Special CPM Seminar
Building fractional topological insulators
Fiona Burnell
Subdepartment of Theoretical Physics & All Souls
College University of Oxford
Time-reversal invariant band insulators can be separated into two categories:
‘ordinary’ insulators and
‘topological’ insulators. Topological band insulators
have low-energy edge modes that cannot be gapped without violating
time-reversal symmetry, while ordinary insulators do not. A natural question
is whether more exotic time- reversal invariant insulators (insulators not
connected adiabatically to band insulators) can also exhibit time-reversal
protected edge modes. In 2 dimensions, one example of this is the fractional
spin Hall insulator (essentially a spin-up and spin-down copy of a fractional
quantum Hall insulator, with opposite effective magnetic fields for each spin).
I will discuss another family of strongly interacting insulators, which exist
in both 2 and 3 dimensions, that can have time-reversal protected edge modes.
This gives a new set of examples of ‘fractional’
topological insulators.
Wednesday, September 7th 2011, 11:30
Ernest Rutherford Physics Building, R.E. Bell Conference Room (room 103)
|