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However, by the use of a(t) = e'¥ | the left hand side of (3.2) can be evaluated using

(3.1} to give
2

= 8xGp.

22 4 (2
a

a

(3.3)

In order for (3.2) and (3.3) to agree, the equation of state of matter must be

p=-p. (3.4)
Therefore, “new cosmology” (i.e. description of matter in terms of fields) is required
in order to obtain inflation.

It is not hard to show that an equation of state like (3.4) with negative pres-
sure can be obtained if matter is described in terms of scalar fields.
Lagrangian L(yp) for a theory of a scalar field ¢(z,1):

Consider the

231 Oupde ~V(p). (3.5)

Given the Lagrangian, the energy-momentum tensor T}, can be determined as in
any classical field theory (see Ref. 51). In a Universe with FRW metric

Guv = mmwmc_lawﬁv,s.ﬁw@v‘!,Qwﬁvv Aw,mv
we obtain for p = Ty and p = 3 Mu.i T
pz,t) = 564z, 0) + Wa,ﬁ% +V(p),
(3.7
%Amkv = u M H I MAH 3!. !GQ&AQSV - «\Aﬁv.

Thus, if o(z,t;) = const and ¢( z,t;) = 0 at some initial time t; and V(p(z,t;)) >
then the equation of state becomes p = ~p and leads to inflation.
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- Two examples which give inflation are shown in Fig. 8. In (a), inflation occurs
at the stable fixed point o{z,t;) = 0 = ¢{z,¢;). However, this model is ruled out
by observation: the inflationary phase has no ending. V{0) acts as a permanent
nonvanishing cosmological constant. In (b}, a finite period of inflation can arise
if p(z) is trapped at the local minimum ¢ = 0 with ¢(z) = 0. However, in
this case p{z) can make a sndden transition at some time ty > 1; through the
potential barrier and move to ¢(z) Thus, for #; < t < tg the Universe
expands exponentially, whereas for ¢ » {g the contribution of ¢ to the expansion
of the Universe vanishes and we get the usual FRW cosmology. There are two
obvious questions: How does the transition oceur and why should the scalar field
have V() = 0 at the global minimum? In the following section the first question
will be addressed. The second question is part of the cosmological constant problem,
for which there is as yet no convincing explanation. Before studying the dynamics
of the phase transition, we need to digress and discuss finite temperature effects.

a.

3.2. Finite temperature field theory

The evolution of particles in vacuum and in a thermal bath are very different. Simi-
larly, the evolution of fields changes when coupled to a thermal bath. Under certain
conditions, the changes may be absorbed in a temperature-dependent potential, the
finite temperature effective potential.®? Here, a heuristic derivation of this potential
will be given. (See Ref. 53 or the original articles®® for the actual derivation.)

We assume that the scalar field ¢{z,1) is coupled to a thermal bath which is
represented by a second scalar field ¥( z, {) in thermal equilibrium. The Lagrangian
for ¢ is

1 | APR
Lo m@:ﬁotﬁ — V{g)} -~ myﬁgx {3.8)
where A is a coupling constant. The action from which the equations of motion are
derived is
S= \ diz /=5L, (3.9)
where g is the determinant of the metric (3.6). The resulting equation of motion
for p(z,t) is

$+3Hp—a 'V = ~V'(p) - My

(3.10)

I 4 is in thermal equilibrium, we may replace ¥* by its thermal expectation value
{#?)r. Now,

B A%wvﬂ. o~ Nsw ¥
rhich can be seen as follows: in thermal equilibrium, the energy density of ¢ equals

at of one degree of freedom in the thermal bath. In particular, the potential
gy density V() of ¢ is of that order of magnitude. Let

(3.11)

Vb e dolh® {3.12)




with a coupling constant Ay, which we take to be of order 1 (if Ay 18 too small, imw _swﬁw 3@ > b > 0. The finite temperature effective potential is obtained by adding
not be in thermal equilibrium). Since the thermal energy density is proportional to 3AT?¢" to the right hand side of (3.18). Vr(y) is sketched in Fig. 10 for various
T, (3.11) follows. (3.10) can be rewritten as 5&:8 of T. The critical temperature 7, is defined as the temperature when the
_.two minima of Vr(y) become degenerate.

Y+ 3Hp —a 2V = —Vi(p), (3.13) -
where
o ‘alp)
Vr(p) = V(p) + 5AT (3.14) |
is called the finite temperature effective potential. Note that in (3.14), A has been ‘
rescaled to absorb the constant of proportionality in (3.11). ; \\\ T vvzﬂa
These considerations will now be applied to Example A, a scalar field model \ T=T
with potential . : = e
V(e) = TMp? )’ (3.15) .
4 ' \i.!\i!fmgxn‘n ..Maﬂ
(n is called the scale of symmetry breaking). The finite temperature effective : o N\
potential becomes (see Fig. 9) /
)] a
V() | | o
Fig. 10. The finite temperature effective potential for Example B.
i ..w..vv.ﬂn
\ T=T It is important to note that the use of finite temperature effective potential
- c ‘methods is legitimate only if the system is in thermal equilibrium. This point was
stressed in Refs. 54 and 55, although the fact should be obvious from the derivation
s A.AAA.o iven above. To be more precise, we require the ¢ field to be in thermal equilibrium

and the coupling constant A of (3.8), which mediates the energy exchange between
‘the ¢ and o fields, to be large. However (see, for example, Ref. 18), observational
constraints stemming from the amplitude of the primordial energy density fluctua-
tion spectrum force the self-coupling constant A of ¢ to be extremely small. Since
t one-loop order the interaction term wwﬁw%w induces contributions to A, it is
_unnatural to have A very small and b) unsuppressed. Hence, in many inflationary
Universe models — particularly in new inflation®® and in chaotic inflation®® -— finite

temperature effective potential methods are inapplicable.

Fig. 9. The finite temperature effective potential for Example A.

1 1 c 1
Vrlp) = 200" = 5 ?% - ﬁév o+ g Mt (3.16)
For very high temperatures, the effective mass term is positive and hence the % Phase transitions.
energetically favorable state is {p) = 0. For very low temperstures, on the other
hand, the mass term has a negative sign which leads to spontaneous symmetry

breaking. The temperature at which the mass term vanishes defines the critical
temperature T,:

e mmEvmggS dependence of the finite temperature effective potential in quan-
m field theory leads to phase transitions in the very early Universe. These tran-
tions are either first or second order.

‘ Example A of the previous section provides a model in which the transition is

Te = A1)\ second order (see Fig. 9). For 7' >» T, the expectation value of the scalar field ¢
As Example B, consider a theory with potential ishes at all points z in space:
1 1 1 :
Vip) = z¢' = 5(a+b)p’ + 5abe” (3.18) {p(z))=0. (3.19)
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cosmological implications will be discussed in later sections. !

The easiest defect to construct is the domain wall. Consider n = 1 [or, mort
generally, a theory with IIo{AM) # 1]. In this case, the vacuum manifold consists &

two points: M

Puvac = %7 (344 N
During the symmetry-breaking phase transition, regions in physical space R? with " N
¢ = %0 will form. These regions are separated by two-dimensional surfaces (walls| ﬂ
with ¢ ¢ M (see Fig. 1I). These are the domain walls. Since ¢ ¢ M in the /

walls, V(p) > 0 and hence the walls carry energy per unit area. Via the usud,

gravitational force, this energy can act as a seed for structures in the Universe. 3« 12. The zero temperature potential energy of the complex scalar field used in the cosmic

: string model.

+ + + _— - 39.5« configurations which are translationally invariant along the 2 axis. On a circle
' Cin the z — y plane with radius r (see Fig. 13), the boundary conditions for ¢ are

+ + (= = =

S
DW

o(r,0) = :m.« , (3.47)

- where 0 is the polar angle along C.

Fig. 11. A two-dimensional cross section through space showing a domain wall (DW) separating
a region with v = n {4) from a neighboring region with ¢ = —y (~).

3.6. Cosmic sirings

Consider a theory in which matter consists of a gauge field A, and a complex mnEE;
field ¢ whose dynamics is given by the Lagrangian

L= DugD"6~V(6) + & FuF*, (345 P

where mutt is the field ma—.nsmo_ﬂ tensor. The vgmﬂﬁmﬁ faﬁﬁv has the symmetry- Fig. 13. Sketch of the cosmic string construction of Subsec. 3.6. {See text for notation.)
breaking “Mexican hat” shape (see Fig. 12): ,
_ The configuration (3.47) has winding number 1: at all points of the circle, ¢ takes
V(¢) = w»:&_u - n?)2, 3 Am‘ on values in M, and as i varies from 0 to 2x, ¢ winds once round M. By continuity
4 — it follows that there must be a point p on the disk D bounded by C where ¢ = 0. By
translational symmetry there is a line of points with ¢ = 0. This line is the center of
Wm:am_ ﬁ”m <MM§W~”. manifold M, the epuce of minimum energy density nosmmc_.-a the cosmic string. The cosmic string is a line of trapped potential energy. In order
o ey e .955_:.:«« the total energy given the prescribed topology (i.e. winding number),

The th described by (3.45) and (3.46) admit. di ional topologi .
m&.mngo nowﬁn MNM” ; szmo >WVM_~_W=A:. v w:MMM Mﬂﬂr.ﬂﬂ“ﬁﬂo Mw mo MN. _...= .,Fn thickness of the string [i.e. radius over which V(¢) deviates significantly from
- s P 0] must be finite. As first shown in Ref. 67, the width w of a string is

solutions were first found by Nielsen and Olesen.%” It is possible to no:m:éﬁ

o
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wa A~Y2p-1 (3.48),.

Sy = M =52, ?m,sv.ﬂs%v. (3.51)

from which it follows that the mass per unit length y is This configuration has winding number 1. Since the winding number of maps S? —

2 57 is quantized, it cannot change as r varies. Thus, the only way to obtain a
SR Aw.%_&wm_m-aﬁ_:mm field configuration at r = 0 is for p(r,8, ) to leave M as r — 0. In
i.e. independent of the self-coupling constant A. Jﬂ»mnc_wr there is a point (e.g. r = 0) for iw.:nv ¢ = 0. This is z:.w center of the
Cosmic strings arise in any model in which the vacuum manifold satisfies ga:..o:o_.u&m. <.<m e that monopoles ate topological defects: they contain a core, have
topological criterion quantized winding number and are stable.
o (M) #1. Aw.mowuym. Global teztures

Any field configuration ¢( z) is characterized by an integer n, the element of I, (M)

283. consider a theory of four real scalar fields given by the Lagrangian
corresponding to ¢(z). (Roughly speaking, n can be viewed as the number of times:

the map ¢ from C to M covers M) i L= W. L$* b — V($) (3.52)
A cosmic string is an example of a topological defect has a well-defined core, uw

region in space where ¢ ¢ M and hence V(¢) > 0. There iz an associated i:&:%ﬂ? 2

number, and it is quantized. Hence, a topological defect is stable. ?:raqaoam V(g) = w» M.J\ 82— 2 (3.53)

topological defects exist for theories with global and local symmetry groups. , (¢) = 4 \Z . . .

3.7. gaaoﬂ&au ﬂu this case, the vacuum manifold is M = 53 with topology

If the theory contains three real scalar fields #i with potential (3.46) (if |#]? ..u Ha(M) #£ 1, (3.54)

Y3, ¢%), then l12(M) # 1 and monopoles result. The construction of a monopolef”
configuration is illustrated in Fig. 14. As the origin in physical space we select®nd the corresponding defects are the global textures. %5
a point which is to become the center of the monopole. Consider a sphere S, of!
radius r surrounding this point. A spherically symmetric monopole oosmm:_.w:ouwﬁ ,
is obtained by the identity map w@:
b

‘Fig. 15. Construction of a global texture: on the left is physical space, on the right the vacuum
ﬁ imanifold. The field configuration ¢ is a map from space to the vacuum manifold (see text).

Fig. 14. Construction of a monopale: on the left is physical space, on the right the g._l. Textures, however, are quite different than the previous topological defects. The
manifold. The field configuration $ maps spheres in space onto M. However, a core region of texture construction will render this manifest (see Fig. 15). To construct a radially
#pace near the origin is mapped onto field values not in M. ‘symmetric texture, we give a field configuration ¢(z) which maps physical space
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onto M. The origin 0 in space (an arbitrary point which will be the center of t
texture) is mapped onto the north pole N of M. Spheres surrounding 0 are mapp
onto spheres surrounding N. In particular, some sphere with radius r.(t) is mapp
onto the equator sphere of M. The distance re(t) can be defined as the radius
the texture. Inside this sphere, #(z) covers half the vacuum manifold. Finally, t
sphere at infinity is mapped onto the south pole of M. The configuration ¢(z)
be parametrized by®®

Consider a mechanical toy model, first introduced by Mazenko, Unruh and
Wald®® in the context of inflationary Universe models, which is useful in under-
tanding the scalar field evolution. Consider (see Fig. 16) a lattice of points on a
flat table. At each point, a pencil is pivoted. It is free to rotate and oscillate. The
ips of nearest neighbor pencils are connected with springs (to mimic the spatial
€@l gradient terms in the scalar field Lagrangian). Newtonian gravity creates a poten-
tial energy V(p) for each pencil (p is the angle relative to the vertical direction).
¢z, y,2) = Anem x(r), sin x?vm,mwa x?vmgmm: X?VMv (3.55 V() is minimized for |¢| = 7 (in our toy model n = x\wv ,mm:%. the ﬁ@@;smwmz
r r r of this pencil model is analogous to that of a scalar field with symmetry-breaking
in terms of a function y(r) with x(0) = 0 and x(o0) = 7. Note that at all point ‘potential (3.46).
in space, ¢(z) lies in M. There is no defect core. All the energy is spatial gradie
(and possibly kinetic) energy.

In a cosmological context, there is infinite energy available in an infinite space’ ﬂ . (;ﬁg

Hence, it is not necessary that X(r) — 7 as r — 00. We can have spring

X(T) = Xmax <7 as 7 — 00, (3.56
In this case, only a fraction, pencil

Xmax  SiD 2Xmax
f £ Pt o .«-
b 2r (3.5 -

of the vacuum manifold is covered: the winding number n is not quantized. Th .
is a reflection of the fact that whereas topologically nontrivial maps from 5 to 2

exist, all maps from R% to §3 can be deformed to the trivial map.

Textures in k% are unstable. For the configuration described above, the inst
bility means that re(t) — 0 as t increases: the texture collapses. When re(t)
microscopical, there will be sufficient energy inside the core to cause ¢(0) to leaw
M, pass through 0 and equilibrate at x(0) = x: the texture unwinds.

Fig. 16. The pencil model: the potential energy of a simple pencil has the same form as that of
scalar fields used for spontaneous symmetry breaking. The springs connecting nearest neighbor
pencils give rise to contributions to the energy which mimic spatial gradient terms in field theory.

At high temperatures T' >» T, all pencils undergo large amplitude high fre-
A further difference compared to topological defects: textures are relevant onl uency oscillations. However, by causality, the phases of oscillation of pencils with
for theories with global symmetry. Since all the energy is in spatial gradients, fore large separation s are uncorrelated. For a system in thermal equilibrium, the length

local theory the gauge fields can reorient themselves such as to cancel the energy: # beyond which phases are random is the correlation length £(1). By causality there

Dy =10. (3.5§ 18an a priori causality bound on ¢:

Therefore, it is reasonable to regard textures as an example of a new class
defects, semitopological defects. In contrast to topological defects, there is no co
and ¢(z)eM for all z. In particular, there is no potential energy. Second, ¢
winding number is not quantized, and hence the defects are unstable. Finally, th
exist only in theories with a global internal symmetry.

E(te) < te, (4.1)

"y

ere i is the causal horizon, at temperature 77,.
,ﬁ,@ critical temperature 7, is the temperature at which the thermal energy is
tal to the energy a pencil needs to jump from a horizontal to a vertical position.
For T < 1 ¢, all pencils want to lie flat on the table, However, their orientations are
random beyond a distance of £(t,).

The boundaries between the domains of correlated orientation become topo-
gical defects. Hence, it follows from the above causality argument that during the
ase transition a network of defects with mean separation £(¢) < t will form.

‘ For models of structure formation and for defects formed in grand unified phase
ransitions, we are interested in models with a scale of symimetry breaking 5 ~
0'® GeV corresponding to a time of formation £, ~ 10~ sec.

4. Formation and Evolution of Topological Defects
4.1. Kibble mechanism

The Kibble mechanism® ensures that in theories which admit topological or se
topological defects, such defects will be produced during a phase transition in th
very early Universe,
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which scales like the background radiation density. Later in this section we sh !
see that the scaling (4.13) does indeed hold in the cosmic string model. Hen
cosmic strings do not lead to cosmological problems. On the contrary, since
GUT models with 5 ~ 10'® GeV
2
Pos A..w!v ~ 1078,
P 32

cosmic strings in these models could provide the seed perturbations responsible fa
structure formation. ;

B

fd

= (4.4

does not decrease. Since their contribution to the energy density scales as a~3(1)
they will come to dominate the mass of the Universe, provided n is sufficiently large

Theories with global monopoles™ are not ruled out, since there are long rang.
forces between monopoles which lead to a “scaling solution” with a fixed numbe

of monopoles per Hubble volume.

4.3. Cosmic string evolution

Applied to cosmic strings, the Kibble mechanism implies that at the time of th
phase transition, a network of cosmic strings with typical step length &(tg) wil
form. According to numerical simulations,”™ about 80% of the initial energy is il
infinite strings and 20% in closed loops.

The evolution of the cosmic string network for t > tg is complicated. The ke
processes are loop production by intersections of infinite strings (see Fig. 17) anl
loop shrinking by gravitational radiation. These two processes combine to createl
mechanism by which the infinite string network loses energy (and length as measure
in comoving coordinates). It will be shown that, as a consequence, the correlatiof
length of the string network is always proportional to its causality limit: ]

(4.1

€t ~1t. |
o, _
® —Yo |

L

Fig. 17. Formation of loops by self-intersection of infinite strings. According to the original
string scenario, loops form with radius R determined by the instantaneous correlation length
the infinite string network.
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Hence, the energy density p,(t) in long strings is a fixed fraction of the background

. energy density p.(t):

Poo(t) ~ pE(t)™2 ~ ut=? (4.16)
or ¢
w&% ~Gh. (4.17)

We conclude that the cosmic string network approaches a “scaling solution”3? in

- which the statistical properties of the network are time-independent if all distances

Theories with local monopoles are ruled out on cosmological grounds” (see agail
the caveats of Refs. 70 and 71) for rather different reasons. Since there are no lon
range forces between local monopoles, their number density in comoving coordinate

are scaled to the horizon distance.

The origin of the scaling solution for the infinite string network can be under-
stood heuristically, as follows. If the curvature radius &(t) of this network is much
larger than the Hubble radius ¢, the network will be frozen in comoving coordinates
(since the Hubble damping term dominates in the equations of motion). Hence in
the radiation-dominated FRW epoch

£(t) ~a(t) ~ t}1? (4.18)

and the Hubble radius will catch up to £(1). Conversely, if £(t) < ¢ then the tension

term in the equations of motion for the string will dominate, the strings will oscillate

relativistically and there will be frequent self-intersections of the strings, leading to
rapid loop production and to increasing £(1)/t. Combining these two arguments,
we conclude that there must be a “dynamical fixed point” with £(¢) ~ ¢.

A first step in a more rigorous analysis of cosmic string evolution is the derivation
of the effective equation of motion for the strings. Note that this equation must
follow from the field equations since the string is merely a particular topologically
stable field configuration.

‘The equations of motion of a string can be derived from the Nambu action
S= It.\kQ dr AI aogmwvv_\n , a,b

0,1, (4.19)

>

QWV 18 the world-sheet metric and ¢ and r are the world-sheet coordinates. In flat
Space-time, 7 can be taken to be coordinate time, and & is an affine parameter
along the string. In terms of the string coordinates X*#(o,7) and the metric Sﬁ\v of
the background space-time,

oy

= X4X45¢0 (4.20)
From general symmetry considerations, it is possible to argue that the Nambu
action is.the correct action. However, [ shall follow Foerster® and Turok®? and

give a direct heuristic derivation. We start from a general quantum field theory

Lagrangian, Lqrr. The action is

by

s= [dtcarr (601 . (421)



2154 R. H. Brandenderger

X $X
T4 F T+
T | o e )
Illvm i N
217 2

E (e, 1
T r ' r
=H™! X=H
(a) (b)

Fig. 18. A sketch of the forces acting on a radially symmetric texture configuration and which
cause unwinding in Fig. 18(a) if ny, > n., and dissipation if n., < n. [Fig. 18(b)}.

However, for Xxmax < ¥/2, the angular gradient force tends to reduce xmax, and

to reduce the radial gradients, x{(r) will tend to decrease even for x < Xmax- Hence,
the field configuration will dissipate [see Fig. 18(b)].

If ny, is only slightly larger than x/2, the force Fy of Fig. 15(a) is too weak to

offset the force Fy described above. The critical winding n. is hence larger than
0.5. The precise value has been determined in Refs. 99 and 101. It depends ont the!
length of the “plateau region” of x(r) (which is the inter-texture separation) and
on the expansion rate of the Universe. For realistic parameters'®!

0.65 < n. < 0.75.

As will be shown in a later section, only textures with ny > n, generate localized
density perturbations which can act as seeds for coemic structure formation.

5. Introduction to Structure Formation
5.1. Power spectrum

In Sec. 2, the cosmology of a homogeneous and isotropic Universe was nmﬁai.x_
In order to understand structure formation, it is essential to study the evolution ol
inhomogeneities at a linearized level. This will be adequate for understanding the!
early evolution of density perturbations in the Universe.

The starting point of the relativistic theory of cosmological perturbations® is
the linearized Einstein equations. If we take the general Einstein equations

Gy = 8xGTy,y ,

where Gyu(gap) is the Einstein tensor and 7, is the energy-momentum tensor ¢
matter, and expand about a cosmological background 3_5_9_

httmov = diag c. lnnanv. lanA«,v,,Wfaw&wvv A@.ﬁ

(4.56)

(5.1)8

£
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and
| {see Sec. 2), then we obtain the linearized equations
5Goy (906 + hap) = 87GET,, . (5.4)
wnzwzos (5.4) relates the perturbation Ay, of the metric, i.e.
&tt = Quv — %ttﬁov s anmv

8 the matter perturbations.

To gain a heuristic understanding of how the perturbations evolve, recall that

~ gravity is a purely attractive force. Given an initial mass perturbation ém, the force
~ on surrounding particles will be

F~bm. (5.6)
Since (neglecting for a moment the expansion of the Universe)
i~ F, (5.7)

we see that in a nonexpanding background the growth of perturbations is exponen-
tial. In an expanding background, there will be a damping term depending on H.
Hence, perturbations will increase only as a power of time.

The details of the analysis are rather complicated (see Refs. 30 and 104 for recent
reviews). The result is that the density contrast ép grows as follows:

23 >ty
Sp(t) ~ ¢ ¢ t <leq, AD>H (5.8)
const t <leq, AL,

Note that on length scales A greater than the Hubble radius ¢, the quantity 6p is not
gauge-invariant, i.e. it depends on the slicing of space-time.!%* The quantity which
is gauge-invariant is the relativistic potential ®, which is time-independent if the
equation of state of the background cosmology is constant.'® In a gauge in which
g, is diagonal and for models of matter in which §T;; is diagonal at linearized level
(a condition satisfied by most interesting models of matter), & can be identified as
follows:

guy = (14 20)dt? — a®(8)(1 — 28)d2?. (5.9)

We will use the results of (5.8) when describing the evolution of the power spectrum.
The main quantity of interest is the r.m.s. mass excess (M /M)(k,t) at time ¢
in a sphere of radius k~!. Given a smooth density distribution

- p(z,1) = polt) + 8p(z,t), {5.10)
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the r.m.s. mass excess can be related to the Fourier mode bp(k)ina m:,w_mr:.o_.sw&
manner.'® The result is

Aﬁv (k,t) ~ k® % (k,1). (5.11)
The adopted convention for Fourier transformation is
%Euaav-&%;_:\%:;miﬁ. (5.12) |

The result (5.11) holds provided |8p(k)|? is proportional to k" with n > —3. An |

intuitive way to understand the result is as follows: perturbations with wave nurr |

ber larger than k average to zero in a volume k=2, perturbations with wave number |

smaller then k are phase-space-suppressed such that (6M /M )(k) receives its major |

contribution from Fourier modes of wave number k. Their phase space volume:|
is k3. M
The most commonly used function describing the ensemble of perturbations is |
the spectrum P(k). By definition, the power spectrum is the square of the modulus |

of the Fourier space density contrast: v

P(k) = (5.13)

Hence [from (5.11)], P(k) is related to the r.m.s. mass fluctuations (6M/M)(k,1)

on physical length scale
Ay = nvam, (5.14)

at time ¢ via

AQQV (k,t) ~ K*P(k). (5.15) |

The scaling solution for topological defect models implies that when measured at
the time t7(k) at which the wavelength A, equals the Hubble radius, the r.m.s. mass
perturbation (§M/M)(k) is independent of k (scale invariant), i.e.

1
i (5.16) |

—_— ? tu(k)) = const.

This is because at any time t, a constant fraction of the mass M inside the Hubble
radius is contained in the topological defects. For example, one cosmic string of

length ¢ contains mass M = ut compared to the total mass M ~ B3p(t) ~ t Emao
the Hubble radius, thus leaving the ratio M /M time-independent.

Equation (5.16) is the same result as is obtained for inflationary Universe models.
Hence, we conclude that all three main models of structure formation — adiabatic
random phase perturbations from inflation, cosmic strings, and global textures —
to a first approximation produce a scale-invariant spectrum. !

t

To convert (5.16) into an expression for the power spectrum P(k), we use the
fact that SM /M grows as the scale factor a(t) during the matter-dominated epoch

on scales smaller than the Hubble radius [see (5.8)]:
§M t 1M
_— = | — k ty(k)). 5.17
O P S 0 (5.17)
On scales larger than the Hubble radius at t,q
Ly (k) = 2nk~ la(ty (k) ~ 3 (k)k1 (5.18)
arid hence
ty(k) ~ k3 (5.19)
Therefore, combining (5.16), (5.17) and (5.19) we obtain
&M
t) ~ k*. 5.20
o7 (D) (5.20)
From (5.15) it follows that
P(k) ~ k" (5.21)

with n = 1.

" Recently, there has been some interest in deviations from scale invariance. In
thodels of inflation, a deviation comes about!?® because H decreases slowly dur-
g inflation. In topological defect models, numerical'®1°7 and semianalytical!®®
studies have also shown small deviations from scale invariance. These deviations,

- however, are all small and quite model-dependent.

32, CMB anisotropies

" Density perturbations give rise to anisotropies in the temperature of the CMB.
- There are three main contributions (see Fig. 19):

we

A3 X

Fig. 19. Space-time plot sketching the origin of CMB temperature anisotropies. The surface
labeled Tioc is the last scattering surface. O is the observer at the present time measuring photons
4 impinging from directions in the sky separated by angle 9. The shaded area labeled C stands for
& local overdensity, leading to distortions of geodesics. Possible velocities of observer and emitter
are indicated as v, and ¥..



few long strings crossing each Hubble volume, plus a distribution of loops of radius

R < t (see Fig. 24).
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Fig. 24. Sketch of the scaling solution for the cosmic string network. The box corresponds to one

L i . Hubble voluine at arbitrary time t.
g 22. The mass function of galaxies {determined from the luminosity function assuming constant

to light ratio} from Ref. 127 {(a) from Bahcall, (b} from Binggeli]. . . L . .
wes fo IER ) (=) The cosmic string model admits three mechanisms for structure formation: loops,

filaments and wakes. Cosmic string loops have the same time-averaged field as a

v point source with mass!'
A M(R) = BRy, (6.1)
400+ R being the loop radius and § ~ 2x. Hence, loops will be seeds for spherical
accretion of dust and radiation.®®

300K For loops with R < t.q, growth of perturbations in a model dominated by cold

200 dark matter starts at {,q. Hence, the mass at the present time will be
100 M(R,tg) = z(teq)BRps. (6.2)
| | | > In the original cosmic string model®®'®! it was assumed that loops dominate over
0 20 40 60 wakes. In this case, the theory could be normalized (i.e. p could be determined) by

demanding that loops with the mean separation of clusters dy [from the discussion
in Subsec. 4.4 it follows that the loop radius R{d.) is determined by the mean
geparation] accrete the correct mass, i.e. that

ig. 23. A typical velocity rotation curve {for NGC488 HI data, taken from Ref. 128). The radius
in kpe, the velocity in kn s,

p(r) ~r=2. (5.30) M(R(da), to) = 10" M, . (6.3)
Ve can also measure the angular momentum of galaxies. Typical numbers for large %?m condition yields!3!
sirals are in the range!?® 1073-107% cm?g s~ joo 10% GeV2. (6.4)

. . R hus, if cosmic strings are to be relevant for structure formation, they must arise
. Cosmic Strings and Structure Formation ue to symmetry breaking at energy scale 5 ~ 10'S GeV. This scale happens to
*he starting point of the structure formation scenario in the cosmic string theory is
he scaling solution for the cosmic string network, according to which at all times t

in particular at teq, the time when perturbations can start to grow) there will be a

be the scale of unification of weak, strong and electromagnetic interactions. It is
tantalizing to speculate that cosmology is telling us that there indeed is new physics
at the GUT scale.
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Fig. 25. Sketch of the mechanism by which a long straight cosmic string moving with velocity v in

the transverse direction through a plasma induces a velocity perturbations Av towards the wake.
Shown on the left is the deficit angle, in the center is a sketch of the string moving in the plasma,
and on the right is a sketch of how the plasma moves in the frame in which the string is at rest.

The second mechanism involves long strings moving with relativistic speed in
their normal plane which give rise to velocity perturbations in their wake. The
mechanism is illustrated in Fig. 25: space normal to the string is a cone with deficit
angle!3?

o= 8rGu. (6.5)

If the string is moving with normal velocity v through a bath of dark matter, a |
velocity perturbation

bv = 4nGuuvy (6.6)

[with v = (1 — v%)~1/?] towards the plane behind the string results.!® At times
after toq, this induces planar overdensities, the most prominent (i.e. thickest at
the present time) and numerous of which were created at teq, the time of equal
matter and radiation.'® '3 The corresponding planar dimensions are (in comoving
coordinates)

teqz(leq) X teqz(leq)v ~ (40 x 40v) Mpc?. (6.7

An intuitive understanding of the origin of the above distinguished scale can be
obtained as follows. Viewed from a distance, the density perturbation grows as in
a linear theory, ie. )

2/3 ¢

mmS =(+ @.:? (6.8)

P ti P

for a perturbation set up at a time t; > toq. Since the initial 8§p/p(t;) is indepen-

dent of t;, the largest density contrast comes from the earliest t;, namely t; = teg.

Fluctuations created at ¢; < loq are erased by the large thermal velocities. Thus,

strings at {o create the most prominent wakes. They are also the must numerous,
since the comoving separation of strings decreases as ¢; decreases.

A more rigorous way to obtain the above result is to consider the evolution of
the velocity perturbations induced by a wake in the Zel’dovich approximation.
The height of a dark matter particle above the wake can be written as

g
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where ¢ is the initial comoving distance, and ¥(g,t) is the comoving displacement
caused by the presence of the wake. The thickness of the wake at time { is deter-
mined by the value of ¢ for which

h(g,t) = 0. (6.10)

Obviously, the value of ¢ for which & = 0 increases as the time when the perturbation
¥ begins to grow is moved back in time. Hence, the earliest wakes will be the
thickest.

The details of the calculation depend on whether the dark matter is hot or cold
(see Sec. 8). For hot dark matter, the large thermal velocities delay the beginning
of the growth of ¥ on small scales. A detailed analysis!®137 shows that for hot
dark matter no perturbations becore nonlinear unless

Gu>5-10"7, (6.11)

In this case, the value of the redshift z(¢) at which h = 0 is maximal for the value
of ¢ (the thickness) given by
g ~ Guvy(v)2(teg) teq ~ 4v Mpc (6.12)
for wakes created at t; = teq. Note that the scales of cosmic string wakes [see (6.7)
and (6.12)] compare favorably with the measures of the observed sheets of galaxies.”
Wakes arise if there is little small scale structure on the string. In this case, the
string tension equals the mass density, the string moves at relativistic speeds, and
there is no local gravitational attraction towards the string.
In contrast, if there is small scale structure on strings, then® the string tension

T is smaller than the mass per unit length # and the metric of a string in the 2
direction becomes

ds® = (1 + hoo)[dt? — dz? — dr? — (1 — 8Gu)r2dp?) (6.13)

with -
figg = 4G (g~ TYIn — |

o

(6.14)

rg being the string width. Since hgg does not vanish, there is a gravitational force

towards the string which gives rise to cylindrical accretion, thus producing filaments.
As is evident from the last term in the metric (6.13), space perpendicular to

the string remains conical, with the deficit angle given by (6.5). However, since the

string is no longer relativistic, the transverse velocities v of the string network are

xpected to be smaller, and hence the induced wakes will be shorter.

‘ ~ Which of the mechanisms -— filaments or wakes — dominates is determined by

e competition between the velocity induced by hyg and the velocity perturbation

of the wake. The total velocity is!38:139



Topological Defects and Strucinre Formation 1173
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Fig. 31. Sketch of the mechanism pmducxuhnw discontinuities in the microwave temperature
for photons v passing on different sides of a moving string S (velocity v). O is the observer. Space
perpendicular to the string is conical {deficit angle o).

T~ 81Gun(e). (8.6)

To detect such discontinuities, an appropriate survey strategy (for example, a full
sky survey) with small angular resolution is crucial. The distribution of strmgs also
gives rise to Sachs-Wolfe type anisotropies.!5®

The theoretical error bars in the normalization of CMB anisotropies from strings
are rather large — a direct consequence of the fact that the precise form of the
scaling solution for the string network is not well determined. Nevertheless, we can
consider a fixed set of cosmic string parameters and ask whether the normalizations
of Gu from large scale structure data and from COBE are consistent. This has been
done numerically in Ref. 106, and using an analytical toy model in Ref. 108.

The analytical model!%® is based on adding up as a random walk the individual
Doppler shifts from strings which the microwave photons separated by angular scale
v pass on different sides, and using this method to compute AT/T(f). By the use
of the Bennett-Bouchet!%® string parameters, the result for Gu becomes

Cp=(13£05)10"¢, 8.7)

in good agreement with the requirements from large scale structure formation.”
To detect the predicted anisotropies from textures, it is again essential to have
a full sky survey. However, larger angular resolution is adequate this time, since
the specific signature for textures is a small number (~ 10) of hot and cold disks
with amplitude

187

L ~ 0.06 x 16x¥Gy? ~3 - 10~° (8.8)
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