N dip = dt Aw; + afdd Awy + af sin0dg A w))
de? = afdt AdO + af'dip AdO = dt Aw] + adip AWl + af sin0de A wf
de® = afsinfdt A do + af sinOdip A do + af cos0d A dp = dt/\wf—l—adz/}/\wi —l—afd@/\wg

After some investigation, the six independent spin tensor components (and their exterior derivatives) are

w! = ady dw? = adt A dip

w! = afdo dw? = Gafdt Adf + af'dy A db

w? = af sinOde dw? = af sinOdt A dg + af sinOd A dp + af cos 0dd A do
wl, = f'df dwf, = f"dip A df

wf) = f'sinOdg dw, = f"sinfd A dg + f' cos 0d6 A do

wf = cos Od¢ dwj = —sin 0d6 A do

Now we can determine the tetrad version of the Riemann tensor, R = dwj +ws Awg. After a bit of algebra
(and some glorious cancellations) we find



RY = Gdt A dip

RY = Gfdt A do

RY = if sinfdt A do

RY, = (f" + a2 f)dy A do

RS, = sin0(f" + a2 f)dw A do

RS =sin(f2 + a2 f2 — 1)do A d¢

; ; P P b pa
Next up is to compute the normal Riemann tensor R, = e, e, Ry, where we have

e?, = Diag(1l,a™ ', (af) ™!, (af sinf) ") ef’; = Diag(1,a,af,af sinf)

Our tensor is thus

Rzpyv = e:j;b/efR;epu
(a™ 1) (1) (adt A dip)

i

0 _ 0 t'pb
R —egzeth/MV

= ((af)™)(D)(afdt A db)

R}, =€l el Ry,
= ((af sin®)~1)(1)(af sinOdt A do)
5
R?q&t = T

R?/JIW - eg/eilbe/,W
= (@)™ (@)((f" + a*f)dy A db)

o= (549

6 _ b ¥ pd
Ry = €4y By

= ((afsin0)7")(a)(sinO(f" + a*f)dy A dg)

1"
¢ _ -2
R¢¢¢__(f+a)

_ e¢' 60/R¢/

¢'0 FYo' uv
= ((afsin®)™")(af)(sinO(f* + a®f* — 1)dO A do)
Rgb(ﬁa =—(f?+a’f?-1)

®
RG,uv



In summary, we have

v a
Rtwt - E
6 a
Rigy = —
6 _ a
Rt¢t _E

1
Ry == (% +2)
1!
o} _ f .2
Ry =—(f?+a*f*—1)
Now recall the metric and inverse metric
guw = Diag(1, —a?, —a®f?, —a* f?sin® 0)
# — Diag(1l,—a"2,—a"2f 72, —a"2f2sin"20
g g

We can now compute the Ricci tensor, R, = Ry,

6
Ry = R}y, + Ry, + Riy, + Ry,

a a a

a a a
a
= —-3—
a

_ pt P 14 o}
Ryp = Rypy + Ry + By + Ry,

_tt P 0 ¢

= 9" gy Ly + Ryoy + Ry

(-5 (54

Rgo = Ry + nge + Rpog + Rg>¢9
= 9" gog Rlp, + gwwgeaRZQw + R(d;(z;e
— e () + caeemc (Lra) - e e -y
=it [P = P R
=1t i 20) — S~



_ pt P 0 o}
Rog = Ry + Ryyg + Rogp + Rypp
00
= 9609" Riy + 96097V Ry, + 9609 Ry

= (—a®f*sin0)(1)(~ <>> + (—a? f?sin® ) (—a™*) (= (J; +a )> t (—a® f2sin® ) (—a=* f 72 (~(F7 + a2 - 1)
= f2sin®fai —sin® Of f — a®f% —sin? 0(f2 + a>f2 — 1)

= sin? 0 Rge

The Ricci scalar is given by R = g""R,,,,

R =g" Ry + g% Ryy + 9" Roo + 9°° Ry

=(1) (-32) — (a7 (ad — 24* — 2J; ) —2(a"2f %) Rog
- a f// 2 f// f/2
_—37—5+27 2fa2 a2f2—2 +47+2 f+2a2f2

a a2 f// f/2 1
-9 - —-3— -9 —
<3a 3(12 a2f a2f2+a2f2)

Computing Einstein tensor, G, = Ry, — %gWR in Mathematica (I got tired, sorry!) yields

d2 f/2 1 2f//

Cu="p-pptep oF
. f/2 1
Gy = —2ai + @ +F—F

Goo = —2aaf? +a*f> + ff"
Gyp = sin® O(—2aif* + a® f2 + ff")



3. Consider the thermal equilibrium distribution for Bose and Fermi particles. For bosons this is the black
body spectrum.
a) Show that if a particle species decouples at a given time ¢; with a black body distribution, it will maintain
the black body distribution with a temperature which is simply redshifted by the expansion of the Universe.
b) Is the spectreal form preserved for any initial distribution?
¢) Is the black body spectrum the unique spectrum for which its form is preserved under expansion?

Solution

The distribution functions obeyed by Fermions and Bosons are

1

i

Where + corresponds to Fermions and — to Bosons. We have neglected chemical potentials here, as they are
usually small (~ 0 in the case of CMB photons). Our question is, given an initial energy E; and temperature
T;, does the form of f(F) change with the expansion of the universe? To do this, we need to see how particle
energy changes with expansion, and so let us look at the evolution of UY, the time component of the four
velocity. We need a metric, and so we will take the usual FRW (in the absence of curvature)

ds® = —dt® + a(t)? [da® + dy® + d=°]

The geodesic equation is as usual

U
SV LR gy —
o+ DL, UPU” =0

Since we are looking for the evolution of the 0 component this reduces to

au’ 0 -
W + FPO.UpU - O

The connection coefficients can be found by

1
F?w = 7§(augl/0 + augOu - 809#1/)

The only nonzero symbol has ;4 = v = i, so we have

a
0 _
Iy = aa = —gi;
a

The geodesic equation is thus

du® 4 v
du® 4
= LU=
o v =0

Now recall that



(U2 — U =0 Massless
(U - |UP =1 Massive

So we can clearly see that U%dU° = |U|d|U]| so our geodesic equation becomes

14Ul
YL Yy =
g0 an T glvl=0

Noting that UY = dt/d\ yields

U+ 4up =0
a

Solving this yields [U| ~ a~!, which, in the case of a massless particle, implies that U° ~ a~! as well. Since
this is related to the particles energy, we can assert that (for massless particles) E ~ a~!. This means

E  a
Ey ap

Lets compare the distributions of particles at T, Fy, and T3, Fo

1
T = B
_ 1
T TaghBy
ea1Tt + 1
Now since we also know that T ~ a~!, we have
Tl - ag
T, a
So we have
1
fEL, ) = —5—
eusiTt 1
J— 1 —
CeP2/Ta 1

f(E27 TQ)

Therefore, the spectrum retains its shape with the expansion of spacetime.

b) No, the reason why the spectrum was preserved in part (a) was due to the fact that the spectrum was
fully characterized by the ratio £/T. Any spectrum characterized only by this ratio (or any power of this
ratio) will be preserved under expansion, but not otherwise. For example, a spectrum of Bremsstrahlung
produced photons follows an E~! distribution, and will be distorted by expansion.

¢) No, any spectrum with only an F/T dependence will be preserved, since temperature and energy redshift
in the same way. Maxwell Boltzmann, Fermi Dirac, and Bose Einstein spectrums will all be preserved (for

massless particles, and no chemical potential).



4. In class I mentioned that it is not possible in Standard Big Bang cosmology to explain the observed spatial
flatness of the universe today. To understand this problem, compute the temperature evolution of  — 1
where Q = p/p., and p,. is the energy density of a spatially flat universe. Show that this quantity decreases
rapidly as the temperature increases. What does this mean for the initial conditions in the very early
universe if these are able to reproduce what we see today?

Solution

Recall that the density parameter is

871'Gp P
3H?"  pe
So

B 3H?
- 871G

If we recall the Friedmann equation, we have

a 2_87TGp_£
a) 3 a?

Since H = a/a, we can easily rewrite this as

K K

C-1=tpp =

Where £ represents the curvature of the universe (k < 0: open, x = 0: flat, K > 0 : closed).

For simplicity, we will consider the universe at the interface of matter-radiation equality. Call the scale
factor at this time a., = 1. In the radiation domination era, a ~ t'/2 (so H ~ t~1). Since T ~ a~! from a
previous problem, we can note that

Where T¢q is the temperature of the universe at matter-radiation equality. We also have the ratio

1/2 1/2
Geq teq t . 1 —-1/2,-1/2 1 -1 _-1 1 T
1= — == = 2 = oy =
a ( ¢ ) “ (teq> @7 glea g'ca® T 9 T.,

To see the temperature evolution of the density parameter, lets compute the time derivative

7@ =5 (3)

. d
2 2 —2
Q= 4ﬁt€qTeq%(T )

T
_ 2 m2
= _SK/teqTeqﬁ

10



Lets compare this with the density parameter itself

T2 : 2 7
€q _ 2 ~eq
Q = 78Ht6q T2 . ?

_ 442
QN =4tk T

If we ignore numerical factors of t.q, T4, x, and note that if we start from some early time and evolve

forward, T > 0, T' < 0 we get the following scaling of the density parameter and its derivative

Figure 2: Temperature evolution of the density parameter and its derivative, in scaled units. Plotted with an
initial temperature T = 1000 and final temperature 7' = 10 (in these scaled units). Note the temperature

decreases along the x axis.

From the above figure, it is clear that €2 blows up from its initial value as the temperature decreases. Given
that the temperature today is T ~ 2.7K, the range of parameters plotted is extremely conservative. Since
the density parameter  is observed to be so small today (consistent with a flat universe), the universe
would have had to be much more flat at very early times. Is there a natural mechanism that can conserve

the spatial flatness of the universe? Such a topic is an open problem in cosmology.
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